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Abstract. Given a connected graph G and a terminal set R ⊆ V (G), Steiner tree asks for a tree that
includes all of R with at most r edges for some integer r ≥ 0. It is known from [ND12,Garey et. al
[1]] that Steiner tree is NP-complete in general graphs. Split graph is a graph which can be partitioned
into a clique and an independent set. K. White et. al [2] has established that Steiner tree in split
graphs is NP-complete. In this paper, we present an interesting dichotomy: we show that Steiner tree
on K1,4-free split graphs is polynomial-time solvable, whereas, Steiner tree on K1,5-free split graphs
is NP-complete. We investigate K1,4-free and K1,3-free (also known as claw-free) split graphs from a
structural perspective. Further, using our structural study, we present polynomial-time algorithms for
Steiner tree in K1,4-free and K1,3-free split graphs. Although, polynomial-time solvability of K1,3-free
split graphs is implied from K1,4-free split graphs, we wish to highlight our structural observations on
K1,3-free split graphs which may be used in other combinatorial problems.

1 Introduction

Steiner tree is a classical combinatorial optimization problem which continues to attract researchers from
both mathematics and computing. Interestingly, this problem finds applications in Network Design, Circuit
Layout Design, etc., [3]. Given a connected graph G and a subset of vertices (terminal set) R ⊆ V (G), Steiner
tree asks for a tree spanning the terminal set. The objective is to minimize either the number of edges in
the Steiner tree or the number of additional vertices (Q ⊆ V (G) \ R, also known as Steiner vertices). It is
apparent from the definition that Steiner tree generalizes well-known Minimum Spanning Tree (MST) and
Shortest Path problems in general graphs [4].
On the complexity front, Steiner tree in general graphs is NP-complete as there is a polynomial-time reduction
from Exact 3 Cover [5]. Under the assumption, NP-complete problems are unlikely to have polynomial-time
algorithms, it is natural to identify the gap between polynomial-time solvability and NP-completeness by
restricting the input instances. Towards this end, many special graph classes such as chordal, bipartite,
planar, split, etc., were discovered in the literature [6]. Classical problems such as Vertex cover, Clique,
Odd-cycle transversal have polynomial-time algorithms when the input is restricted to chordal graphs which
are otherwise NP-complete for arbitrary graphs [5]. However, other famous problems such as Hamiltonian
Path (Cycle), Steiner tree, etc., remain NP-complete even on chordal graphs [2,7]. In fact, Steiner tree is
NP-complete on Split graphs which are a strict subclass of chordal graphs [6]. Steiner tree is considered to
be a difficult combinatorial problem compared to other problems as it is NP-complete on almost all special
graph classes. For example, it is NP-complete on planar [8], chordal [2], bipartite [5], chordal bipartite [9]
graphs. Due to its inherent difficulty, this problem has been an active research problem in the literature for
the past three decades.
When a combinatorial problem is NP-complete on special graph classes such as chordal and split, it is natural
to restrict the input further by means of forbidden subgraphs. For example, Hamiltonian cycle problem is
NP-complete in chordal graphs, whereas it is polynomial-time solvable on interval graphs which are chordal
and asteroidal-triple free [10,11,12,13]. In this paper, we revisit Steiner tree restricted to split graphs. It is
known from [2], that Steiner tree on split graphs is NP-complete. We investigate the complexity of Steiner
tree on subclasses of split graphs and present an interesting dichotomy. Towards this end, we study K1,3-free
(claw free) and K1,4-free split graphs from both structural and algorithmic perspectives. In particular, we
establish the following results;

• Steiner tree on K1,5-free split graphs is NP-complete.
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• Steiner tree on K1,4-free split graphs is polynomial-time solvable.

Towards this end, we present a tight lower bound on the size of the Steiner set and our algorithm cor-
rectly produces such a Steiner set. The above results rightly identify the gap between NP-completeness and
polynomial-time solvable input instances of Steiner tree problem restricted to split graphs. Since our con-
tribution evolved from K1,3-free split graphs, we highlight structural results of both K1,3-free and K1,4-free
split graphs. Although, the complexity of Steiner tree in K1,3-free split graphs is inferred from K1,4-free split
graphs, out of combinatorial curiosity, we investigate both graphs from structural perspective and present
polynomial-time algorithms for Steiner tree. To the best of our knowledge, this line of investigation has not
been reported in the literature. The polynomial-time results known in the literature for Steiner tree are for
trees and 2-trees [14].
As far as parameterized-complexity results are concerned, in [15] it is shown that Steiner tree in general is
Fixed-parameter Tractable(FPT) if the parameter is the size of the terminal set and it is W [2]-hard if the
parameter is the size of the Steiner set [16]. From the domain of approximation algorithms, Steiner tree has
a polynomial-time approximation algorithm with ratio 2− 1

|R| [17]. Variants of Steiner tree include Euclidean

Steiner tree [18], Rectilinear Steiner tree [8], and Directed Steiner tree [19,20].
Roadmap: We present the structural characteristics of K1,3-free split graphs in Section 2. Using the struc-
tural observations made, we also present a polynomial-time algorithm to output a Steiner tree in K1,3-free
split graphs. Structural characteristics of K1,4-free split graph and a polynomial-time algorithm to output a
Steiner tree in K1,4-free split graphs is presented in Section 3. Hardness result is addressed in Section 4.
Graph-theoretic Preliminaries:

In this paper, we work with connected, simple, unweighted graphs. Notations are as per [6,21]. For a graph
G the vertex set is V (G) and the edge set is E(G) = {{u, v} | u, v ∈ V (G) and u is adjacent to v in G
and u 6= v}. The neighborhood of vertex v is NG(v) = {u | {u, v} ∈ E(G)}. The degree of a vertex v is
dG(v) = |NG(v)|. δ(G) = min {dG(v) | v ∈ V (G)}. For a graph G and S ⊆ V (G), G[S] represents the
subgraph of G induced on the vertex set S. The subgraph relation is represented as G[S] ⊑ G. A Split graph
G = I + C is such that G can be partitioned into an Independent Set I and a Clique C, V (G) = I ∪ C. A
clique C is maximal if there does not exist a clique C

′

such that C ⊆ V (C
′

). For all split graphs mentioned
in this paper we consider C to be a maximal clique unless otherwise stated. K1,r is a split graph on r + 1
vertices such that |C| = 1 and |I| = r, E(K1,r) = {{x, v} | x ∈ C, v ∈ I}. K1,3 is also termed as claw. Centre
vertex of a K1,r is the vertex of degree r. A graph G is K1,r-free if G forbids K1,r as an induced subgraph.
For a vertex u ∈ C, N I

G(u) = NG(u) ∩ I and dIG(u) = |N I
G(u)|. For S ⊆ C, N I

G(S) =
⋃

v∈S N I
G(v), and

dIG(S) = |N I
G(S)|. For a split graph G, ∆I

G = maximum{dIG(v)}, v ∈ C and V3 = {u ∈ C | dIG(u) = 3}. Two
edges e1 and e2 are non adjacent if they do not share an end vertex in common. A set of edges M ⊆ E(G)
forms a matching of G if every pair of edges in M are non adjacent. Maximum matching is a matching of
maximum cardinality in G. α(G) denotes the size of the maximum matching in G.

