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ABSTRACT

We prove that a random automaton with n states and any fixed non-singleton alphabet
is synchronizing with high probability. Moreover, we also prove that the convergence
rate is exactly 1 − Θ( 1

n
) as conjectured by [Cameron, 2011] for the most interesting

binary alphabet case.
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1. Synchronizing automata

Suppose A is a complete deterministic finite automaton whose input alphabet is A
and whose state set is Q. The automaton A is called synchronizing if there exists a
word w ∈ A∗ whose action resets A, that is, w leaves the automaton in one particular
state no matter at which state in Q it is applied: q.w = q′.w for all q, q′ ∈ Q. Any
such word w is called a reset word of A. One can check that a word (ab3)2a is reset for
an automaton C4 depicted on Figure 1 (left). For a brief introduction to the theory
of synchronizing automata we refer the reader to the survey [15].

Synchronizing automata serve as transparent and natural models of error-resistant
systems in many applications (coding theory, robotics, testing of reactive systems)
and also reveal interesting connections with symbolic dynamics and other parts of
mathematics. We take an example from [2]. Imagine that you are in a dungeon
consisting of a number of interconnected caves, all of which appear identical. Each
cave has a common number of one-way doors of different colours through which you
may leave; these lead to passages to other caves. There is one more door in each cave;
in one cave the extra door leads to freedom, in all the others to instant death. You
have a map of the dungeon with the escape door identified, but you do not know in
which cave you are. If you are lucky, there is a sequence of doors through which you
may pass which takes you to the escape cave from any starting point.
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In terms of the provided example, the result of this paper is quite positive; we
prove that for a uniformly at random chosen dungeon (automaton) there is a life-
saving sequence (reset word) with probability 1 − O( 1

n0.5c ) where n is the number
of caves (states) and c is the number of colours (letters). Moreover, we prove that
the convergence rate is tight for the most interesting 2-colour case, thus confirming
Cameron’s conjecture [5]. Up to recently, the best results in this direction were
much weaker: in [17] it was proved that random 4-letter automata are synchronizing
with probability p for a specific constant p > 0; in [16] it was proved that if a
random automaton with n states has at least 72 ln(n) letters then it is almost surely
synchronizing. Recently, Nicaud [11] has shown (independently) by a completely
different pure combinatoric techniques that a random n-state automaton with 2 letters
is synchronizing with probability 1 − O(n− 1

8 +o(1)). Our results give a much better
convergence rate.

2. The probability of being synchronizable

Let Q stand for {1, 2, . . . , n} and Σn for the probability space of all unambiguous maps
from Q to Q with the uniform probability distribution. Throughout this paper let
A = 〈Q, {a, b}〉 be a random automaton, that is, A is chosen uniformly at random from
the set of all 2-letter automata with n states. As we do not have any restrictions on
A, we can choose such an automaton by picking a and b independently and uniformly
at random (u.a.r) from Σn, that is,

P (A = 〈Q, {a′, b′}〉) = Pa∈Σn(a = a′)Pb∈Σn (b = b′).

In its turn, the choice of a random mapping from Σn is equivalent to choosing inde-
pendently and u.a.r. an image for each state q ∈ Q. Here and below by independence
of two objects O1(A) and O2(A) determined by an automaton, we mean the indepen-
dence of the corresponding events O1(A) = O1 and O1(A) = O2, for each instances
O1, O2 from the corresponding sets. Notice also that if two objects are defined by
independent objects, they are also independent, e.g. the set of all self-loops by a is
independent of the letter b. We will extensively utilize this argument throughout the
paper.

Our main result is the following theorem.

Theorem 1. The probability of being synchronizable for 2-letter random automata
with n states equals 1 − Θ( 1

n ).

3. Connectivity and the Upper Bound

Let us call subautomaton a terminal strongly-connected component of A1. Call an
automaton weakly connected if it has only one subautomaton. Observe that if an
automaton is synchronizing, it must be weakly connected. Hence the following lemma
gives the upper bound of Theorem 1.

1A strongly-connected component S is terminal when S · u ⊆ S for every u ∈ A∗.
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Lemma 2. The probability that A is not weakly connected is at least Ω( 1
n ).

Proof. Let us count the number of automata having exactly one disconnected loop,
that is automata having a state with only (two) incoming arrows from itself. We first
choose a unique state p of a disconnected loop in n ways. The transitions for this state
is defined in the unique way. For any other state q, we define transitions in (n − 2)2

ways by choosing the image for each letter to be any state except p, q, ensuring that q
is not disconnected and p has no transitions from other states. Thus the probability
of having exactly one disconnected loop is at least

n(n − 2)2(n−1)

n2n
=

1
n

(
1 − 2

n

)2(n−1)

= Θ

(
1
n

)
.

This concludes the proof of the lemma as such automata are not weakly connected.
�

The following lemma can be obtained as a consequence of [6][Theorem 3] but we
present the proof here for the sake of completeness.

Lemma 3. The number of states in each subautomaton of A is at least n/4 with
probability 1 − O( 1

n ).

Proof. Given 1 ≤ i < n/2, there are
(

n
i

)
ways to choose a set of states of a subau-

tomaton of size i, then there are i2i ways to define transitions for both letters in the
chosen subautomaton, and n2(n−i) ways to define transitions for the remaining states.
Thus, the number of automata with a subautomaton of size i is at most

Ni =

(
n

i

)
i2in2(n−i). (1)

Let us consider the ratio Ni+1/Ni. We have

Ni+1/Ni =
n − i

i + 1
(i + 1)2(i+1)

i2in2
=

(n − i)(1 + 1
i )2i

n2
≤ e2(n − i)(i + 1)

n2
. (2)

Trivial analysis shows that the maximum of (2) for i ≤ n/4 is reached when i is
maximal, thus (2) is maximal for i = n/4 and equals 3e2(1 + o(1))/16 < 1. Using
that, we have that the total number of automata with a sabautomaton of size smaller
than n/4 is upper bounded by the sum of the geometric sequence with the common
factor smaller than 1 and the first term equals n2n−1. The lemma follows from the
fact that the total number of binary automata with n states is n2n. �

Lemma 4. With probability 1 − O( 1
n ) there is only one strongly-connected subau-

tomaton in A.

Proof. Suppose there are at least two strongly connected subautomata in A having
sizes s1, s2 respectively. Notice that there are at most 3n ways to choose subsets of
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states of these two subautomata, as this choice can be defined by coloring Q into
three colors. Then, transitions for states in these sabutomata can be defined in s1

2s1

and s2
2s2 ways resp., and for the rest n − s1 − s2 states they can be defined in at

most n2(n−s1−s2) ways. As the total number of automata is n2n, the probability of
this happening can be upper bounded by

3n
(s1

n

)2s1
(s2

n

)2s2

, (3)

where s1 and s2 both have size at least n/4 with probability 1−O( 1
n ) due to Lemma 3.

