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Abstract. A key challenge in wide adoption of sophisticated context-
aware applications is the requirement of continuous sensing and context
computing. This paper presents Panorama, a middleware that identifies
collaboration opportunities to offload context computing tasks to nearby
mobile devices as well as cloudlets/cloud. At the heart of Panorama is
a multi-objective optimizer that takes into account different constraints
such as access cost, computation capability, access latency, energy con-
sumption and data privacy, and efficiently computes a collaboration plan
optimized simultaneously for different objectives such as minimizing cost,
energy and/or execution time. Panorama provides support for discover-
ing nearby devices and cloudlets/cloud, computing an optimal collabora-
tion plan, distributing computation to participating devices, and getting
the results back. The paper provides an extensive evaluation of Panorama
via two representative context monitoring applications over a set of An-
droid devices and a cloudlet/cloud under different constraints.

Key words: Collaborative computing, Pervasive computing, Multi-Objective
optimization

1 Introduction

In the field of context-aware computing, a wealth of clever mobile applications
that monitor user environment to detect and react to events of special interest
have recently been proposed; see, e.g., [20, 21, 12]. However, a major obsta-
cle towards wide adoption of context-aware applications is the requirement of
continuous context monitoring. User context can change at any time and it is
crucial for the application to detect those changes promptly. This requirement is
difficult to accommodate due to limited smartphone resources, particularly the
battery resource. Moreover, despite significant advances in smartphone process-
ing power, context computation latencies remain prohibitively high for several
interesting applications such as cognitive assistance [18]. For these reasons, users
tend to avoid using context-aware applications.

Different offloading techniques have been proposed recently to address these
issues of limited battery life and long computation latency. These techniques
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fall into two broad categories. In the first category, resource-hungry tasks are
off-loaded to powerful servers residing in the cloud, leading to both computation
speedup and energy efficiency. However, accessing the cloud incurs additional
cost for the user in terms of cloud access fee and cellular data plan. In addition,
access latency for cloud can be quite high. To address this, researchers are intro-
ducing cloudlets, acting as a middle-tier to bridge the gap between the mobile
devices and the cloud [18].

In the second category, mobile applications use nearby mobile devices to
share tasks, thereby minimizing the need for accessing cloud resources [6, 11].
This helps with avoiding cloud and ISP charges, as nearby resources can be
personal devices, or mobile devices of family members and coworkers. This also
eliminates redundant sensing and computation, if several nearby mobile devices
are interested in the same (shareable) context [11]. In addition, collaborative
context monitoring extends sensor modalities and tackles the smartphone posi-
tion problem [1]. However, this technique suffers from uncertainties due to the
ad hoc nature of the network, lack of any apparent incentives for participation,
security and privacy, varying device capabilities and device mobility.

It is clear that both of these offloading techniques have their pros and cons
with one of them suitable for one scenario and the other one for a different sce-
nario. At present, offloading solutions to cloud, cloudlet or nearby mobile devices
exist in isolation. With proliferation of mobile devices, increased availability of
(nearby) computing servers that can operate as cloudlets, and improved con-
nectivity to the cloud, a highly likely scenario is one where a user has access to
multiple computing resources whenever she/he needs to perform a context com-
putation. Figure 1 illustrates four common scenarios in a typical user’s (Alice)
life. In the morning, Alice takes a bus to go to her work (Bus scenario). Dur-
ing her bus ride, she can perform collaborative computing with mobile devices of
other bus riders. Later, in her work place (Work Place scenario), she can perform
collaborative computing with mobile devices of co-workers as well as an office
server (cloudlet) accessible within one network hop. During lunch time (Lunch
Break scenario), Alice goes to a restaurant, where she can perform collabora-
tive computing with mobile devices of other restaurant customers as well as a
cloudlet provided by the restaurant. Finally, in the evening or on weekends, Alice
goes for shopping in a mall with her family members and friends (Shopping Mall
scenario), where she can use their mobile device for collaborative computing.

In this paper, we present a middleware framework called Panorama that
enables mobile applications to reap the benefits of every computing opportu-
nity (cloud, cloudlets, and other mobile devices) available at runtime. Panorama
runs on multiple mobile nodes, and builds an optimized collaboration plan tak-
ing into consideration the users’ performance objectives and the participants’
preferences and constraints. A key challenge addressed in Panorama is to ensure
an optimal partitioning of the computation task among available mobile devices,
cloudlet, and cloud. Panorama considers important and practical constraints in
collaboration planning, such as the energy constraints of mobile devices, and
their computation and communication capabilities. It also considers the costs
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Fig. 1. Alice’s Typical Day
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Fig. 2. Panorama’s Architecture

involved in accessing nearby mobile devices vs. cloudlets/cloud. It also takes
into consideration security, privacy, and trust relationship of the participating
devices. At the heart of collaboration planning in Panorama is a versatile multi-
objective optimization framework that takes into account various constraints of
available computing opportunities and efficiently computes a collaboration plan
that optimally trades off different performance objectives such as minimizing the
overall cost, minimizing the energy consumption, and minimizing the execution
time. Panorama provides support for both parallel and sequential (pipeline) task
structures, two most common structures in context monitoring applications.