2 K1,3-free Split Graphs: Structural Results

In this section, we analyze the structure of K1,3-free split graphs and we present some interesting structural
results. Further, we show that for a claw-free split graph G, if ∆I

G = 2, then |I| ≤ 3. This acts as a good
handle in yeilding a linear-time algorithm for Steiner tree problem which we see in the later half of this
section.

Theorem 1. Let G be a connected split graph. G is claw free if and only if one of the following conditions
hold.
1. ∆I

G ≤ 1
2. ∆I

G = 2 and for every u, v ∈ C such that dIG(u) = 2, N I
G(u) ∩N I

G(v) 6= ∅

Proof. Necessity: Suppose ∆I
G ≥ 3, and let v ∈ C has at least 3 neighbours, say x, y, z ∈ I. Then the set

{v, x, y, z} forms a claw in G with v as its centre vertex. It follows that if G is claw-free, then ∆I
G ≤ 2.

Now suppose ∆I
G = 2. Let u ∈ C such that there exist vertices x, y ∈ I, {x, y} ⊆ N I

G(u). We assume on the
contrary that there exist v ∈ C, v 6= u such that N I

G(u) ∩N I
G(v) = ∅. Since C is a clique, {u, v} ∈ E(G). It

follows that vertices {u, x, y, v} forms a claw in G with u as its centre, a contradiction. This proves Condition
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2, and completes the proof of the forward direction.
Sufficiency: On the contrary assume that G is not claw free. No claw in G can have its centre vertex in the
set I, since for any v in I, the set NG(v) ⊆ C and hence induces a clique in G. So every claw in G has its
centre vertex in the set C. Consider a claw with the vertex set {v, x, y, z}, with the centre v being in C. No
two of the other three vertices of the claw can be in C, because then there would be an edge between them.
So at most one of {x, y, z} is in C, and the rest (of which there are at least two) are in I. It follows that
if G contains a claw, then ∆I

G ≥ 2. Equivalently, if ∆I
G ≤ 1 then G is claw-free. Finally, consider the case

where ∆I
G = 2. Suppose the vertex set {v, x, y, z} induces a claw in G, with its centre vertex being v. Then

v is in C, and at least two of {x, y, z} are in I, as we argued above. Since ∆I
G = 2 we get that exactly two of

{x, y, z}, say x and y, are in I. Then z is in C, and {x, z}, {y, z} /∈ E(G). It follows that N I
G(v)∩N I

G(z) = ∅
which is a contradiction to Condition 2. Therefore, our assumption that there exist a claw in G is wrong,
and this completes the sufficiency. Therefore, the theorem follows. ⊓⊔

Lemma 1. For a claw-free split graph G, if ∆I
G = 2, then |I| ≤ 3.

Proof. Since ∆I
G = 2, let there exist a vertex v ∈ C such that dIG(v) = 2. On the contrary, assume that

|I| > 3, that is, {a, b, c, d} ⊆ I such that N I
G(v) = {a, b}. Let X = NG(a) and Y = NG(b) as shown in Figure

1. If there exist a vertex t ∈ C such that t /∈ X , and t /∈ Y , then vertices {a, b, v, t} induces a claw. Therefore,
C = X ∪ Y . If X ⊆ Y , then C ∪ {b} induces a larger clique, which is a contradiction to the assumption
on the maximality of clique C. Therefore, X 6⊆ Y and similarly, Y 6⊆ X . It follows that, X − Y 6= ∅ and
Y −X 6= ∅. For every vertex v ∈ X ∩ Y , {v, c} /∈ E(G) and {v, d} /∈ E(G) otherwise, N I

G(v) ∪ {v} induces
K1,3. Therefore, the vertices c, d can have adjacency in two disjoint sets X − Y or Y −X .

v

 ua

b

c

d z Y

X

I C

w
v

 ua

b

c

d
z Y

X

I C

Case 1 Case 2
Fig. 1. An illustration for the proof of Lemma 1

Case 1: NG(c)∩X 6= ∅ and NG(d) ∩ Y 6= ∅. Edge {u, c} ∈ E(G) where u ∈ X − Y and {z, d} ∈ E(G) where
z ∈ Y −X . Observe that {a, z}, {c, z} /∈ E(G) otherwise N I

G(z)∪ {z} induces K1,3. Similarly, {d, u} /∈ E(G)
otherwise N I

G(u) ∪ {u} induces K1,3. From the discussion, it follows that the vertices {u, a, c, z} induces a
claw, which is a contradiction. Similar argument holds for NG(c) ∩ Y 6= ∅ and NG(d) ∩X 6= ∅.
Case 2: NG(c) ⊆ X and NG(d) ⊆ X . Let {c, u}, {d, w} ∈ E(G) such that u,w ∈ X−Y . Note that there exist
at least one vertex z ∈ Y −X . If {c, z} /∈ E(G), then the vertices {u, a, c, z} induces a claw. If {c, z} ∈ E(G),
then the vertices {w, a, d, z} induces a claw as, {d, z} /∈ E(G). The argument is symmetric for NG(c) ⊆ Y
and NG(d) ⊆ Y .
Cases 1 and 2 give a contradiction to the fact that G is claw free. Therefore, our assumption that |I| > 3 is
wrong, and hence, the lemma follows. ⊓⊔

2.1 Application: Steiner tree in K1,3-free Split Graphs

Using the structural results presented in Section 2, in this section, we present a polynomial-time algorithm
to find minimum Steiner tree in K1,3-free split graphs. Optimum version of Steiner tree problem is defined
as follows;

OPT Steiner tree(G,R)
Instance: Graph G(V,E), Terminal Set R ⊆ V (G)
Question: Find a minimum cardinality set S ⊆ V (G)\R such thatG[S∪R] is connected?

We here consider the Steiner tree problem on split graph G0 = I0 + C0. Due to pruning, we iteratively
construct split graphs G1, G2 from the input graph G = G0. We simplify the input by pruning the vertices
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which are not part of any optimum solution. The pruned graph G1 is the graph induced on the vertex set
V (G0)\(S1 ∪S2 ∪S3). Clearly, G

1 ⊑ G0 and let G1 = I1 +C1. We prune three sets of vertices S1, S2, S3 one

after the other and are defined as follows. S1 = {a ∈ I0 | a /∈ R}. S2 = {u ∈ C0 | u /∈ R and N I0

G (u)∩R = ∅}.

Let R
′

= {v ∈ C0 | v ∈ R}. S3 =
⋃

v∈R
′

{v} ∪ N I0

G (v). Consider the Steiner tree optimization problems P1,

and P2 defined as follows.
P1: OPT Steiner tree(G0, R)
P2: OPT Steiner tree(G1, R\S3)

Lemma 2. An optimum solution Q to P2 is also an optimum solution to P1.