It can be easily shown that the maximum of (3) is reached when s1 = s2 when s1 +s2

is fixed. Similarly, using that the function xcx = ecx ln x is increasing for x ≥ 1/e, one
can deduce that (3) is maximal when s1 = s2 = n/2, and thus is upper bounded by

3n

(
1
2

)n(1
2

)n

= 3n/4n = o(1/n). (4)

�

4. The Lower Bound

Now we turn to the proof of the lower bound of Theorem 1 by means of a top-down
approach. In order to describe the plan, we need a few definitions which we elaborate
on further in the proof. First, call a set of states K ⊆ Q synchronizable if it can be
mapped to one state by some word. Next, a pair of states {p, q} is called stable if it
cannot be mapped by any word into a non-synchronizable pair. Finally, the underlying
graph of a letter (or mapping) a is a digraph Γa = Γ(Q, {(q, q.a) | q ∈ Q}). Since
it has common out-degree 1, the underlying graph consists of one or more maximal
weakly connected components 2 called clusters, each one consisting of a unique cycle
and trees rooted on this cycle (see Figure 1).

The plan is as follows. After recalling necessary well known inequalities in Subsec-
tion 4.1, we state an upper bound on the number of clusters of a random mapping in
Subsection 4.2, which will be used throughout the paper. Then, in Subsection 4.3 we
prove that having the set of big clusters for each letter synchronizable is enough to
prove the lower bound. Next, in Subsection 4.4 we will show that this property can
be provided by having a big enough set of stable pairs for each letter independent of
the other letter. In Subsection 4.5 we prove that these sets of stable pairs can be built
from just one stable pair independent of one of the letters. In Subsection 4.6 we will
show that if the underlying graph of one of the letters has a unique highest 1-branch,
then there is a pair of states completely defined by this letter which is additionally
stable provided the crown of the 1-branch intersects with any subautomaton. Finally,
in Subsection 4.7 we prove that with high probability one of the letters of a random
automaton has a unique highest 1-branch whose crown is big enough to be reachable
from any subautomaton with high probability.

2a maximal by size subgraph containing a state accessible from every state of the subgraph
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4.1. Useful Asymptotics

First, let us recall few asymptotic equations that will be used throughout the paper.
The Stirling’s approximation formula states that for k > 0

k! =

(
k

e

)k √
2πk(1 + o(1)). (st)

Using Taylor’s expansion of a logarithm ln(1 − x) = −∑+∞
i=1

xi

i , for 0 < k ≤ m we get

(
1 − k

m

)m

= exp

(
−

+∞∑

i=1

ki

imi−1

)
. (exp1)

e−2k ≤
(

1 − k

m

)m

≤ e−k if k ≤ m

2
. (exp2)

(
1 − k

m

)m

= e−k(1+o(1)) if k = o(m). (exp3)

(
1 − k

m

)m

= e−kΘ(1) if k2 = o(m). (exp4)

Using (st), for the number of combinations for 0 < k < m we have

(
m

k

)
=

m!
(m − k)!k!

=
Θ(1)

(
m
e

)m+1/2

(
k
e

)k+1/2 (m−k
e

)m−k+1/2
=

=
Θ(1)mm

kk(m − k)m−k

√
m

k(m − k)
=

Θ(1)mk

kk(1 − k
m )m−k

√
m

k(m − k)
. (cmb0)

If k = o(m), then due to (exp3), (cmb0) simplifies to

(
m

k

)
=

Θ(1)
(
me1+o(1)

)k
(1 − k

m )k

kk

√
1
k

=
Θ(1)(me(1 + o(1)))k

kk
√

k
, (cmb1)

and if k2 = o(m), due to (exp4) it further simplifies to

(
m

k

)
=

Θ(1)
(
me1+o(1)

)k
(1 − k

m )k

kk

√
1
k

=
Θ(1)(me)k

kk
√

k
. (cmb2)

In the general case 0 < k < m, as m ≤ O(1)k(m − k), (1 − k
m ) ≤ 1 and due to (exp2)

we can upper bound (cmb0) as follows.

(
m

k

)
≤ Θ(1)mk

kk(1 − k
m )m−k

√
m

k(m − k)
≤ O(1)mke2k

kk
= O(1)

(
e2m

k

)k

. (cmb3)

Notice that for k ∈ {0, m}, (cmb3) also holds if we assume 00 = 1.
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4.2. The Cluster Structure of Underlying Graphs

An example of an automaton with 4 states and the underlying graphs of its letters
is given in Figure 1 – the underlying graph of b (on the right) has only one cluster,
while the underlying graph of a (in the middle) consists of 3 clusters having the sets
of vertices {0, 1}, {2}, {3}, correspondingly. Clearly, each directed graph with n
vertices and constant out-degree 1 corresponds to a unique map from Σn. Thus we
can consider Σn as the probability space with the uniform distribution on all directed
graphs with constant out-degree 1.

0 1

23

a, b

a

aa

b

b

b

0 1

23

0 1

23

Figure 1: Left to right: an automaton C4, the underlying graphs of its letters a and b.

The number of clusters (or cycles) of a random mapping is known to be concen-
trated around ln n

2 and accurate bounds were established for various rates of growth
of the number of clusters (see e.g. [13]). We need a stronger upper bound for large
deviations of the number of clusters.

Lemma 5 (Nicaud, 2019). With probability 1−o( 1
n4 ), a random digraph from Σn

has at most 5 ln n clusters.

Proof. We will make use of powerful and beautiful theory of Analytic Combinatorics
comprehensibly developed in [9]. Let tn,k be the number of mappings from [n] to
[n] having k clusters (component). The associated exponential bivariate generating
series defined by

T (z, u) :=
∑

n≥0

∑

k≥0

tn,k

n!
znuk

can be written, using the formal method (see e.g. [8]):

{
T (z, u) = exp

(
u log

(
1

1−C(z)

))
,

C(z) = z exp(C(z))
(5)

As every coefficient (tn,k) of the development of T (z, u) near (z, u) = (0, 0) is non-
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negative, we have, for every 0 < ρ < e−1 and every positive τ :

T (ρ, τ) =
∑

n,k

(
[znuk]T (z, u)

)
ρnτk ≥

(
[znuk]T (z, u)

)
ρnτk,

for every n and every k. Hence (this is called a saddle-point bound):

tn,k

n!
= [znuk]T (z, u) ≤ T (ρ, τ)

ρnτk
(6)

This holds for any 0 < ρ < e−1, any positive u and any n and k. We choose

ρ = e−1

(
1 − 1

2n

)
; k = λn + i; λn := ⌈λ log n⌉,

for any i ≥ 0 and some λ > 0 to be fixed later. Due to (6), the probability that a
random mapping with n states has k components is

tn,k

nn
≤ n!

nn

T (ρ, τ)
ρnτk

. (7)

First observe that, due to (st) and the choice of ρ,

n!
nnρn

=

√
2πn(1 + o(1))(

1 − 1
2n

)n =

√
2πn

e−1/2
(1 + o(1)). (8)

Now we estimate T (ρ, τ). We use the classical development near ρ = e−1 (see [8])

C(z) = 1 −
√

2(1 − ez) + O(1 − ez),

and thus 1 − C(ρ) = 1√
n

+ O( 1
n ), and thus from (5) we have

T (ρ, τ) = exp

(
τ log

√
n

1 + O(1/
√

n)

)
= nτ/2(1+o(1/n1/2)). (9)

Putting together (7),(8) and (9), for some positive α,

tn,k

nn
≤ α

√
n

nτ/2

nλ log τ
τ−i = α n

1
2 (τ)−λ log τ τ−i

If we choose τ = λ = 5, we have 1
2 (τ + 1) − λ log τ ≤ −5, so that

tn,k

nn
≤ αn−55−i+1,

and therefore

Pg∈Σn(g has more than 5 log n clusters) =
∑

i≥0

tn,⌈5 log n⌉+i

nn
≤ β

n5
,

for some positive β. �
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4.3. Independent Synchronizable Sets

A set of states K ⊆ Q is synchronizable if it can be mapped to one state by some
word. In contrast, a pair of states {p, q} is called a deadlock if p.s 6= q.s for each word
s. Notice that a deadlock pair remains deadlock under the action of any word.