We have prototyped and extensively evaluated Panorama under a variety
of scenarios in the presence of several different network configurations of mo-
bile devices, cloudlet and cloud and under different device constraints. We have
experimented with two representative context-aware applications: speech recog-
nition (a parallel task) and ambiance sound monitoring (a sequential task). Ex-
perimental results show that Panorama can achieve both reduced computation
time and decreased energy consumption while working within the constraints set
by the collaborators, such as limits on the contributed energy, cost budget, and
privacy requirement. Experimental results also show that Panorama is expres-
sive and flexible in realizing different tradeoffs between completion time, energy
consumption, and/or cost. Panorama is completely automated with no user in-
tervention needed after installation. A device with Panorama can automatically
join a collaboration network when needed, and run tasks that are suitable for it.
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2 Design

2.1 Overall Architecture

Panorama is designed according to the current mobile application development
standards, and can be easily adopted without incurring much change to the
current mobile software stack. It provides APIs to allow applications to dis-
cover nearby devices, cloud and cloudlets, build a network, and delegate tasks
to them. It also provides APIs to allow other mobile devices to discover local
resources and to accept task delegation. The overall architecture of Panorama is
shown in Figure 2. A device acts as an initiator and triggers the network creation
phase when it needs to compute a costly context and is looking for collaborators.
Panorama’s design supports diverse network interfaces like Bluetooth, Wi-Fi Di-
rect, and connections with IPs where cloudlets/cloud reside. Bluetooth standard
allows creation of Piconets where the initiating device connects to multiple de-
vices in a star topology. The initiating device can connect to another device
using WiFi-Direct and to previously defined IPs for cloudlets/cloud.

Panorama is implemented as a background service that exposes the mid-
dleware APIs to applications looking for collaboration opportunities. The main
component is the middleware APIs component. This component contains the
APIs that the applications can call to use the framework’s services. The Blue-
tooth Manager and Wi-Fi Direct Manager components implement technical de-
tails of short-range communication channels. Panorama defines the behavior that
every communication channel must provide to support task collaborations like
searching for other devices, connecting to other devices, accepting connections
from other devices, accepting and responding to resource inquiry messages, and
finally accepting and processing task delegation. Panorama currently supports
two communication interfaces with other mobile nodes: Bluetooth and Wi-Fi Di-
rect. With this design, it would be easy to plug in new communication interfaces
(e.g., NFC or ZigBee) without any significant change in Panorama.

The Cloud(let) Manager component implements technical details of connect-
ing with cloudlets/cloud. Currently, we pre-configure the IP addresses where the
implementation for specific context monitoring task exists. However, we expect
that network resource discovery techniques can be utilized to discover cloudlet-
s/cloud efficiently.

The Profiler component gathers collaboration-relevant information about the
mobile node Panorama is running on and provides it to other nearby mobile de-
vices through Panorama’s APIs. The initiating node delegates different context
sub-tasks to different devices based on the profiler information. Currently, this
component provides two types of information: available set of services on the de-
vice along with their performance metrics and constraints of the mobile device.
Available services here refer to context derivation code that applications expose
so that other mobile devices can execute their context-aware task on the device.
In the current design, the required code should be available on the device be-
fore collaboration can take place. Device constraints include energy quota, time
quota, and incentives, etc.
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The Multi-Objective Optimizer component employs multi-objective optimiza-
tion to find the best collaboration plan that conforms to the device constraints
and achieves the initiator’s objectives. Currently, we optimize for energy con-
sumption, execution time, and cost. However, due to its flexibility, the optimiza-
tion model can be easily extended to accommodate for other parameters when
required. Details of this component are discussed in Section 2.3. Finally, the
Opportunity Finder component performs regular scanning for nearby devices us-
ing Bluetooth and maintains a list of recently discovered devices to be utilized
whenever collaboration is required.