Proof. Note that the first two sets S1, S2 pruned from G0 are not part of any optimum solution. S3 ⊆ R
induces a connected subgraph of G0 which is also pruned to obtain G1. If V (G1) ∩R = ∅, then Steiner set
of P2 is empty. i.e., R induces a connected subgraph of G0. On the other hand if V (G1) ∩R 6= ∅, then there
exist at least one vertex v ∈ C1 in the Steiner set Q of P2. Q ⊆ C1 connects all terminal vertices R\S3.
If S3 6= ∅, then there exist at least one vertex u ∈ S3 such that u ∈ C0 and u ∈ R. {u, v} ∈ E(G0) and
therefore, Q ∪ R induces a connected subgraph of G0 and Q is a minimum Steiner set for P1. Hence, the
lemma follows. ⊓⊔

2.1.1 A polynomial-time algorithm to find a minimum Steiner tree Given a K1,3-free split graph
G0 with terminal vertex set R ⊆ V (G0), we present a polynomial-time algorithm to find a minimum Steiner
tree. As part of preprocessing step, we prune the sets S1, and S2, which are not part of any optimum solution.
Further, we delete terminals which are in C, and their neighbours in I, namely the set S3. Now we have
an instance of Steiner Tree in claw-free split graphs where all the terminals are in the independent set. An
optimum solution to the pruned graph is also an optimum solution to the original graph by the previous
lemma. We now present a sketch of algorithm and the detailed one is presented in Algorithm 1. If ∆I

G = 0,
then the instance is trivial. If ∆I

G = 1, then Steiner set should contain one neighbor vertex in C of each
terminal in I. In the remaining case, ∆I

G = 2 and therefore, by Lemma 1 |I| ≤ 3. The only non-trivial case
is when |I| = 3. From the constraints of the instance, we know that it is necessary and sufficient to pick
exactly two Steiner vertices from C in this case.

Algorithm 1 Steiner tree in Claw free Split graphs. Steiner tree(G0, R)

/*G0 is a claw-free split graph and R ⊆ V (G0) is the set of terminal vertices */
1: Find the pruned graph G1=Pruning(G0, R)
2: Initialize the output set of Steiner vertices S = ∅ and unmark every vertices in I1 ⊆ V (G1)
3: if ∆I

G1 = 1 then

4: for every unmarked vertex d ∈ I1 do

5: include w ∈ C1 in S where {d, w} ∈ E(G1).
6: mark vertex d.
7: end for

8: else

9: include vertex x ∈ C1 in S where |N I
G1(x)| = 2. i.e.,N I

G1(x) = {a, b}
10: if |I1| = 3. i.e.,I1 = {a, b, c} then

11: include y ∈ C1 in S where {c, y} ∈ E(G1)
12: end if

13: end if

14: Run standard Breadth First Search in the graph G[S ∪R] and output the BFS tree.

Algorithm 2 Pruning the input instance of Steiner tree. Pruning(G0, R)

/* G0 :input claw-free split graph, R :set of terminal vertices */
1: Find the sets S1, S2, S3 in order and prune those vertices from G0. i.e., G1 = G0\S where S = S1∪S2∪S3

2: Return the pruned graph G1.
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2.1.2 Proof of Correctness of Algorithm 1

By Lemma 2, a minimum Steiner set of pruned graph G1 is an optimum Steiner set for G0. Therefore,
pruning in Step 1 is a solution preserving operation. We present a case analysis to show that our algorithm
outputs a minimum Steiner tree of a claw-free split graph.
Case 1: ∆I

G1 ≤ 1. Note that for every vertex d ∈ I1, Step 5 includes exactly one vertex w ∈ NG1(d) in S,
which is a minimum Steiner set.
Case 2: ∆I

G1 = 2. Observe |I| ≤ 3 by Lemma 1. |S| = 1, 2 for |I| = 2, 3, respectively, which is done by Steps
9, 11. Therefore, S is a minimum Steiner set for G1, and by Lemma 2, S is also a minimum Steiner set for
G0. Step 14 outputs a Steiner tree by running standard Breadth First Search algorithm on G[S ∪R].
2.1.3 Run Time Analysis

We represent the input claw-free split graph using an adjacency list, as we can easily find a neighbor of a
given vertex. Vertices in adjacency list are arranged such that C0 follow I0. Intuition behind this ordering
is that, first neighbor of a vertex v ∈ C0 encountered in the list is always a vertex u ∈ I0, if it exists. If
∆I

G1 = 1, then u ∈ NG1(v) can be determined in constant time. Therefore, Algorithm 1 takes linear time
O(n), n = |V (G0)| to output a minimum Steiner set.

3 K1,4-free Split Graphs: Structural Results

In this section, we first analyze the structure of K1,4-free split graphs. Subsequently we investigate Steiner
tree problem restricted to K1,4-free split graphs. Towards this end, we give a nice bound on the cardinality of
any minimum Steiner set. Further, we present a structural characterization of K1,4-free split graph meeting
the bound. Interestingly, the characterization yields a polynomial-time algorithm to output a minimum
Steiner tree, which we shall present in Section 3.1.
Before we present the structural results, we introduce some additional terminologies. A split graph G is a l-
split graph if∆I

G = l. Note that aK1,4-free split graph is a l-split graph for some l, 0 ≤ l ≤ 3, and the converse
does not always hold. In a split graph G, closed neighborhood of a vertex u ∈ C is [N(u)] = {u} ∪N I

G(u).
For a l-split graph G = I + C, 0 ≤ l ≤ 2, we construct a labeled graph M such that V (M) = I and
E(M) = {{a, b} | a, b ∈ I and NG(a) ∩ NG(b) 6= ∅} and label the edge {a, b} as vab. Note that v in vab
denotes a vertex v ∈ NG(a) ∩ NG(b). Also, we pick exactly one v ∈ NG(a) ∩ NG(b) to label the edge
{a, b}. For any edge set E∗ ⊆ E(M), we define the corresponding vertex set V ∗ as follows. Corresponding
to each edge {a, b} ∈ E∗, include exactly one vertex v ∈ NG(a) ∩ NG(b) in V ∗. It follows that, V ∗ ⊆ C
and |V ∗| = |E∗|. Clearly, |V ∗| ≤ |E∗| as we are including not more than one vertex in V ∗ corresponding to
each edge in E∗. Suppose |V ∗| < |E∗|, then there exist at least two edges labelled vab, vcd in E∗ such that
v ∈ NG(a) ∩NG(b) and v ∈ NG(c) ∩ NG(d). Since edges {a, b}, {c, d} ∈ E∗ can share atmost one vertex in
common, it follows that, dIG(v) ≥ 3, which is a contradiction as G is l-split, l ≤ 2 and M is the labelled graph
of G. Therefore, |V ∗| = |E∗|. We also define the Corresponding clique set V c of a vertex set V ′ ⊆ I as follows.
Corresponding to each vertex u ∈ V ′, include exactly one vertex w in V c such that {u,w} ∈ E(G). Clearly,
V c ⊆ C and |V c| ≤ |V ′|. For a 1-split graph, |V c| = |V ′|. We now present some structural observations on
K1,4-free split graphs.