First we aim to show that for proving that A is synchronizing with probability
1 − O( 1

n ), it is enough to show that with probability 1 − O( 1
n ) for each letter there is

a large synchronizable set of states which is completely defined by this letter. Given
x ∈ {a, b} and a constant 0 < αc < 1 to be chosen later, we define Sx to be the set of
big clusters of Γx – of size more than nαc states – and define Tx to be the complement
of Sx, or equivalently, Tx to be the set of small clusters – the clusters containing at
most nαc states. Since Sx and Tx are completely defined by x, both are independent
of the other letter.

Due to Lemma 5, with probability 1 − O( 1
n ) there are at most 5 ln n clusters in Γx,

whence Tx contains at most 5 ln (n)nαc states with probability 1 − O( 1
n ). Given a set

of clusters X , denote by X̂ the set of states in the clusters of X .

Theorem 6. If Ŝa and Ŝb are synchronizable and the underlying digraphs of a and
b has at most 5 ln n clusters each, then A is synchronizing with probability 1 − O( 1

n ).

Proof.

Remark 7. Let subsets R, S ⊆ Q be defined independent of one another and 0 <
k ≤ |R|. Then the probability that |R ∩ S| ≥ k is at most

P r(|R ∩ S| ≥ k) ≤
(|S|

k

)(
n

|R| − k

)
/

(
n

|R|

)
. (10)

In particular, if |R| = O(1), the probability that R overlaps with S by at least k
states is at most

P r(|R ∩ S| ≥ k) = O((|S|/n)k). (11)

Proof. As R is independent of S, we may assume that S is fixed and we choose R
at random. First we choose some k states from S in

(|S|
k

)
ways, then we choose the

rest |R| − k states of R from all n states in
(

n
|R|−k

)
ways, and finally divide by

(
n

|R|
)

–
the total number of ways to choose R from Q. This is an upper bound because if the
overlap is larger than k, there are different choices of overlap that lead to the same
choice of R. (11) easily follows from (cmb2). � �

Lemma 8. If a pair {p, q} is independent3 of one of the letters and p and q are
independent of one another (under the condition that p 6= q), it is a deadlock with
probability O( ln n

n2−αc ).

3It is assumed there is an event E(A) = {p, q}, which doesn’t matter in the context.
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Proof. We will often refer to the fact that if a pair of states {p, q} is a deadlock, then
|T̂a ∩ {p, q}| ≥ 1 and |T̂b ∩ {p, q}| ≥ 1. Indeed, otherwise the pair would belong to
either Ŝa or Ŝb which are synchronizable.

Suppose {p, q} is independent of a. Let us consider a chain of states
{p.a, q.a, p.a2, q.a2, . . . p.ak, q.ak} for k > 0. Notice that if p.ai = q.ai for some i,
then {p, q} is not a deadlock. Hence for each i ≤ k either p.ai or q.ai belongs to T̂b.

If {p.a, q.a} = {p, q}, that is a acts either as a transposition or as the identity on
{p, q}, we upper bound the probability of this case by O( 1

n2 ) by Remark 7 applied to
{p.a, q.a} and {p, q}.

If |{p.a, q.a} ∩ {p, q}| = 1, say q.a = p and p.a /∈ {p, q}, then the probability
of q.a = p is O(1/n). Furthermore, {p.a2, p.a} = {p, q}.a2 is a deadlock and thus
|{p.a2, p.a} ∩ T̂b| ≥ 1. Notice that p.a may not be independent of Tb in this case
because p.a /∈ {p, q} and {p, q} may depend on b, but without this condition it would.
Thus, we have

P r(|T̂b∩{p.a2, p.a}| ≥ 1 | p.a /∈ {p, q}) =
P r(|T̂b ∩ {p.a2, p.a}| ≥ 1; p.a /∈ {p, q})

P r(p.a /∈ {p, q})
.

Using Remark 7, we have

P r(|T̂b∩{p.a2, p.a}| ≥ 1; p.a /∈ {p, q}) ≤ P r(|T̂b∩{p.a2, p.a}| ≥ 1) = O

(
ln n

n1−αc

)
.

Also, we have that P r(p.a /∈ {p, q}) = 1 − O(1/n). It remains to notice that q.a = p

is independent of |{p.a2, p.a} ∩ T̂b| ≥ 1. Other cases (p.a = p, q.a = q, p.a = q) can
be proved in the same way.

If for all k = ⌈ 2−αc

1−αc
⌉ + 1 all states in the chain are different, then for each i =

1, 2, . . . , k there is a (distinct) state ri ∈ T̂b ∩ {p.ai, q.ai} (if both p.ai, q.ai are in T̂b,
let ri = p.ai). As this chain is defined by images of {p, q} by a, it is independent of
T̂b, by Remark 7, the probability that the chain overlaps with T̂b by at least k states
is at most, as |T̂b| = O(nαc ln n),

O((|T̂b|/n)k) = O((ln n/n1−αc)k) = O(1/n2−αc).

Otherwise, there is the smallest 2 ≤ i ≤ k such that

|{p.ai, q.ai} ∩ {p, q, p.a, q.a, p.a2, q.a2, . . . p.ai−1, q.ai−1}| > 0.

As k is constant, by Remark 7 this happens with probability O(1/n) and, addition-
ally, we have that |{p.a, q.a} ∩ T̂b| > 0 which happens with probability O(1/n1−αc) in
the case |{p.a, q.a} ∩ {p, q}| = 1 above. It remains to notice that those two events are
independent as the former one is defined by {p.a, q.a} and T̂b while the latter is defined
by {p.ai, q.ai} for i > 1 (as images of different states are chosen independently).

� �
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Lemma 9. Given a constant k and a letter a, the probability that there is a deadlock

pair in a-clusters with cycles of size at most k is at most O( ln3 n
n2−αc ).