2.2 Application Partitioning and Profiling

Collaborative context monitoring involves changing the application execution
model from standalone execution on a single mobile device to distributed execu-
tion on multiple mobile devices, clouds and cloudlets. This requires partitioning
the application and making the code for calculating context available on collab-
orating nodes before the collaboration. Panorama’s design requires the context
code to be available on other mobile devices before the collaboration. This de-
sign choice is reasonable since Panorama targets shareable contexts that will be
of common interest. For example, a programmer will write a speech recognition
component that takes an audio as input and returns text as a result. This com-
ponent can then be made available for other applications running on the device
as well as for nearby collaborators by being exposed as a service through the
operating system. Note that this design choice is consistent with research in the
field that proposes contextual data units [4] and envisions sharing them among
collaborators [8]. Technically, Panorama utilizes the Android service component
to support this design (see Section 3). For servers, we envision a future where
popular shareable context is exposed by server APIs analogous to web APIs.

For application profiling, Panorama tracks the required execution time and
energy consumption for exposed services and provides this information through
the API to other mobile devices. Panorama uses information gathered from pre-
vious invocations to build a linear regression model similar to the work in [7] that
predicts the execution time and energy consumption for future tasks delegated
to the node. We choose to use file size as the input to this regression model. This
choice has proven accurate for speech recognition tasks in our current implemen-
tation. The energy profiling is done manually by taking measurements from an
external power source. This workaround solution is required due to the lack of
an accurate API that exposes energy consumption of the device to solutions like
Panorama.

2.3 Optimization Models

Consider a system where n devices, indexed by i = 1, · · · , n, collaborate on a
certain task with a total workload of w. Let x = (x1, · · · , xn) denote the allo-
cation of the task, with device i being allocated an amount xi ≥ 0 of workload.
Obviously,

∑n
i=1 xi = w. Denote by ei the energy consumption for processing
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one unit of workload by device i. We assume that each device i has an energy
budget bi that it is willing to expend for collaboration, i.e., eixi ≤ bi. Denote by
ci the payment received by device i for processing a unit of workload, and B the
initiator’s total budget on payment. So,

∑n
i=1 cixi ≤ B. We further assume that

each device i takes an amount fi of time to process one unit of workload. We
aim to minimize both the energy consumption and the completion time, which
is formulated as the following multi-objective optimization problem:

min
x�0

(w.r.t Rn
+) (

n∑
i=1

eixi, max
i
{fixi}) (1)

s.t. eixi ≤ bi, i = 1, · · · , n (2)
n∑

i=1

xi = w (3)

n∑
i=1

cixi ≤ B. (4)

Introducing a weight γ ≥ 0 to specify the tradeoff between energy consump-
tion and execution time, we can solve the above problem by scalarization, which
can be reformulated as a linear program (LP):

min
x�0

n∑
i=1

eixi + γt (5)

s.t. eixi ≤ bi, i = 1, · · · , n (6)

fixi ≤ t, i = 1, · · · , n (7)
n∑

i=1

xi = w,

n∑
i=1

cixi ≤ B. (8)

A larger (smaller) γ means a higher preference/priority on short completion
time (low energy consumption). In practice, the value of γ is set based on the
initiator’s preference.

Notice that in the above optimization problems, we impose a hard constraint
on the initiator’s budget; see equation (4). But we can also make the payment an
objective to optimize. For example, we can optimize both the initiator payment
and the completion time under the energy budget constraint, i.e.,

min
x�0

n∑
i=1

cixi + γt (9)

s.t. eixi ≤ bi, i = 1, · · · , n (10)

fixi ≤ t, i = 1, · · · , n (11)
n∑

i=1

xi = w. (12)

The above modeling framework can be easily extended to incorporate differ-
ent performance objectives or concerns. For example, for certain reason such as
privacy concern, we may require certain portion of workload u to be processed
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at a subset i = 1, · · · ,m of devices such as those that can be trusted. This
can be ensured by imposing an additional constraint

∑m
i=1 xi = u to the above

optimization problems.
In practice, the values of ei and fi can be measured/estimated as described in

Section 2.2. The value of ci will be determined by each device/collaborator based
on its resource scarcity or abundance as well as incentive. The total number n
of collaborating devices is usually a small number less than 10, resulting in a
small LP problem. The LPs (5)-(8) and (9)-(12) can be solved on smartphone
using existing LP solvers, e.g., Apache for Java, in tens of millisecond. We have
implemented a customized solver especially for Panorama.