Lemma 3. Let G be a 3-split graph. G is K1,4 free if and only if for every u ∈ V3 and for every v 6= u ∈ C,
N I

G(u) ∩N I
G(v) 6= ∅.

Proof. Necessity: On the contrary, let us assume there exist v ∈ C such that N I
G(u) ∩ N I

G(v) = ∅. Since
dIG(u) = 3, vertices {u, v} ∪ N I

G(u) induces a K1,4, which is a contradiction and the necessary condition
follows.
Sufficiency: On the contrary, assume that G is not K1,4 free and there exists a K1,4 induced on {u, v, w, x, y}
with u as the centre vertex. No K1,4 in G can have its centre vertex in the set I, since for any u in I, the
set NG(u) is a subset of the set C and hence induces a clique in G. So every K1,4 in G has its centre vertex
in the set C particularly, u ∈ C. Since G is a 3-split graph, dIG(u) = 3. This implies that there exist at least
one vertex of K1,4, say v ∈ C, and u ∈ V3. It follows that N

I
G(u) ∩N I

G(v) = ∅, which is a contradiction and
the sufficiency follows. This completes the proof of the lemma. ⊓⊔

Corollary 1. Let G be a K1,4-free 3-split graph. For any v ∈ C, the graph H induced on the vertex set
V (G) \N I

G(v) is a l-split graph for some 0 ≤ l ≤ 2.
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On the contrary, suppose there exists a vertex w ∈ C such that dIH(w) = 3. i.e., w ∈ V3. It follows that
N I

G(w) ∩N I
G(v) = ∅. By previous lemma, N I

G(w) ∪ {w, v} induces a K1,4, which is a contradiction. ⊓⊔

Corollary 2. Let G be a K1,4-free split graph and v ∈ C. If N I
G(v) = {v1, v2, v3}, then NG(v1) ∪NG(v2) ∪

NG(v3) = C.

Proof. By Lemma 3, for every u ∈ C, N I
G(v) ∩N I

G(u) 6= ∅. This implies that for every u ∈ C, {v1, v2, v3} ∩
N I

G(u) 6= ∅. It follows that NG(v1) ∪NG(v2) ∪NG(v3) = C. ⊓⊔
Now onwards, we investigate the Steiner tree problem on K1,4-free split graphs. For our discussions on Steiner
tree problem, we fix the terminal set R to be I. Observe that l-split graphs for l = 1, 2 are K1,4-free split
graphs. If G is a 1-split graph, then there does not exist a vertex v ∈ C such that dIG(v) ≥ 2. Therefore, the
corresponding clique set of I forms the minimum Steiner set S of G where |S| = |I|. We shall now consider
2-split graphs for discussions. For a 2-split graph G, recall that the labelled graph M is such that V (M) = I,
E(M) = {{a, b} | a, b ∈ I and there exist v ∈ C such that {a, b} = N I

G(v)}. The following lemma gives the
cardinality of a minimum Steiner set of any 2-split graphs.

Lemma 4. Let G be a 2-split graph, and M be the labeled graph of G with α(M) = k. Then any minimum
Steiner set S of G is such that |S| = |I| − k.

Proof. If M is a connected graph, then the minimum Steiner set in G corresponds to the minimum edge cover
in M . For any graph M with maximum matching P , the cardinality of minimum edge cover is |V (M)|− |P |.
Therefore, a minimum Steiner set S is such that |S| = |V (M)| − |P | = |I| − k. If M is not connected, let
C1, C2, . . . , Cr be the components such that C1, C2, . . . , Ci, i ≤ r are non-trivial components with at least one
edge and Ci+1, Ci+2, . . . , Cr are trivial ones. For components C1, C2, . . . , Ci, we find the maximum matching
P where k = |P | and Q ⊆ C be the corresponding vertex set of the matching P . Clearly, |N I

G(Q)| = 2|Q| =
2|P | = 2k. Let Q′ be the corresponding clique set of I\N I

G(Q). From the definition of the corresponding clique
set, |Q′| ≤ |I\N I

G(Q)|. Note that, there does not exist two vertices x, y ∈ I\N I
G(Q) such thatNG(x)∩NG(y) 6=

∅, otherwise it contradicts the maximality of P . Since there does not exist the possibility to have two such
vertices x, y ∈ I\N I

G(Q), it follows that |Q′| = |I\N I
G(Q)| and the graph induced on V (G)\N I

G(Q) is a 1-split
graph. Therefore, |Q′| = |I| − 2k, and I \ N I

G(Q) ⊆ N I
G(Q

′). It follows that the set S = Q′ ∪ Q forms a
Steiner set of G and |S| = |I| − 2k + k = |I| − k. ⊓⊔

Lemma 5. For any 2-split graph G, OPT Steiner tree problem is polynomial-time solvable.

Proof. Finding the labeled graph M of G, incurs O(n) effort where n = |V (G)|. Maximum matching P of

M can be found in O(n
3

2 ) time. Note that the corresponding vertex set Q of P can be found in linear time.
Similarly, the corresponding clique set also can be obtained in linear time. Therefore, the overall running time
for finding the Steiner set is O(n

3

2 ) and OPT Steiner tree in any 2-split graph is polynomial-time solvable.
⊓⊔

The following lemma characterizes a special 2-split graph constructed from a 3-split graph. Particularly,
Lemma 6 gives an upper bound on the matching size of the labelled graph of a 2-split graph.

Lemma 6. Let G1 = I1 + C1 be a K1,4-free 3-split graph. For any x ∈ V3, let G
2 be the graph induced on

V (G1)\N I
G1(x), and M be the labelled graph of G2. Then size of any maximum matching α(M) ≤ 2

Proof. Recall from Corollary 1 that, G2 is a l-split graph for some 0 ≤ l ≤ 2. On the contrary, let α(M) ≥ 3.
Let vertices {a, b, c, d, e, f} ⊆ V (M) be those vertices participating in the matching of size at least 3 such
that {u, v, w} ⊆ C1 and {a, b} ⊆ N I

G1(u), {c, d} ⊆ N I
G1(v), {e, f} ⊆ N I

G1(w) as shown in Figure 2. Clearly,
from Lemma 3, N I

G1(x) ∩ N I
G1(u) 6= ∅. Similarly, N I

G1(x) ∩ N I
G1(v) 6= ∅ and N I

G1(x) ∩ N I
G1(w) 6= ∅. We

consider the following scenario.
Suppose {g, v} ∈ E(G1) and {g, u} /∈ E(G1). Since N I

G1(x) ∩ N I
G1(u) 6= ∅, without loss of generality,

{h, u} ∈ E(G1). Observe that {u, v} ∪N I
G1(v) induces a K1,4. Therefore, {g, u} ∈ E(G1). Similar argument

holds true for w and {g, w} ∈ E(G1). Since the clique C1 is maximal, g is not adjacent to all vertices of C1,
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Fig. 2. An illustration for the proof of lemma 6

and therefore there exist y ∈ C1 such that {g, y} /∈ E(G1). Clearly,N I
G1(y)∩N I

G1(u) 6= ∅,N I
G1(y)∩N I

G1(v) 6= ∅
and N I

G1(y) ∩ N I
G1(w) 6= ∅. Observe that in G2, dIG2(y) = 3, and G2 is not a l-split graph, l ≤ 2. This is a

contradiction to Corollary 1. It follows that our assumption α(M) ≥ 3 is wrong and therefore, α(M) ≤ 2.
This completes the proof of the lemma. ⊓⊔

We now present some structural observations pertaining to 3-split graphs.