Proof. First notice that we can map a deadlock pair to a pair on cycles by applying
an. Since the set of cycle states in these clusters is defined by the letter a, it is
independent of the other letter. Thus the probability that at least one of the pairs
from this set is deadlock is upper bounded by the product of the total number of such
pairs (which is at most 25k2 ln2 n) with the probability of a pair independent of the
letter b to be a deadlock (which is O( ln n

n2−αc ) by Lemma 8). The statement follows.
� �

Now let us bound the probability that A is not synchronizing. If this was the
case, A would possess a deadlock pair {p, q}. Given a state r, denote by cr the cycle
of the cluster containing r in Γa and by sr the length of this cycle. Denote also
by cr,i the i-th state on the cycle cr for some order induced by the cycle cr, i.e.,
cr,i.a = cr,i+1 mod sr . Let d be the g.c.d. of sp and sq. Then for some 0 ≤ x < d and
all 0 < k1, k2, i ∈ Zd = {0, 1, . . . , d − 1}, the pairs

{cp,(i+k1d) mod sp
, cq,(x+i+k2d) mod sq

} are deadlocks (12)

because we can get them as images of {p, q}. It follows that in each of these pairs at
least one of the states is in T̂b.

Since k1, k2 are arbitrary in (12), for each i ∈ Zd either cp,(i+k1d) mod sp
∈ T̂b for

all k1 or cq,(x+i+k2d) mod sq
∈ T̂b for all k2. First, we choose x in d ways, and for

some k ∈ {0, 1, . . . d} we choose k-subset Ip ⊆ {0, 1, . . . d} in
(

d
k

)
ways such that

cp,(i+k1d) mod sq
∈ T̂b for all integer k1 and i ∈ Ip. Finally, we choose a set Iq ⊆

{0, 1, . . . d} with |Iq| = d − |Ip| 4. Notice that with such a choice, there are ksp/d

distinct states cp,(i+k1d) mod sp
∈ T̂b and (d−k)sq/d distinct states cq,(x+i+k2d) mod sq

∈
T̂b.

Denote z = ksp+(d−k)sq

d . We can assume that sp ≤ sq implying d ≤ sp ≤ z.

Since T̂b is independent of a, the probability that the corresponding states from the

cycles belong to T̂b equals
(|T̂b|

z

)
/
(

n
z

)
(this is a particular case of Remark 7). Thus the

probability of such configuration for two chosen clusters, with sp, sq being their cycle
lengths and k being fixed, is at most

f(k) = d

(
d

k

)(
d

d − k

)( |T̂b|
z(k)

)
/

(
n

z(k)

)
. (13)

Simple analysis would show that f(k) increases by k for n big enough because
|T̂b| = o(n). Hence, the probability (13) for all possible (at most 25 ln2 n) choices of
clusters and any choice of k such that z ≥ 1.1

1−αc
(Case 1), can be upper bounded,

4We could define Iq to be the complement of Ip and thus wouldn’t need to choose it but we do
it to simplify description of an algorithm for synchronization testing later.
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using (cmb2) and that d ≤ sp ≤ z,
∑d

k=0

(
d
k

)(
d

d−k

)
≤ 4d, as follows

(25 ln2 n)sp4sp

(|T̂b|
sp

)
/

(
n

sp

)
≤ (25 ln2 n)O

((
|T̂b|
n

)sp
)

= o

(
1
n

)
. (14)

Now, consider the case z ≤ 1.1
1−αc

. If k < d (Case 2), then sq ≤ zd ≤ z2 and thus
both sp and sq are O(1) (in terms of n) and we are done by Lemma 9.

Finally, in the case k = d (Case 3), let us map a deadlock pair {p, q} into a
deadlock pair {p′, qmin} on the cycle where qmin is the state with the smallest index
on the cycle sq and p′ ∈ sp is the corresponding state on sp. This pair is a deadlock and
independent of b, provided we have chosen the clusters of p and q with sp ≤ 1.1

1−αc
(in

at most 25 ln2 n ways) and a state p′ ∈ cp (in at most 1.1
1−αc

ways). Due to Lemma 8,
the probability that one of these (at most 1.1

1−αc
) pairs is a deadlock is upper bounded

by

25 ln2 n
1.1

1 − αc
O

(
1

n2−αc

)
= O(1/n),

which completes the proof of the theorem. �

4.4. Stability Relation and Induced Colouring

In view of Theorem 6, it remains to prove that Ŝa and Ŝb are synchronizable with
probability 1 − O( 1

n ). For this purpose, we use the notion of the stability relation
introduced by Kari [10]. Recall that a pair of states {p, q} is called stable if for every
word u there is a word v such that p.uv = q.uv. The stability relation given by
the set of stable pairs joined with a diagonal set {{p, p} | p ∈ Q} is invariant under
the actions of the letters and complete whenever A is synchronizing. It is also an
equivalence relation on Q because it is transitive and symmetric.

Given a pair {p, q}, either {p, q} is in one a-cluster or the states p and q belong
to different a-clusters. In the latter case, we say that {p, q} connects these a-clusters.
Suppose there exists a large set Za of distinct pairs (namely, |Za| ≥ nβs where 1−αc <
βs < 0.5 will be chosen later) that are independent of a and stable with probability
1 − O( 1

n ). Consider the graph Γ(Sa, Za) with the set of vertices Sa, and draw an edge
between two clusters if and only if some pair from Za connects them.

Lemma 10. Let Za be a set of at least nβs distinct pairs independent of a; then
Γ(Sa, Za) is connected with probability 1 − O( 1

n ). If additionally all cycle pairs of one

of the clusters from Sa are stable, then Ŝa is synchronizable 5.

Proof. The latter statement follows from the definition of Sa and the transitivity of
the stability relation. Indeed, if Γ(Sa, Za) is connected, all cycle pairs of the cycles
of Sa are stable. Since each pair of Sa can be mapped to a cycle pair of Sa, Ŝa is
synchronizable.

5In particular, the existence of a loop among cycles of Sa is enough.
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Let us turn to the first statement. Since Za is independent of a, we can choose
Za uniformly at random for a given random mapping a, and estimate the probability
that Γ(Sa, Za) is not connected for that choice. The choice of Za can be done as
follows. We first choose 2|Za| states and then randomly join different pairs of chosen
states.

Arguing by contradiction, suppose that there is a set of clusters S′ ( Sa such that
for G = union(S′), we have |G| ≤ 0.5n and each pair {p, q} ∈ Za either belongs to G
or does not intersect with G. Notice also that |G| > nαc , because G must contain at
least one cluster from Sa and all clusters in Sa contain more than nαc states.

Denote m = |Za|. Let k1 pairs from Za belong to G and k2 = m − k1 pairs do not
belong to G. The probability of such event is at most, g being the size of G,

25 ln n

(
g

2k1

)(
n−g
2k2

)
(2k1)!!(2k2)!!(

n
2m

)
(2m)!!

(1 + o(1)). (15)

Indeed, due to Lemma 5, with probability 1 − O( 1
n ) we can choose G (as a subset of

clusters) in at most 25 ln n ways. Then we choose 2k1 states from G∩Za in
(

g
2k1

)
ways

and a perfect matching on them in (2k1)!! ways. Similarly, we choose k2 pairs from
(Q \ G) ∩ Za in

(
n−g
2k2

)
(2k2)!! ways; next we divide it by the total number of ways to

choose |Za| pairs
(

n
2m

)
(2m)!!.

Using that (2x)!! =
∏x

i=1(2i) = 2xx! and
(

x
y

)
= x!