2.4 Discovery Protocol

For collaboration, Panorama needs to know what devices are available nearby
and how long those devices are expected to stay within the collaboration range.
Under Bluetooth v3.0, Panorama needs to scan its surroundings regularly, which
results in significant energy overhead. To minimize this overhead, Panorama uti-
lizes adaptive scanning based on discovered number of peers as described in [9].
The new Bluetooth Low Energy (BLE) protocol provides lightweight mechanism
for broadcasting device capability beacons in a connectionless mode called ad-
vertising. Panorama can leverage this feature for efficient service discovery and
switch to classic Bluetooth for sending files at higher rates. Unfortunately, none
of our Android devices support BLE peripheral mode required for advertising.
We plan to incorporate BLE in Panorama as part of future work.

3 Implementation

We have implemented Panorama as a background service on the Android
platform, which can be installed as a user-space application. After installing
Panorama, context-aware applications running on the same mobile device can
use Android IPC to call its APIs. Panorama’s simple interface has a start/stop
button that can be used by users to indicate their willingness to engage in col-
laboration. Once Panorama is started, it can automatically accept Bluetooth
connections from co-located devices that also run Panorama. Bluetooth connec-
tion between Panorama copies running on different mobile devices can take place
automatically without user intervention. In order to support this requirement,
Panorama uses a specific Bluetooth UUID as an identifier and connects using
Bluetooth insecure channel. This design allows for automatic creation of con-
nections with co-located devices which is a mandatory requirement for systems
such as Panorama to work. However, it introduces security risk from an adversary
with access to the UUID. Techniques to secure mobile ad hoc networks such as
reputation systems [2] and secure key management [3] can be employed to secure
Panorama. We are considering implementing these techniques in Panorama as
part of future work. Panorama also utilizes Wifi-Direct as an additional commu-
nication channel. However, the connection has to be accepted by the receiving
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party since this is the only supported scheme on Android implementation of
Wifi-Direct. When the communication network is established, devices can dis-
cover resources and delegate tasks to each other.

3.1 Panorama’s Programming Interface

Method signatures of Panorama’s APIs are defined using the Android Inter-
face Definition Language. In order for third-party applications developers to
call Panorama’s APIs, they will need to include a copy from the .aidl file in
their application package and bind to Panorama’s middleware service. Table 1
lists method signatures from this file. The group of APIs handling Bluetooth,
Wifi-Direct and Cloudlet perform the required functions for creating the net-
work using the communication channels. To create the Bluetooth network, a de-
vice checks the freshness of recently discovered devices list using get bt devices,
then invokes the create piconet API. The latter API automatically connects to
nearby devices running Panorama. An application can also connect to a device
through WiFi-Direct and a cloudlet/cloud server through Wi-Fi using the Wifi-
Direct APIs and cloudlet APIs respectively. For generic APIs, the discover nw
API sends a discovery message for all connected devices with the required ser-
vice name. Panorama’s design utilizes the Android service component for code
discovery. That is, application developers will write context derivation code in
an Android service and expose it under a unique identifier through the An-
droid OS. Accordingly, whenever a device receives a discovery message, it trig-
gers the get local API, which checks whether the required service is installed
on the device by checking exposed services against the provided service name
string. After gathering information about connected devices, the application
can trigger the optimization process and perform the collaboration using the
perform optimization and the execute optimization APIs respectively. Upon re-
ceiving task delegations, collaborating devices can process their portions of the
task using the process local API.

Table 1. Method signatures from Panorama’s aidl file

Generic APIs Bluetooth, Wifi-Direct & Cloudlet APIs

List<Device> discover nw(service name) List<Device> get bt devices

Device get local(service name) create piconet

Plan perform optimization(task) start wd discovery

Result execute optimization List<Device> get wd devices

Result process local(task) connect wd(device name)

connect to cloudlet

In the description above, we have provided detailed APIs from Panorama for
clarity. However, we note that these APIs can be combined to shield collaboration
logic from the application logic and make task delegations happen automatically.
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For example, we have implemented an API that both connects to nearby devices
and discovers them for a specific service in one step.

3.2 Experiment Testbed

To evaluate the utility of Panorama, we have implemented two context-aware
applications representing two different application structures: parallel structure
and pipeline structure. A speech recognition application that is based on Pock-
etSphinx [16] to perform speech recognition from a dictionary represents a par-
allel task. This task is computation-intensive, making it a good candidate for
collaboration. For the pipeline structure, we implement the sound ambiance
monitoring task from [13]. We define three stages and run them in three differ-
ent Android services components to distribute the application. First, an audio
recording stage, which represents the sensing stage. Second, a stage that calcu-
lates FFT for the audio window and generates features to classify sound as either
music or speech. Finally, a third stage that takes the FFT as input and generates
MFCC vector, which is then used to identify the gender of the speaker. This is
only used when the sound is detected as speech. We also implement both appli-
cations using Java to be able to run them on cloudlets and clouds. We integrate
these applications with Panorama and run experiments on four Android mobile
devices running different versions of the Android OS and a laptop to emulate
a cloudlet compute box. We also rent an Amazon EC2 server to use for exper-
iments involving the cloud. The Android devices used are Galaxy S4, Galaxy
Note, Galaxy Tab 3, and Galaxy Nexus. Galaxy Note, Galaxy Tab3 and Galaxy
Nexus have dual-core processor while Galaxy S4 has a quad-core processor.