Lemma 7. For a K1,4-free 3-split graph G1, any Steiner set S of G1 is such that |S| ≥ |I1| − 5.

Proof. Observe that V3 6= ∅ as G1 is 3-split. For any v ∈ V3, G
2 is the graph induced on V (G1)\N I

G1(v). By
Corollary 1, G2 is a l-split graph, l ≤ 2. Let S2 be the minimum Steiner set of G2 such that N I

G2(S2) = I2

and |I2| = |I1|−3. If M is the labeled graph of G2, then by Lemma 6, α(M) ≤ 2. Let {{a, b}, {c, d}} ⊆ E(M)
be the matching edges of a maximum matching in M . Observe that there exist two vertices v1, v2 ∈ C2 such
that N I

G2(v1) = {a, b}, N I
G2(v2) = {c, d}. Notice that for each vertex w ∈ I2\{a, b, c, d}, there exist a vertex

u ∈ C2\{v1, v2} in S2 such that {w, u} ∈ E(G2). The graph induced on V (G2)\{a, b, c, d} is a 1-split graph,
|S2| ≥ |I2| − 4 + 2 and it follows that |S2| ≥ |I1| − 3− 2 = |I1| − 5. It can be concluded that |S| ≥ |I1| − 5
as |S| ≥ |S2|. This completes the proof of the lemma. ⊓⊔

We below characterize K1,4-free 3-split graphs based on the cardinality of a minimum Steiner set. In par-
ticular, in Theorem 3, we characterize K1,4-free split graphs whose minimum Steiner set is |I1| − 4, and in
Theorem 4, we characterize K1,4-free split graphs whose minimum Steiner set is |I1|−3. To present Theorem
2 to Theorem 5, we fix the following notation. Let G1 = I1+C1 be a K1,4-free 3-split graph. For any u ∈ V3,
let G2 = I2 + C2 be the graph induced on V (G1)\N I

G1(u), and M be the labelled graph of G2. In Theorem
2, we present a stronger result of Lemma 7.

Theorem 2. For a K1,4-free 3-split graph G1, any minimum Steiner set S of G1 is such that |S| ≥ |I1|− 4.

Proof. On the contrary assume that there exist a minimum Steiner set S ⊆ C1 such that |S| ≤ |I1| − 5.
Suppose that S ∩ V3 = ∅. Note that V3 6= ∅, say u ∈ V3 and for every vertex z ∈ S, N I

G1(z) ∩N I
G1(u) 6= ∅

as per Lemma 3. i.e., for every z ∈ S, there exist an edge {z, i} ∈ E(G1), where i ∈ N I
G1(u). The graph

G2 = I2 + C2 induced on V (G1)\N I
G1(u) is a l-split graph, l ≤ 2 by Corollary 1. Consider the Steiner set

S2 ⊆ C2 of G2 such that N I
G2(S2) = I2. Note that |S2| = |I2| as G2 is a l-split graph, l ≤ 2 and for each

vertex w ∈ S2, N I
G1(w) ∩N I

G1(u) 6= ∅. Notice that |I2| = |I1| − 3 and |S| ≥ |S2| implies that |S| ≥ |I1| − 3.
This shows that S ∩ V3 = ∅ is not possible.
Next we shall consider the scenario S∩V3 6= ∅. Consider the l-split graph, l ≤ 2 G2 induced on V (G1)\N I

G1(u)

where u ∈ S ∩ V3. Let the labeled graph of G2 be M . For S
′

= S\{u} and V
′

= I1\N I
G1(u) note that

N I
G2(S

′

) = V
′

. Clearly, |S
′

| = |S| − 1 ≤ |I1| − 5− 1 and |V
′

| = |I1| − |N I
G1(u)| = |I1| − 3. We now claim that

7



there exist at least 3 vertices say {v1, v2, v3} ⊆ S
′

such that dI
G2(vi) = 2, i = 1, 2, 3 andN I

G2(vi)∩N I
G2(vj) = ∅,

1 ≤ i 6= j ≤ 3. Suppose if there exist at most two vertices v1, v2 ∈ S
′

such that dI
G2(v1) = dI

G2(v2) = 2 and

N I
G2(v1) ∩ N I

G2(v2) = ∅, then observe that |V
′

| ≤ |S
′

| + 2. It follows that |V
′

| ≤ |I1| − 6 + 2 = |I1| − 4,

which is a contradiction as |V
′

| is |I1| − 3. Therefore, there exist at least 3 vertices v1, v2, v3 ∈ S
′

such that
dIG2(vi) = 2, i = 1, 2, 3 and N I

G2(vi) ∩ N I
G2(vj) = ∅, 1 ≤ i 6= j ≤ 3. Consider the labeled graph M of G2.

There exist {a, b, c, d, e, f} ⊆ I2 such that {a, b} = N I
G2(v1), {c, d} = N I

G2(v2), {e, f} = N I
G2(v3). It follows

that {a, b}, {c, d}, {e, f} forms a matching of size 3 in M which is a contradiction to Lemma 6. Therefore
our assumption is wrong and |S| ≥ |I1| − 4. This completes the proof. ⊓⊔

We show in Theorem 3 that the lower bound in Theorem 2 is tight.

Theorem 3. For any minimum Steiner set S of G1, |S| = |I1| − 4 if and only if α(M) = 2.