(x−y)!y! , (15) can be upper bounded
as follows

O(1)n5 g!(n − g)!(n − 2m)!(2m)!
n!(2k1)!(g − 2k1)!(2k2)!(n − g − 2k2)!

2k1k1!2k2 k2!
2mm!

=

= O(1)n5 g!(n − g)!(n − 2m)!(2m)!
n!(2k1)!(g − 2k1)!(2k2)!(n − g − 2k2)!

k1!k2!
m!

. (16)

As n − g > g, it can be easily shown that (16) decreases by k1 provided m = k1 + k2

is fixed. For k1 = 0, (16) is reduced to

O(1)n5 g!(n − g)!(n − 2m)!(2m)!
n!g!(2m)!(n − g − 2m)!

= O(n5)
(n − g)!(n − 2m)!
n!(n − g − 2m)!

, (17)

Using Stirling’s formula (st) for (17), we get

O(n5)
(n − g)!(n − 2m)!
n!(n − g − 2m)!

= O(n5)
(n − g)n−g(n − 2m)n−2m

nn(n − g − 2m)n−g−2m

√
(n − g)(n − 2m)
n(n − g − 2m)

.

(18)

Notice that for x2 = o(z), we have that

(1 − x

z
)z−x = e−x 1

(1 − x2

z )
= e−x(1 + o(1)) (19)
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Hence using that m2 = o(n) and n − g ≥ 0.5n, we can simplify (18) as

O(n5)
(n − g)2m(1 − 2m

n )n−2m

n2m(1 − 2m
n−g )n−g−2m

= O(n5)(1 − g

n
)2m ≤ O(n5)(1 − nαc

n
)2m. (20)

Finally, using Taylor’s expansion for natural logarithm, we upper bound (20) as

O(n5)e2m ln(1−nαc−1) = O(n5)e−2nβs nαc−1(1+o(1)). (21)

It remains to recall that βs + αc − 1 > 0, and thus (21) is o( 1
nr ) for any r > 0. �

When a letter is clear from the context, we call a pair of states cycle pair if both
states belong to (probably different) cycles in the underlying digraph of the letter.

Lemma 11. Suppose there exists a set of at least nβs distinct pairs Za independent
of a, which are stable with probability 1 − O( 1

n ) and Γ(Sa, Za) is connected; then with

probability 1 − O( 1
n ) cycles from Sa are all stable, and thus Ŝa is synchronizable.

Proof. Let ns denote the number of clusters in Sa and z denote the number of pairs
in Za. Suppose the cycles of Sa have states from exactly d stable classes. We have
to upper bound the probability that d > 1. Using that the stability relation is an
equivalence and that the graph of cycles is connected by stable pairs, we have the
following properties.

(I) All cycles have states from each of d stability classes. Indeed, suppose a stable
pair {p, q} has p in one cycle and q in another. When p.ai for i > 0 runs through
all the classes of one cycle, q.ai must run through the same classes in the other
cycle. The statement follows from connectivity now.

(II) The length of all cycles form Sa is divided by d (follows from (I)).
(III) We can enumerate these stable classes from 0 to d−1 such that the class indexed

i is mapped to (i + 1 mod d) by a.
Let us colour each cycle state from Sa in the colour corresponding to its stable class.
We extend this colouring to the whole Ŝa as follows. We colour a state p in the same
colour as the (cycle) state p.and. With this definition, we have that (III) holds for all
states from Ŝa.

Remark 12. The action of a maps a pair {p, q} in a monochrome pair if and only
if {p, q} is monochrome.

Proof. Indeed, let {p, q} be a cycle pair. If {p.a, q.a} is monochrome, then it is stable,
whence {p.at, q.at} is stable and monochrome for all t > 0. If we take t being the
product of all cycles lengths, we get a pair {p, q}, which thus must be monochrome.
For non-cycle pairs, the statement follows from the fact that and is homomorphic map
into the set of cycle states. � �

It follows from the definition of the colouring and Remark 12 that each stable pair
in Ŝa must be monochrome. Denote by si the number of pairs Za coloured by i for
i = 0, 1, . . . , d − 1. Without loss of generality, suppose s0 is maximal among si.
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Since Za is independent of a, we can choose Za uniformly at random for a given
random mapping a and estimate the probability that Za yields a colouring into d > 1
colours. The choice of Za can be done in two stages. We first randomly choose 2z
states and then randomly choose a perfect matching on the chosen states.

Case 1. s0 ≤ γz for 0.9 < γ < 1. Consider the probability that for a chosen set of
states in Za, there is a colouring (satisfying above properties) and a perfect matching
on its states such that all pairs of the matching are monochrome. The probability is
upper bounded by

ndns

∏d−1
i=0 (2si)!!
(2z)!!

= ndns

∏d−1
i=0 (si)!

z!
(22)

Indeed, first we choose d in at most n ways, then we determine a colouring for each
of ns clusters by choosing a colour of one of its cycle states in d ways (other colours
are uniquely determined according to (III)), then for each colour i we choose a perfect
matching in (2si)!! ways. Finally, we divide it by the total number (2z)!! of all perfect
matchings on all 2z states from Za. Notice that we do not have to choose the values
of si in this case, because they are defined by the colouring and the choice of the set
of states in Za.

Also the number of perfect matchings is constant for every choice of a set of states,
so we don’t need to multiply (and divide) by the number of possible choices of states
from Za.

As (k1 + k2)! ≥ k1!k2! One can easily observe that the maximum of the right hand
side of (22) (for d > 0) is reached with the smallest number of non-zero values among
si. As s0 is the largest among si, (22) is upper bounded by

ndns
s0!(z − s0)!

z!
= ndns/

(
z

s0

)
= [due to (cmb0)]

= ndns
(γz)γz((1 − γ)z)(1−γ)z

zγz
O(

√
z) = [nβs ≤ z ≤ n, d ≤ n, 0 < γ < 1]

= O(n5 ln n+2)γγnβs
= O

(
1
n

)
. (23)

Case 2. s0 ≥ γz. Let ω0 be the total number of 0-coloured states in Ŝa. First,
consider the case ω0 ≤ 0.9ω, where ω is the number of states in Ŝa. The probability
of such colouring is at most

zndns

(
ω0

2s0

)(
n − ω0

2(z − s0)

)
/

(
n

2z

)
. (24)

Indeed, first we choose s0 in at most z ways, then we choose d in at most n ways and
determine a colouring in dns ways (as in Case 1). With this choice being made, as
Za is independent of a, it is also independent of the set of 0-coloured states within
this colouring. Thus the probability that these two sets has 2s0 states in overlap is
at most, as in Remark 7,

(
ω0

2s0

)(
n − ω0

2(z − s0)

)
/

(
n

2z

)
.
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If z = s0, (24) can be upper bounded as

n1+βse5 ln2 n

(
ω0

2s0

)
/

(
n

2s0

)
≤ n(5 ln n+2) ω0!