4 Evaluation

4.1 Methodology

We have evaluated Panorama for a variety of scenarios under different collab-
oration opportunities, resource restrictions, and incentives. The experimental
settings are chosen to reflect real-life scenarios that a system like Panorama may
face. Collaboration opportunities include cloudlets/cloud as well as multiple mo-
bile devices belonging to the user, his/her friends and family members, and/or
strangers. The initiator may have different objectives, and the collaborators may
have different constraints in terms of energy, time, cost, and privacy.

The execution time reported in the experiments is the total time to execute
the required task using a collaboration, including the time for connecting with
other devices or cloudlet, devising an optimal task partitioning plan, shipping
subtasks, and gathering the results back. The energy consumption reported is
the sum of energy consumed in all mobile devices (not cloudlet) that partici-
pate in the collaboration. It takes into consideration the energy consumed in
all stages from the creation of network for collaboration to the gathering of the
results back to the initiating device. To measure energy consumption of different
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Fig. 4. Impact of privacy on energy and
time optimization (3 collaborators).

activities, we log the device electric current drain indicated by the power supply
unit, and then subtract the average current drain observed before the measured
activity starts in order to obtain the additional current drain caused by the col-
laboration activity. We multiply the additional current with the voltage applied
at the battery terminals of the mobile device to get the instantaneous power
consumption of the activity in Watt and then integrate it over time to obtain
the energy consumption of the activity in Joule. We ensure that there are no
other applications running in the background. We repeated each experiment five
times and report the average of the measurements from these five trials. We also
report standard deviation, which is rather low in all experiments.

4.2 The Utility of Multi-Objective Optimizer

We use speech recognition to evaluate the adaptability of Panorama to different
participant preferences and resource restrictions. Speech recognition is a good
candidate for task collaboration because of its compute-intensive nature, and
is used as an example context-aware task that can be distributed in parallel.
We envision Panorama integrating with context-aware applications that require
general speech recognition. In the experiments, we consider a scenario where an
audio file of 4 MB is recorded and requires performing speech recognition.

Tradeoff between Energy Consumption and Execution Time We first
demonstrate that Panorama provides support for appropriate partitioning to
achieve the desired tradeoff between energy consumption and execution time.
Such a tradeoff is needed in a Bus or a Shopping Mall scenario described in
Figure 1, where only mobile devices may be available for collaboration and the
user does not have access to a power source. Due to the lack of access to power
source, the remaining battery level dictates how important it is to minimize
energy consumption during computation.

In this experiment, we assume that there are two mobile devices available
in the user’s vicinity in addition to the user’s own mobile device. We also as-
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sume that the speech data does not contain any sensitive information and so
privacy is not a factor in optimization. In the next experiment, we will take
into consideration the privacy concern when certain parts of the speech data are
sensitive in nature. Recall from Subsection 2.3 that different choices of weight
γ correspond to different tradeoffs between energy consumption and execution
time. Figure 3 shows the comparison between γ = 0 (minimize energy consump-
tion, corresponding to a situation with relatively low remaining battery level),
γ = ∞ (minimize execution time, corresponding to a situation with relatively
high remaining battery level), and γ = 1 (equal preference over energy and time,
corresponding to a situation with moderate remaining battery level). We also
contrast this with a naive partitioning strategy that divides the task evenly over
all the participants. Figure 7 shows the corresponding partitioning of speech
data for each of the collaborators for these different cases. For brevity, we re-
port in the same figure the file partitioning of speech recognition tasks for other
experiments as well that are described later.

We see that in the case of minimum energy (low remaining battery level),
bigger chunks of file are sent to the participating device with low energy con-
sumption without any emphasis on exploiting parallelism to achieve computa-
tion speedup, leading to slow execution. The opposite trend is observed for the
case of minimum time (high remaining battery level). Here, the total execution
time is minimized at the expense of increased energy consumption. The equal
preference case represents a compromise between the previous two cases, with
execution time and energy consumption in between those of these two cases.
Finally, the even partitioning scenario is able to exploit parallelism to achieve
a good performance in time. However, it consumes the most energy because of
the lack of any planning in this aspect.