Proof. Necessity: If S ∩ V3 = ∅, then for every vertex z ∈ S, N I
G1(z) ∩ N I

G1(u) 6= ∅. i.e., for every z ∈ S,
there exist an edge {z, i} ∈ E(G1), where i ∈ N I

G1(u). Similar to the proof of Theorem 2, it follows that
|S| ≥ |I1|−3. Therefore, S∩V3 6= ∅. Let u ∈ S∩V3 and the graph G2 induced on vertex set V (G1)\N I

G1(u) is

a l-split graph, l ≤ 2 by Corollary 1. Let S
′

= S\{u}. Clearly in N I
G2(S

′

) = I2. Note that |S
′

| = |I1|− 5 and
|I2| = |I1| − 3. This implies that there exist a matching of size at least 2 in M . From Lemma 6, α(M) ≤ 2.
Therefore, α(M) = 2.
Sufficiency: Let {a, b}, {c, d} ∈ E(M) be the edges that form the matching of size 2 such that label({a, b}) =
vab and label({c, d}) = wcd. Clearly, d

I
G1(u) = dIG1(v) = dIG1(w) = 3 and |N I

G1(X)| = 7, where X = {u, v, w}.
Let Y be the corresponding clique set of I1\N I

G1(X). Observe that X ∪ Y forms a Steiner set of G1,
|Y | = |I1| − 7 and |X ∪ Y | = |I1| − 4. This completes the proof. ⊓⊔

Apart from the labelled graph M , we make use of one more labelled graph in Theorem 4, which is defined as
follows. H2 = I2H +C2

H is the l-split graph, l ≤ 2 induced on the vertex set V (G1)\V3, and M2 is the labeled
graph of H2. Note that the two labeled graphs M and M2, are constructed differently. M is constructed on
the vertex set V (M) = I1\N I

G1(u) whereas M2 is the labeled graph on V (M2) = I1. We fix S ⊆ C1 to be a
minimum Steiner set of G1. The following theorem characterizes K1,4-free 3-split graphs with |S| = |I1|− 3.

Theorem 4. |S| = |I1| − 3 if and only if one of the following is true.
1. S ∩ V3 6= ∅ and α(M) = 1.
2. S ∩ V3 = ∅ and α(M2) = 3.

Proof. Necessity: If |S| = |I1| − 3 then we come across the following two cases.
Case 1: S ∩ V3 6= ∅.
Let u ∈ S ∩ V3 and S

′

= S\{u}. Observe that, in G2, the l-split graph, l ≤ 2 induced on the vertex set
V (G1)\N I

G1(u), N I
G2(S

′

) = I2. i.e., |S
′

| = |S| − 1 = |I1| − 3 − 1 and |I2| = |I1| − 3. This implies that
there exist a matching of size at least 1 in M . By Lemma 6, α(M) ≤ 2. Suppose α(M) = 2, then by
Theorem 3, |S| = |I1| − 4. However, we know that |S| = |I1| − 3 and therefore α(M) 6= 2. We can therefore
conclude that α(M) ≤ 1. If α(M) = 0, then since G1 is connected and K1,4-free, |I2| = 3. In this case,
S = {u}, |S| = |I1| − 2. Therefore, it follows that α(M) = 1.
Case 2: S ∩ V3 = ∅.
Since S ∩V3 = ∅, S is a minimum Steiner set in G1 and since H2 is the induced on the vertex set V (G1)\V3,
S is also a minimum Steiner set in H2. Observe that if α(M2) = k, then the size of the minimum Steiner
set in H2 is |V (I2H)| − k by Lemma 4. Since V (I2H) = I1 we can conclude that α(M2) = 3.
Sufficiency: Case 1: S ∩ V3 6= ∅ and α(M) = 1
Let u ∈ S∩V3 and {a, b} ∈ E(M) be the edge that forms the matching of size 1, such that label({a, b})=vab.
Clearly, |N I

G1(X)| = 5, where X = {u, v}. Let Y be the corresponding clique set of I1\N I
G1(X). Observe

that S = X ∪ Y forms a Steiner set of G1, |Y | = |I1| − 5 and |S| = |X ∪ Y | = |I1| − 3.
Case 2: S ∩ V3 = ∅ and α(M2) = 3
Let {a, b}, {c, d}, {e, f} ∈ E(M2) be the edges that form the matching of size 3, such that label({a, b})=vab,
label({c, d})=wcd, label({e, f})=xef . Clearly, |N I

G1(Y )| = 6, where Y = {v, w, x}. Let Z be the corresponding
clique set of I1\N I

G1(Y ). Observe that S = Y ∪Z forms a Steiner set of G1, |Z| = |I1|−6 and |S| = |Y ∪Z| =
|I1| − 3. This completes the proof. ⊓⊔
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Theorem 5. |I1| − 4 ≤ |S| ≤ |I1| − 2.

Proof. The lower bound is true by Theorem 2. Theorem 3, and Theorem 4 characterizes the 3-split graphs
such that |S| = |I1|−4, and |S| = |I1|−3, respectively. We shall now look into the upper bound. Since G1 is 3-
split, there exist u ∈ V3. Let Y be the corresponding clique set of I1\N I

G1(u). Observe that N I
G1(Y ∪{u}) = I1

and |S| ≤ |Y |+ 1. Since |Y | ≤ |I1| − 3, it follows that |S| ≤ |I1| − 2. Therefore the theorem. ⊓⊔

3.1 Polynomial-time algorithm to find a minimum Steiner tree

Using the structural results presented in Section 3, in this section, we shall present a polynomial-time
algorithm to find a minimum Steiner tree in K1,4-free split graphs. Algorithm 3 finds a minimum Steiner
set S of a given K1,4-free split graph G0 with R ⊆ V (G0) being terminal vertices. Further, the minimum
Steiner tree T is obtained using standard Breadth First Search on G[R ∪ S].
We shall now present a sketch of the algorithm and a detailed one is presented in Algorithm 3. As part of
preprocessing, we prune the sets S1, S2, and S3 as defined in Section 2.1. Since G1 is a K1,4-free split graph,
G1 is l-split, l ≤ 3. We come across four cases as follows. If G1 is a 0-split graph, then R is connected and the
minimum Steiner set S = ∅. If G1 is a 1-split graph, then the corresponding clique set of I1 is a minimum
Steiner set. If G1 is a 2-split graph, then we find the labelled graph M of G1 and the maximum matching P
of M . Subsequently, we find the corresponding vertex set Q ⊆ C of the matching P and the corresponding
clique set Q′ of I\N I

G(Q). The minimum Steiner set is S = Q∪Q′ ( from Lemma 4 ). Given a 3-split graph,
we perform a transformation to obtain a 2-split graph. We identify the size of a minimum Steiner set and the
Steiner set with the help of the labelled graph associated with the transformed 2-split graph. Interestingly,
based on the matching size, we get to identify the size of minimum Steiner set and the corresponding clique
set helps us to identify the Steiner set. It is important to highlight the fact that if matching size is 1, we look
at two different labelled graphs to identify the minimum Steiner set. The detailed algorithm is presented in
Algorithm 3.