(ω0 − 2s0)!
(n − 2s0)!

n!
≤

≤ n(5 ln n+2)

(
ω0

n − 2s0

)2s0

≤ n(5 ln n+2) (0.1 + o(1))2γnβs

= o(1/n). (25)

For z > s0, since z2 = o(n) and n − ω0 ≥ 0.1n, by (cmb2), (24) can be upper
bounded as

n1+βsd5 ln n

(
ω0

2s0

)(
e(n − ω0)
2(z − s0)

)2(z−s0)√
z/
(en

2z

)2z

≤

≤ n(5 ln n+3)

(
ω0

2s0

)
/
(en

2z

)2s0

= n(5 ln n+3)

(
zω0

es0n

)2s0 √
ω0

(1 − 2s0

ω0
)ω0−2s0

. (26)

Now, if ω0 ≥ √
n then s0 = o(ω0) and thus (1 − 2s0

ω0
)ω0−2s0 = e2s0(1+o(1)). Hence (26)

can by upper bounded by

n(5 ln n+4)

(
zω0(1 + o(1))

ns0

)2s0

≤ n(5 ln n+4)

(
0.9(1 + o(1))

γ

)2γnβs

= o

(
1
n

)
.

(27)

If ω0 <
√

n, as in (cmb3), we have that (1 − 2s0

ω0
)ω0−2s0 ≤ e4s0 , and (26) can by upper

bounded as

n(5 ln n+4)

(
ezω0

ns0

)2s0

≤ n(5 ln n+4)

(
e

γ
√

n

)2γnβs

= o

(
1
n

)
. (28)

Case 2.1. ω0 > 0.9ω. The probability of a corresponding colouring for this case
is at most

ω
(

ω
ω0

)
(ω − ω0)ω0 ωω−ω0

ωω
. (29)

Indeed, first we choose ω0 in less than ω ways, and then we choose a subset of 0-
coloured states in

(
ω
ω0

)
ways. Then for each of 0-coloured state we choose a non

0-coloured image in ω − ω0 ways (the colour of the image must be equal to d − 1 6= 0),
and for the remained ω − ω0 states we choose an arbitrary image in ω ways, finally
we divide it by ωω, the total number of ways to choose images for ω states in Ŝa.
Using (cmb0) and monotonic descending of (29) by ω0 (for ω0 > 0.5ω), (29) is upper
bounded by

ω
(

ω
0.9ω

)
(0.1ω)0.9ωω0.1ω

ωω
≤ O(ω)ωω(0.1ω)0.9ωω0.1ω

(0.9ω)0.9ω(0.1ω)0.1ω
ωω

≤

≤ O(ω)(0.1)0.9ω

(0.9)0.9ω(0.1)0.1ω = O(ω)

(
100.1

90.9

)ω

≤ O(n)10(0.1−0.9 log9 10)Θ(n) = o(1/n).

(30)
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This completes the proof of the lemma. �

4.5. Searching for more Stable Pairs

Due to results of Subsection 4.4 and Theorem 6, it remains to prove that there exists
such Za and Zb with probability 1 − O( 1

n ). We now prove that having just one stable
pair which is independent of one of the letters is enough to get enough such pairs for
each of the letters.

Lemma 13. If A has a stable pair {p, q} independent of b; then for any constant
k > 0 with probability 1 − O( 1

n ) there are k distinct stable pairs independent of a.

Proof. Consider the chain of states p.b, q.b, . . . p.bk+1, q.bk+1. Since {p, q} is indepen-
dent of b, the probability that all states in this chain are different is

(
1 − 2

n

)(
1 − 3

n

)
. . .

(
1 − 2k + 3

n

)
≥
(

1 − 2k + 3
n

)2(k+1)

= 1 − O

(
1
n

)
.

Since {p, q} is independent of b, each pair {p.bi, q.bi} for 1 ≤ i ≤ k + 1 in this chain
is independent of a. �

Lemma 14. If for some 0 < ǫ < 1 the automaton A has k = ⌈ 1
2ε ⌉ distinct stable

pairs independent of b; then with probability 1 − O( 1
n ) there are f = ⌈n0.5−ǫ⌉ distinct

stable pairs independent of a.

Proof. We start with the first pair {p1, q1} and build a chain

p1.b, q1.b, p1.b2, q1.b2 . . .

until a next state coincide with anyone already in the chain or in k given pairs. If
it happens, we take the second pair {p2, q2} and continue in the same fashion. We
stop as soon as we have 2f states in this chain or we ran out of k given pairs. The
probability that the latter happens, fi being the number of steps successfully made
before taking (i+1)-th pair, can be upper bounded by, as (2fi+2k)

n is the upper bound
of ‘collision’ with previous states for i-th pair,

(2f1 + 2k)
n

(2f2 + 2k)
n

. . .
(2fk + 2k)

n
≤
(

2(f + k)
n

)k

=
O(1)fk

nk
. (31)

As there are
(

f
k

)
= O(fk) ways to choose values of fi, the final bound is

O(1)f2k

nk
= O

(
1

n2kε

)
= O(1/n), (32)

which proves the lemma as pairs in the built chain are independent of a by construc-
tion. �
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Theorem 15. For any β < 0.5, if A has a stable pair {p, q} independent of one of
the letters (say b), then with probability 1 − O( 1

n ) for each letter x ∈ {a, b}, there is a
set of at least nβ distinct stable pairs independent of x.

Proof. If we apply Lemma 13 for a stable pair independent of b, we get a set I of k
distinct stable pairs independent of a. Then, we apply Lemma 13 to the first pair of I
to get a set of k distinct stable pairs independent of b. Thus, we can apply Lemma 14
to either of a or b and get ⌈nβ⌉ stable pairs independent of the other letter. �

As Theorem 15 works for any β < 0.5, we can let βs = 0.45, αc = 0.95 to satisfy all
constraints.

4.6. Highest Trees and Stable Pairs

To use Theorem 15 we need to find a stable pair completely defined by one of the
letters whence independent of the other one. For this purpose, we reuse ideas from
Trahtman’s solution [14] of the famous Road Colouring Problem. A subset A ⊆ Q
is called an F -clique of A if it is a maximal by inclusion set of states such that each
pair of states from A is a deadlock. It is proved in Trahtman [14] that if A is strongly
connected then all F -cliques have the same size. We also need to reformulate [14,
Lemma 2] for our purposes.

Lemma 16. If A and B are two distinct F -cliques in a strongly connected automaton
such that A \ B = {p}, B \ A = {q} for some states p, q; Then {p, q} is a stable pair.

Proof. Arguing by contradiction, suppose there is a word u such that {p.u, q.u} is
a deadlock. Then (A ∪ B).u is an F -clique because all pairs are deadlocks. Since
p.u 6= q.u, we have |(A ∪ B).u| = |A| + 1 > |A| contradicting the maximality of A. �

Given a digraph g ∈ Σn and an integer c > 0, call a c-branch of g any (maximal)
subtree of a tree of g with the root of height c 6. For instance, the trees are exactly
0-branches. Let T be a highest c-branch of g and h be the height of the second highest
c-branch. Let us call the c-crown of g the (probably empty) forest consisting of all the
states of height at least h + 1 in T . For example, the digraph g presented on Figure 2
has two highest 1-branches rooted in states 6, 12. Without the state 14, the digraph
g would have the unique highest 1-branch rooted at state 6, having the state 8 as its
1-crown.