Notice that in the previous experiment, the task distribution is same whether
the user is in a Bus scenario or a Shopping Mall scenario, because the speech
data does not contain any sensitive information. We now consider the case where
some parts of the speech data contain sensitive information (1.5 MB out of the
total 4 MB is sensitive). In the Bus scenario, since the mobile devices other than
the initiator’s are untrusted, the sensitive parts of the data cannot be shipped
to them. As a result, only 2.5 MB of (non-sensitive) speech data is available for
collaboration in this case and the remaining 1.5 MB of (sensitive) data must be
processed at the initiator’s device. Figure 4 shows the results of this case. We
see that in both time and energy priority cases, the achieved time gain from
exploiting other mobile nodes is more than 50%. In the case of energy priority,
27% energy is saved compared to local execution due to shifting of the (non-
sensitive) portion of the task to a more efficient mobile node. Also, when we
compare the energy priority and time priority cases, we see that Panorama is
able to devise the best plan for executing the non-sensitive part of the file. For
the time priority, Panorama divides the file efficiently (see Figure 7) to save 20%
of time when comparing to the energy priority case. As for the energy priority,
Panorama sends the file chunks to the more energy efficient device thereby saving
7% more energy. For the Shopping Mall scenario, since all devices are trusted, the
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presence of any sensitive data does not make any difference in task distribution.
The results are same as those reported in Figure 3.

Impact of Collaborator Constraints We now evaluate the capability of
Panorama to optimize for different objectives under different constraints speci-
fied by the participants. Consider the Bus or the Shopping Mall scenario with
three mobile device collaborators and an additional mobile device (which is a
tablet in the experiment) that belongs to the initiator. This corresponds to a
situation where the initiator has two mobile devices, one of which is a low end
device that has poor performance but is “free” in terms of cost and energy. The
user may want to use the low end device to save time and energy or meet a cap
on cost. We consider a situation where the initiator pays the collaborators, and
the payment is proportional to the amount of work done.

We first consider a scenario in which the initiator has a budget on the total
amount she is willing to pay. We experiment with two budget levels: a low budget
of 2 units of payment and a high budget of 4 units of payment.1 We consider two
situations, one that aims to minimize energy consumption, and the other that
aims to minimize execution time. The preference/priority on energy or time is
represented by choosing a small or large weight γ in problem (5)-(8). Figure 5
shows the results of this experiment, and the corresponding partitioning can be
found in Figure 7.

We see that, with low budget and if energy is of high priority, Panorama
sends most of the task to the free initiator-owned low end device, in order to
save energy in other devices and meet the payment cap while incurring a long
execution time. When execution time is of high priority, Panorama sends the task
more to the devices that are fast, which leads to 25% reduction in time while
costing much more energy. On the other hand, with high budget, if time is of high
priority, Panorama achieves a large reduction in time by shifting larger portion

1 Notice that here the word “payment” is used in a general sense. It can be a monetary
payment, or virtual payment such as credit for reputation.
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of job to fast but costly devices. When energy is of high priority, the energy
consumption goes up compared to the low budget case. This is because the large
reduction in time from faster computing allowed by higher budget compensates
the increase in energy consumption. As expected, compared to local execution,
collaboration reduces execution time and saves energy.

We now consider a scenario where the collaborators have a restriction on the
amount of energy they are willing to expend for collaboration, and investigate
the tradeoff between execution time and initiator’s cost/payment under different
energy budgets; see problem (9)-(12). Figure 6 shows the results of an experi-
ment with a low, 100 Joules energy budget for each mobile device, and a high,
200 Joules energy budget for each device; and the corresponding partitioning of
speech data can be found in Figure 7. We see that, compared with low energy
budget case, high energy budget leads to shorter execution time when comparing
both the cost and time priority cases to their corresponding low energy cases.
This is because higher energy budget allows for longer use of faster devices. Also,
notice that, with low energy budget and if the cost is of high priority, Panorama
sends larger portion of the task to the free initiator-owned low end device, re-
sulting in large execution time and the lowest cost. We also compare with the
case of local execution. As expected, collaboration leads to shorter execution
time while incurring cost as a result of utilizing other nodes.
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Presence of Cloudlets We now consider scenarios where a cloudlet is available
in addition to some mobile devices for collaboration, as in the Work Place and
Lunch Break scenarios shown in Figure 1. In a Work Place scenario, a user has
high trust in the available mobile devices as they belong to her/his co-workers.
In addition, in some Work Place scenarios, the user may also trust the cloudlet,
while in other cases, she/he may not trust it. On the other hand, in the lunch
break scenario, neither the cloudlet nor the other mobile devices may be trusted.