Algorithm 3 Compute Steiner Tree K1,4-free(G
0, R)

/*G0 is the K1,4-free split graph and R ⊆ V (G0) is the set of terminal vertices */
1: G1 = Pruning(G0, R) i.e., G1 = G0\(S1 ∪ S2 ∪ S3)
2: Initialize the output Steiner set S = ∅
3: if G1 is a 1-split graph then

4: Find corresponding clique set S of I1

5: else if G1 is a 2-split graph then

6: S=Compute Steiner 2-split graph(G1)
7: else

8: S=Compute Steiner 3-split graph(G1)
9: end if

10: Obtain the Breadth First Search tree T in the graph induced on vertices S ∪R.
11: Output T

Algorithm 4 Compute Steiner 2-split graph(G)

/*G is K1,4-free and 2-split graph */

1: Initialize the Steiner set S2 = ∅
2: Construct the labeled graph M of G
3: Find a maximum matching P in M and find the corresponding vertex set S1 of P
4: Find the corresponding clique set S2 of the vertex set I\N I

G(S
1)

5: Return Steiner set S1 ∪ S2

3.1.1 Proof of correctness of Algorithm 3 Step 1 of Algorithm 3 prunes the input graph G0 to obtain
G1 and by Lemma 2, an optimal Steiner set of G1 is also an optimal Steiner set of G0. If G1 is a 1-split graph,
then |S| = |I1| and our algorithm correctly computes such a Steiner set S in step 4. If G1 is a 2-split or 3-split
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Algorithm 5 Compute Steiner 3-split graph(G)

/*G = I + C is K1,4-free 3-split graph*/
1: Initialize Steiner set S2 = ∅, S1 = {u} where u ∈ V3 and edge set P 1 = ∅
2: for every vertex v ∈ V3 do

3: Find the 2-split graph G2 induced on V (G)\N I
G(v) and the labeled graph M of G2

4: Find a maximum matching P ∗ of M
5: if |P 1| ≤ |P ∗| then
6: Update P 1 = P ∗

7: Update S1 = {v} ∪ corresponding vertex set of P 1 in G2

8: end if

9: end for

10: if |P 1| < 1 then

11: Find the 2-split graph H2 induced on V (G)\V3

12: Find the labeled graph M2 of H2 and a maximum matching P 2 of M2

13: if |P 2| = 3 then

14: S1 = corresponding vertex set of P 2 in H2

15: end if

16: end if

17: Find the corresponding clique set S2 of the vertex set I\N I
G(S

1)
18: Return Steiner set S1 ∪ S2

graph, then Algorithm 3 calls Algorithm 4, or Algorithm 5, respectively. Now we shall look into Algorithm
4 in detail. The algorithm finds the labeled graph M in Step 2. Note that Algorithm 4 in Step 3 finds a
maximum matching P in M , and finds the corresponding vertex set S1 of P such that |S1| = |P |. Step 4
finds S2 such that |S2| = |I1|−2|P |. The Steiner set S1∪S2 is returned in Step 5 where |S1∪S2| = |I1|−|P |,
which is correct due to Lemma 4 and hence Algorithm 4 returns an optimum Steiner set.

In Algorithm 5, for every v ∈ V3, we find G2 and its labeled graph M in Step 3. A maximum matching
on M is obtained in Step 4. Step 6 and 7 updates maximum matching P 1 and its corresponding vertex set
S1 found so far. Note that by Theorem 5, Steiner set S of G is bounded as |I| − 4 ≤ |S| ≤ |I| − 2. We can
see the following cases.
Case (i) |S| = |I| − 4. By Theorem 3, |P 1| = 2 and it follows that |S1| = 3 and |N I

G(S
1)| = 7. Step 17 finds

S2 such that |S2| = |I| − 7. Step 18 returns S1 ∪ S2 where |S1 ∪ S2| = |I| − 4.
Case (ii) |S| = |I|−3. By Theorem 4, either |P 1| = 1 or |P 2| = 3. If |P 1| = 1, then |S1| = 2 and |N I

G(S
1)| = 5.

Step 17 finds S2 such that |S2| = |I| − 5. Note that |S1 ∪ S2| = |I| − 3. If |P 2| = 3, then |S1| = 3 and
|N I

G(S
1)| = 6. Step 17 finds S2 such that |S2| = |I| − 6. Observe |S1 ∪ S2| = |I| − 3.

Case (iii) |S| = |I| − 2. It follows that |P 1| = 0. Since we initialized S1 with a vertex u ∈ V3, |S1| = 1 and
|N I

G(S
1)| = 3. Observe that |S2| = |I| − 3 and |S1 ∪ S2| = |I| − 2. This completes the case analysis and

Algorithm 5 correctly computes a Steiner set of G. Therefore, Algorithm 3 correctly computes the minimum
Steiner tree in Step 10.
3.1.2 Run-time analysis of Algorithm 3

Let n,m represents the size of vertex set, and the edge set, respectively of the input graph G0. We shall first
analyze the run-time of Algorithm 4 and Algorithm 5 as Algorithm 3 invokes Algorithm 4 or Algorithm 5
at Steps 6, 8, respectively. For Algorithm 4, observe that creation of the labeled graph in Step 2 needs O(n)

effort as |E(M)|+ |V (M)| = O(n). Step 3 finds a maximum matching of M which can be done in O(n
3

2 ) time
using general graph maximum matching algorithm [22]. Corresponding clique set in Step 4 can be found in

O(n) time. Therefore, the run-time of Algorithm 4 is O(n
3

2 ). Consider Algorithm 5, Steps 3 to 8 are iterated

at most n times. Step 3 needs O(n) effort. Finding a matching of M2 in step 4 needs O(n
3

2 ) time. Steps 6, 7

incurs constant effort. Therefore, the iteration of Steps 3 to 8 involves O(n
5

2 ) effort. Note that Steps 11, 12

need O(n), O(n
3

2 ), respectively and Step 14 incurs a O(n) effort. Finding S2 in step 17 can be done in O(n)

time. Overall, the run-time of Algorithm 5 is O(n
5

2 ).
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Now we shall discuss run time of Algorithm 3. Pruning of verices in step 1 of Algorithm 3 takes O(n.∆)
effort where ∆ denotes maximum degree of the input graph G. Step 4 takes O(n) time. Steps 6, 8 takes

O(n
3

2 ) time, O(n
5

2 ) time, respectively. Step 10 incurs O(n +m) time. Therefore the run time of Algorithm

3 is O(n
5

2 ). Thus, Steiner tree in K1,4-free split graph is polynomial-time solvable.

4 Steiner tree in K1,5-free Split Graphs is NP-complete

In the earlier section, we have presented a polynomial-time algorithm for Steiner tree in K1,4-free split
graphs. In this section, we present the other half of the dichotomy, which is to show that Steiner tree in
K1,5-free split graph is NP-complete. Interestingly, the reduction presented in [2] generates instances of K1,5-
free split graphs. For the sake of completeness, we present our observations along with proofs. Towards this
attempt, we recall the classical problem Exact 3 cover [23] which is a candidate NP-complete problem for
our investigation.

Exact-3-cover(Z,T)
Instance: A Collection T of 3 element subsets of a set Z = {u1, u2, . . . , u3q}.

Question: Is there a sub collection T
′

⊆ T = {c1, c2, . . . , cn} such that for every ui ∈ Z, 1 ≤ i ≤ 3q
ui belongs to exactly one member of T

′

?

We recall the decision version of Steiner tree problem, restricted to K1,5-free split graphs.

Steiner tree(G,R,k)
Instance: K1,5-free Split Graph G(V,E), Terminal Set R ⊆ V (G), Integer k ≥ 0
Question: Is there a set S ⊆ V (G)\R such that |S| ≤ k and G[S ∪R] is connected?

Theorem 6. Steiner tree problem in K1,5-free split graph is NP-complete.