The following theorem is an analogue of Theorem 2 from [14] for 1-branches instead
of trees and a relaxed condition on the connectivity of A.

Theorem 17. Suppose the underlying digraph of the letter a has a unique highest
1-branch T and its 1-crown intersects with some (strongly-connected) subautomaton.
Denote by r the root of T and by q the predecessor of the root of the tree containing
T on the a-cycle 7. Then {r, q} is stable and independent 8 of b.

6The height of a vertex in a tree is the number of edges from the vertex to the root.
7It follows that both q.a, r.a coincides with the root of the tree containing T .
8Stability of the pair depends on b because whether 1-crown is reachable depends on b, but the
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Figure 2: A digraph with one cycle and a unique highest tree.

Proof. Let p be some state in the intersection of 1-crown of T and a subautomaton
B. Then q and all states from the corresponding cycle by a belong to B because they
are reachable from p ∈ B. If B is synchronizing, we are done. Otherwise, there is
an F -clique F0 of size at least 2, and since B is strongly connected, there is another
F -clique F1 containing p. Since p ∈ F1, F1 ∩ T is not empty. Let g be a state with
maximal height h from F1 ∩ T . As F1 is an F -clique, all other states from F1 ∩ T
must have smaller height, as otherwise ah would merge some pair in F1.

Let us consider the F -cliques F2 = F1.ah−1 and F3 = F2.aL where L is the least
common multiplier of all cycle lengths in Γa. By the choice of L and F2, we have

F2 \ F3 = {g.ah−1} = {r} and F3 \ F2 = {q}.

Hence, by Lemma 16 the pair {r, q} is stable. Since this pair is completely defined by
the unique highest 1-branch of a and the letters are chosen independently, this pair
is independent of b. �

4.7. Finding Unique Highest Reachable 1-branch

Due to Theorems 6,15 and Lemmas 10,11, it remains to show that we can use Theo-
rem 17, that is, with probability 1−O( 1

n ) the underlying digraph of one of the letters
has a unique highest 1-branch and the 1-crown of this 1-branch is reachable from
F -cliques (if F -cliques exist). The crucial idea in the solution of the Road Coloring
Problem [14] was to show that each admissible digraph can be coloured into an au-
tomaton satisfying the above property (for trees) and then use Theorem 17 to reduce
the problem. In order to apply Theorem 17, we need the probabilistic version of the
combinatorial result from [14].

Theorem 18. Let g ∈ Σn be a random digraph, c > 0, and H be the c-crown of
g having r roots. Then |H | > 2r > 0 with probability 1 − Θ(1/

√
n), in particular,

pair is defined solely by a and thus independent of b. In what follows, for simplicity we write ‘stable
pair independent of’.
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a highest c-branch is unique and higher than all other c-branches of g by 2 with
probability 1 − Θ(1/

√
n).

The proof of the above theorem has been attempted in a draft [3] (Theorem 12).
Since the letters of A are chosen independently, the following corollary of Theo-

rem 18 is straightforward.

Corollary 19. With probability 1−O( 1
n ) the underlying digraph of one of the letters

(say a) satisfies Theorem 18.

Due to Lemma 4, with probability 1 − O( 1
n ) there is just one (strongly-connected)

subautomaton B in A. In order to use Theorem 17 and thus complete the proof
of Theorem 1, it remains to show that the 1-crown of the underlying digraph of a
intersects with B. Thus the following statement completes the proof of Theorem 1.

Theorem 20. The 1-crown of the underlying digraph of a intersects with each sub-
automaton with probability 1 − O( 1

n ).

Proof.
Let g ∈ Σn and H be the 1-crown of g. Let d = |H | and j be the number of

roots in H . Due to Corollary 19, one of the letters (say a) satisfies Theorem 18 with
probability 1 − O( 1

n ), that is, d > 2j for g = Γa with probability 1 − O( 1
n ). By

Lemma 4 and Lemma 3, there is only one subautomaton C and its size is at least n/4.
Therefore, there are at least Θ(n2n) of automata satisfying both constraints.

Arguing by contradiction, suppose that among such automata there are more than
Θ(n2n−1) automata A such that their 1-crown does not intersect with C. Denote this
set of automata by Ln. For 1 ≤ j < d, denote by Ln,d,j the subset of automata from
Ln with the 1-crown having exactly d vertices and j roots. By definition j < 0.5d,
and the conditions on the size of the subautomaton implies that d < 3n/4. Thus we
have

⌊3n/4⌋∑

d=2

⌊0.5d⌋∑

j=1

|Ln,d,j| = |Ln|. (33)

Given an integer n/4 ≤ m < 3n/4, let us consider the set of all m-states automata
whose letter a has the unique highest 1-branch which is higher by 1 than a second
highest 1-branch (or equivalently the 1-crown has only root vertices). Due to Theo-
rem 18, there are at most O(m2m−0.5) of such automata. Denote this set of automata
by Km. By Km,j denote the subset of automata from Km with exactly j vertices in
the 1-crown. Again, we have

m−1∑

j=1

|Km,j| = |Km|. (34)

Each automaton A from Ln,d,j can be obtained from Km,j for m = n − (d − j)
by growing its crown as follows. Let us take an automaton B = (Qb, Σ) from Km,j
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with no subautomaton of size less than n/4. First we extend Qb with missing d − j
states by selecting their insertion positions in Qb. There are

(
n

d−j

)
ways to do this.

Let us denote this set Hb. The indices of the states from Qb are shifted according to
the positions of the inserted states, that is, the index q is shifted to the number of
chosen indices z ≤ q for Hb. Next, we choose an arbitrary forest with Hb as the set
of internal vertices and j roots which belong to the 1-crown of B in at most jdd−j−1

ways (follows from Cayley’s formula). Notice that we have completely chosen the
action of the letter a.

Next we choose some subautomaton M of B and redefine arbitrarily the image by
the letter b for all states from Qb \ M to the set Qb ∪ Hb in nm−|M| ways. Within
this definition, all automata from Km,j which differ only by b-transitions from Qb \M
may lead to the same automaton from Ln,d,j. Given a subautomaton M , denote such
class of automata by Km,j,M . There are exactly mm−|M| automata from Km,j in each
such class. Since |M | ≥ n/4 and subautomata cannot overlap, B can appear in at
most 4 such classes.

Thus we have completely chosen both letters and obtained each automaton A
in Ln,d,j. Therefore, for the automaton B and one of its subautomaton M of size
z ≥ n/4, we get at most (

n

d − j

)
jdd−j−1nm−z

automata from L′
n,d,j each at least mm−z times, where L′

n,d,j is the set of automata
containing Ln,d,j without the constraint on the number of states of a subautomaton.
Notice that we get each automaton from Ln,d,j while B runs over all automata from
Kn−(d−j),j with no subautomaton of size less than n/4. Thus we get that

|Ln,d,j| ≤
n∑

z=⌈n/4⌉

∑

M,|M|=z

∑

B∈Km,j,M

(
n

d−j

)
jdd−j−1nm−z

mm−z
. (35)

Since each automaton B ∈ Km,j with no subautomaton of size less than n/4
appears in at most 4 of Km,j,M , we get

|Ln,d,j| ≤ 4|Km,j| max
n/4≤z≤m

(
n

d−j

)
jdd−j−1nm−z

mm−z
= 4|Km,j|

(
n

d−j

)
jdd−j−1nm−n/4

mm−n/4
.