In the first experiment reported here, we consider a Work Place scenario
that involves three mobile devices and an untrusted cloudlet. An audio file is
divided into sensitive and insensitive parts. We consider two cases here: a high
privacy case with 2.5 MB out of the total 4 MB file marked as sensitive, and a
low privacy case with only 1.5 MB marked as sensitive. As shown in Figure 8
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Fig. 8. Impact of privacy requirement of
the task (3 collaborators & cloudlet).
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Fig. 9. Impact of collaborators cost bud-
get requirement of the task (3 collabora-
tors & cloudlet).

(and Figure 7), imposing higher privacy leads to higher energy consumption and
higher cost. This is because only a small portion of the speech data is sent to the
faster and energy-cost-free cloudlet. For lower privacy case, a much larger portion
of the speech data is sent to the cloudlet, thus reducing energy consumption and
execution time. We conduct two additional experiments for the cases when the
cloudlet is trusted and when there is no sensitive data in the audio file. In both
cases, Panorama offloaded almost the entire file to the cloudlet. This is because
the cloudlet is significantly faster than the mobile devices and does not contribute
to energy overhead. We do not report the results of these experiments here due
to space limitation.

Next, we consider the Lunch Break scenario where both the cloudlet and the
collaborating mobile devices are untrusted and there may be a cost associated
with using them. In such a situation, the user has no choice other than execut-
ing sensitive parts of the task locally. Yet, Panorama can still optimize for the
remaining non-sensitive portion of the task to devise an efficient plan, thereby,
minimizing the burden on the initiator as much as possible. Figure 9 reports the
results of an experiment where the user would like to process 4 MB of insensitive
speech while minimizing the execution time (i.e., γ = ∞); and the correspond-
ing partitioning of data can be found in Figure 7. In contrast to the previous
experiment, we gave the cloudlet here a higher cost of 4x compared to 1x for
other nodes. In the case “high-budget,” the user allocates a budget of 10 units
to the task, whereas, in the “low-budget” case only 5 units are allocated. We
see from the figures that when the budget is high, Panorama was able to shift
a big portion of the task to the cloudlet achieving better computation speedup
compared to low budget scenario. However, the low budget scenario was not as
slow as we expected when compared to the high budget scenario. The reason
is that Panorama was able to exploit parallel execution (see Figure 7 for file
distribution) with other collaborators within the allocated low budget without
worrying about energy consumption since it is not considered in this scenario.
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Fig. 10. Benefits of collaboration for
sound ambiance monitoring.
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Fig. 11. Impact of leaving node on
Panorama’s performance.

4.3 Benefits of Collaboration for Sequential Tasks

To demonstrate the utility of Panorama in handling sequential task structures,
we have implemented the sound ambiance monitoring application proposed in
[13], and employed Panorama to enable collaboration. The results of the collab-
oration experiments are then compared to the local execution on a single device
with Panorama turned off. For collaboration, we conducted three experiments. In
the first experiment, the initiator collaborates with two other mobile devices, and
in the second and third experiments, the initiator collaborates with a cloudlet
sitting on the same network and a cloud server accessed through a Wi-Fi In-
ternet connection. Recall from Section 3.2 that the sound ambiance monitoring
task can be viewed as a pipeline consisting of three subtasks. Those can be split
among collaborators. From Figure 10, we see that in case of collaboration with
two other mobile devices, there is a reduction in power consumption at the ini-
tiator’s device from 541 mW to 202 mW, a more than 50% energy reduction by
delegating the calculation to the other collaborator. However, this comes at the
cost of an increased completion time from 261 milliseconds to 378 milliseconds.
Completion time here is the time between when the audio recording is completed
and when the gender classification result has arrived at the initiator from the
collaborator (or calculated locally in case of local execution). The increase in
completion time is due to the time needed to set up the collaboration task and
transfer the data and results between the collaborators.

Interestingly, the second experiment involving cloudlet does not show an
increase in completion time. Instead, a time saving of 40% is achieved in addition
to the energy saving of 27%. Here, the overhead introduced by Panorama is
offset by the significant gain in execution time when delegating the compute-
intensive parts to the cloudlet. We also ran the same experiment to engage in
a collaboration with an Amazon EC2 sever over a Wi-Fi Internet connection.
The achieved result is worse both in terms of energy and time when compared
to the cloudlet case. However, when we compare this result to a nearby node
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collaboration, we see that cloud can be a better alternative, depending on the
intensity of the task, in terms of time while the opposite was true for energy.