Proof. Steiner tree is in NP Given a certificate S = (G,R, k), we show that there exist a deterministic
polynomial-time algorithm for verifying the validity of the certificate S. Note that the standard Breadth
First Search algorithm can be employed to check whether S ∪ R is connected. |S| = k can be verified in
linear time and therefore, overall certificate verification need O(n+m) time, where n = |V (G)|, m = |E(G)|.
Therefore, we can conclude that Steiner tree is in NP.
Steiner tree is NP-Hard An instance of Exact 3 cover(Z,T) is reduced to an instance of Steiner tree
(G,R,k) problem as follows: I = Z, C = {vi | ci ∈ T }, 1 ≤ i ≤ n and V (G) = I ∪ C. Informally, for every
element u ∈ Z, create a vertex u such that u ∈ I. For every member ci ∈ T , create a vertex vi such that
vi ∈ C. E(G) = {{vi, vj} | vi, vj ∈ C}, 1 ≤ i 6= j ≤ n ∪ {{vl, u} | vl ∈ C, u ∈ I, and u ∈ cl}. R = I and

k = |Z|
3
. In this reduction, |V (G)| = |Z|+ |T | and |E(G)| =

(

|T |
2

)

+3|T |. The above construction is therefore
polynomial to the size of input. We now show that instances created by this reduction are K1,5-free split
graphs. On the contrary, assume that there exist a K1,5 induced on vertices {u, v, w, x, y, z}. Note that at
most two vertices (say u, v) from clique C can be included in the K1,5. Clearly, w, x, y, z ∈ I and without loss
of generality, dIG(v) = 4. This implies that there exist a 4 element subset c ∈ T corresponding to the clique
vertex v ∈ C, which is a contradiction as all subsets are of size 3 in collection T . Therefore it follows that the
reduced graph G is K1,5-free split graph. We now show that there exist an Exact-3-cover(Z,T) if and only if
there exist a Steiner tree(G,R,k) in the reduced graph G on at most k Steiner vertices. For Necessity: If there

exist T
′

⊆ T , |T
′

| = |Z|
3

which covers all the elements of Z, then the set of vertices S = {v ∈ C | c ∈ T
′

}

where v is the corresponding vertex of c forms a Steiner set in G as R = Z. Also note that |S| = |Z|
3
. For

Sufficiency: If there exist a Steiner set S ⊆ C in the reduced graph G on at most k = |Z|
3

Steiner vertices,

then observe that for all vertex v ∈ S, dIG(v) = 3, |S| = |Z|
3

and |N I
G(S)| = |Z|. It follows that there does not

exist u, v ∈ S such that N I
G(u) ∩N I

G(v) 6= ∅. Therefore, T
′

= {c ∈ T | v ∈ S} where v is the corresponding
vertex of c forms an exact 3 cover of Z. This completes the proof of the claim. We can conclude that Steiner
tree problem is NP-complete in K1,5-free split graphs. ⊓⊔
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5 Conclusions and Future Work

We have presented an interesting dichotomy result that Steiner tree problem is polynomial-time solvable in
K1,4-free split graphs and NP-complete in K1,5-free split graphs. This result is tight and it identifies the
right gap between NP-completeness and polynomial-time solvability of Steiner tree in split graphs. Using
the structural results presented here, an interesting direction for further research would be to explore the
complexity of other classical problems which are NP-complete restricted to split graphs.

References

1. M. R. Garey, R. L. Graham, D. S. Johnson: The complexity of computing steiner minimal trees. SIAM Journal
on Applied Mathematics 32(4) 835–859 (1977)

2. Kevin White, Martin Farber, William Pulleyblank: Steiner trees, connected domination and strongly chordal
graphs. Networks 15(1) 109–124 (1985)

3. Stefan Vo: Steiner tree problems in telecommunications. In: Handbook of Optimization in Telecommunications,
Springer US 459–492 2006

4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to Algorithms (3. ed.).
MIT Press (2009)

5. Michael R. Garey, David S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, New York (1979)

6. M.C.Golumbic: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
7. A.A.Bertossi, M.A.Bonuccelli: Hamiltonian circuits in interval graph generalizations. Information Processing

Letters 195–200 (1986)
8. Michael R. Garey, David S. Johnson: The rectilinear Steiner tree problem is NP-complete. SIAM Journal on

Applied Mathematics 32(4) 826–834 (1977)
9. Haiko Muller, Andreas Brandstadt: The NP-completeness of steiner tree and dominating set for chordal bipartite

graphs. Theoretical Computer Science 53(2) 257 – 265 (1987)
10. J.M.Keil: Finding hamiltonian circuits in interval graphs. Information Processing Letters 201–206 (1985)
11. R.W.Hung, M.S.Chang: Linear-time certifying algorithms for the path cover and hamiltonian cycle problems on

interval graphs. Applied Mathematics Letters 648–652 (2011)
12. B.S.Panda, S.K.Das: A linear time recognition algorithm for proper interval graphs. Information Processing

Letters 153–161 (2003)
13. L.Ibarra: A simple algorithm to find hamiltonian cycles in proper interval graphs. Information Processing Letters

1105 – 1108 (2009)
14. Joseph A. Wald, Charles J. Colbourn: Steiner trees, partial 2-trees, and minimum IFI networks. Networks 13(2)

159–167 (1983)
15. S.E. Dreyfus, R.A. Wagner: The steiner problem in graphs. Networks 1 195–207 (1972)
16. Michael Dom, Daniel Lokshtanov, Saket Saurabh: Incompressibility through colors and IDs. In: Automata,

Languages and Programming. Volume 5555. 378–389 2009
17. Naveen Garg: Saving an epsilon: A 2-approximation for the k-mst problem in graphs. In: Proceedings of the

Thirty-seventh Annual ACM Symposium on Theory of Computing. 396–402 2005
18. Marcus Brazil, Ronald L. Graham, Doreen A. Thomas, Martin Zachariasen: On the history of the euclidean

steiner tree problem. Archive for History of Exact Sciences 68(3) 327–354 (2014)
19. M. Jones, D. Lokshtanov, M.S. Ramanujan, S. Saurabh, O. Suchy: Parameterized complexity of directed steiner

tree on sparse graphs. In: Algorithms - ESA 2013. Volume 8125. 671–682 2013
20. Leonid Zosin, Samir Khuller: On directed steiner trees. In: Proceedings of the Thirteenth Annual ACM-SIAM

Symposium on Discrete Algorithms. 59–63 2002
21. D.B.West: Introduction to graph theory 2nd Edition. (2003)
22. S. Micali, V. V. Vazirani: An O(

√
V E) algorithm for finding maximum matching in general graphs. In: IEEE

Annual Symposium on Foundations of Computer Science. 1980
23. R.M.Karp: Reducibility among combinatorial problems. In: Proc. of a Symposium on the Complexity of Computer

Computations. 85–103 1972

12


	Complexity of Steiner Tree in Split Graphs - Dichotomy Results
	Madhu Illuri, P.Renjith, N.Sadagopan