4.4 Handling Mobility

There are two main challenges when it comes to handling node mobility: how
to detect that a node is moving away, and how to ensure smooth migration of
unfinished sub-task to other devices when a node leaves. For detection, we use a
method proposed in [14] where we sense the accelerometer during collaboration
to detect the starting of a physical activity as an indicator for a collaborator
eventually leaving the scene. Once Panorama detects such activity, it sends a
message to the initiator to handle mobility. We use accelerometer due to its
relatively cheap energy cost and the fact that it can detect mobility promptly.
Handling of interrupted collaborations depends heavily on the nature of the
computation. In some situations a partial result can be migrated back to the
initiator, whereas in others the whole computation need to be reprocessed. We
performed two experiments with the aforementioned cases and report the results
in Figure 11 to reflect the impact of each on performance. The experiment con-
siders a scenario where a node delegates a 4 MB task equally to two other nodes
and one node moves away from the initiator. In the first case, we deliberately
divided the received file and let the moving node finish the first 1 MB before
moving away. Upon moving away, the node sends the partial result back to the
initiator, which processes the remaining 1 MB locally. In the second case, we let
the moving node report its movement without sending any partial results, so the
initiator will process the whole 2 MB. Figure 11 reports the total time for com-
pleting the 4 MB task and the consumed energy at the initiator. As expected,
the first scenario of partial result migration is better in terms of both energy
and time when compared to the second scenario, since the initiator only needed
to process half of the load assigned to the moving node. Notice that in our cur-
rent implementation, when a collaborating node is leaving, the initiator picks up
the unfinished work. We can also re-distribute the unfinished work among the
remaining devices, which we plan to explore in future.

5 Related Work

Our work is closely related to [11, 15]. However, [11] focuses on collaborative
context monitoring between co-located mobile devices only, while Panorama
leverages more opportunities by involving not only co-located devices but also
cloudlets/cloud and performing an optimization to devise an optimal collabora-
tion plan for the task. The main goal of [15] is to enhance the reliability of the
application, while the goal of Panorama is to automate and optimize collabora-
tion for continuous context monitoring.

The work in [19] studies generic computation offloading between co-located
mobile devices, and presents three algorithms to serve three different possible ap-
plications’ structures while taking into consideration connectivity in distributing
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jobs. The implementation in [19] is limited to a prototype that performs offload-
ing between two devices only. Panorama’s design involves more opportunities
by including cloudlets/cloud in addition to co-located mobile devices. We also
provide an extensive Android implementation and evaluate it on multiple mo-
bile nodes and a cloudlet/cloud. The recent work in [8] focuses on building a
conceptual model to facilitate context sharing between groups of mobile devices.
Such model can be leveraged by Panorama to increase the chances of meeting
peers and building more beneficial collaborations.

There are several vision papers that advocate the concept of collaboration
among co-located mobile devices [14, 6, 22] and we have used some of their
ideas to motivate our work. Also, a rich body of literature exists for augmenting
smartphones with resources from cloud and cloudlets; see, e.g., [7, 18, 17, 5]. The
ideas in these works have helped in guiding our design.

6 Conclusion

Panorama is a middleware framework that addresses a key question in offload-
ling computations to nearby mobile devices and cloudlets/cloud: when should a
device offload its context computing task and how? Panorama utilizes all avail-
able collaboration opportunities from co-located mobile devices and cloudlets/-
cloud, and devises a collaboration plan to optimize for and trade off different
objectives such as minimizing execution time or minimizing energy consump-
tion. The optimization algorithm considers limits set by participants such as
contributed energy, paid incentives, and privacy exposure. Evaluation results
show that Panorama is rather practical, is able to cope up with varying device
constraints, and devises collaboration plans within those constraints to optimally
trade off multiple objectives.

There are a number of future directions we plan to pursue. First, we plan
to incorporate Bluetooth Low Energy in our opportunity discovery protocol.
While none of the Android devices we test run in peripheral mode at present,
we expect that Bluetooth-enabled smartphones will increasingly support Blue-
tooth LE. Second, we plan to expand on handling node mobility. At present,
Panorama provides basic support for ensuring that the context computation
task is completed despite some of the devices moving away. We plan to explore
smart ways to efficiently cope with various mobility patterns. Third, a limitation
in Panorama is to rely on collaborators to come up with privacy and efficiency
requirements. An interesting research direction we plan to pursue is to auto-
mate the process of generating these requirements to enhance the practicality
of Panorama. Finally, we plan to conduct user studies to evaluate Panorama in
the real-world setting.
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