(36)

Using (33) and (34), we get

|Ln| ≤ 4
⌊3n/4⌋∑

d=2

⌊0.5d⌋∑

j=1

|Km,j|
(

n
d−j

)
jdd−j−1nm−n/4

mm−n/4
≤

≤ 4
⌊3n/4⌋∑

d=2

max
j≤0.5d

|Km|
(

n
d−j

)
jdd−jnm−n/4

mm−n/4
. (37)
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Let x = d − j. Then 1 ≤ x ≤ 0.5d ≤ 3/8n. Using (cmb0), we get that,

(
n

d − j

)
= Θ(1)

nn

xx(n − x)n−x

√
n

x(n − x)
≤ O(1)

nn

xx+0.5(n − x)n−x
(38)

Using that |Km| = O(m2m−0.5), for each term of (37) we have

m2m−0.5jdd−j

(
n

d − j

)( n

m

)m−n/4

≤

≤ (n − x)2(n−x)−0.5jdx nn

xx+0.5(n − x)n−x

(
n

n − x

)3/4n−x

≤

≤ (n − x)n/4−0.5jdx n7/4n−x

xx+0.5
≤ (1 − x

n
)n/4jdx n2n−x−0.5

xx+0.5
≤ exp f(x, j), (39)

where

f(x, j) =
n

4
ln (1 − x

n
) + ln j + x ln d + (2n − x − 0.5) ln n − (x + 0.5) ln x.

(40)

The derivative of f ′
x(x, d − x) is

− x

4(1 − x
n )

+
1

d − x
+ ln d − ln n − (1 + ln x). (41)

As 0.5d ≤ x ≤ d ≤ 3n/4, for n big enough f ′
x(x, d − x) < 0. It follows that

max
j≤0.5d

exp f(x, j) = max
0.5d≤x≤d

exp f(x, d − x) ≤ exp f(0.5d, 0.5d). (42)

Thus we have that (37) is upper bounded by

O(1)
⌊3n/4⌋∑

d=2

exp f(0.5d, 0.5d) ≤ O(1)
⌊3n/4⌋∑

d=2

(1 − d

2n
)n/4dd/2+1 n2n−(d+1)/2

d(d+1)/2
≤

≤ O(1)
⌊3n/4⌋∑

d=2

(1 − d

2n
)n/4

√
dn2n−(d+1)/2. (43)

It can be easily shown that the sum (43) is dominated be the first term (for d = 2)
which is O(1)n2n−1.5. This contradicts |Ln| ≥ Θ(n2n−1), and the theorem follows. �

5. Testing for Synchronization in Linear Expected Time

In this section we show that following the proof of Theorem 1 we can decide, whether
or not a given n-state automaton A is synchronizing in linear expected time in n.
Notice that the best known deterministic algorithm (basically due to Černý [7]) for
this problem is quadratic on the average and in the worst case.
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Theorem 21. There is a deterministic algorithm for deciding whether or not a given
k-letter automaton is synchronizing having linear in n expected time. Moreover, for
k > 1 the proposed algorithm is optimal in expected time up to a constant factor.

Proof. First, let’s establish the lower bound for the complexity. To do this, we need
to make precise the computational model. We consider that algorithms can query
their input using questions of the form ‘What is the image of the state q by the letter
α¿. Let query(q, α) denote such a query. Our lower bounds results are stated as a
lower bound on the number of queries required to complete the computations. That
is, we do not take into account computation steps other than querying the input,
which is not a problem as we aim at proving lower bounds and since in any classical
way to represent a deterministic automaton, our queries are indeed the way to access
the input data.

Lemma 22. Any deterministic algorithm that decides whether a given n-state k-
letter automaton A is synchronizing (for k > 1) performs on average (at least) linear
in n number of queries.

Proof. First notice that it is necessary to verify that A is weakly connected to claim
that A is synchronizing. To ensure that, it is required to verify (directly or indi-
rectly) that there is no disconnected state (having connections only from itself, see
Lemma 2). To do that, it is necessary to check that a state has either an incoming
transition from another state or outgoing transition to another state. If an automaton
is synchronizing, an algorithm would have to make at least ⌈n/2⌉ such queries, as it
cannot claim it is synchronizing before ensuring that it is weakly connected.

Due to Theorem 1, it happens with probability 1 − O( 1
n ). Thus the average time

complexity must be at least n/2(1−O(1/n)) = Θ(n) which completes the proof. ��

It follows from Lemma 22 that linear expected time on average cannot be improved
for any algorithm that tests for a synchronization.

We now turn to describing the algorithm. The idea of is to subsequently check
that all conditions used in Theorem 1 holds for A; if so, we return ‘Yes’; otherwise,
we run aforementioned quadratic-time algorithm for A. Since the probability that
any of these conditions is not met is O( 1

n ), the overall expected time is linear in n if
all conditions can be verified in linear time.

Thus it remains to prove that all conditions required in Theorem 1 for an automaton
to be synchronizable can be checked in linear time. We first describe the algorithm
for k = 2 and then explain how to generalize it for k > 1.

First we call Tarjan’s linear algorithm [12] on the underlying digraph of A to find
minimal strongly connected components 9 (MSCC) and, if there are several MSCC,
we return ‘No’ because A is not weakly connected (whence not synchronizing) in
this case. Otherwise, there is a unique MSCC B and A is synchronizing whenever
B is. Thus all further calculations can be performed with the automaton B. Due to
Lemma 3, we may also assume that B has at least n/4 states.

9strongly-connected subgraphs with no outgoing edges
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Let us now fix one of the letters, say a, and consider its underlying graph. In
this graph each state q ∈ Q is located in some cluster cluster(q). Let cl(q) denotes
the cycle length in this cluster. Assuming cycle vertices are indexed in the clockwise
direction from 0 to cl(q) − 1, let tree(q) denote the tree in which q is located and
root(q) denote the index of the root vertex defined above. Finally, let height(q) denote
the height of a vertex q in its tree (which is 0 for cycle vertices). Both cluster(q) and
tree(q) are needed only to compare whether them for two states, so we can label them
with index of a particular state that belong to them.

We want to calculate the cluster structure, that is, for each q ∈ Q we want to
compute root(q), tree(q), cluster(q), cl(q) and height(q).

As a secondary information, we compute the number of clusters and their sizes as
well as the unique highest tree if it exists.

Lemma 23. The cluster structure of a letter x ∈ Σ can be calculated in linear in n
time.

Proof. In each step we choose an unobserved state p ∈ Q 10, set cluster(p) = p and
walk by the path

p = p0, p1 = p0.x, . . . , pm = pm−1.x

in the underlying digraph of x until we encounter a state pm such that pm = pk =
pk.xm−k for some k < m. It follows that the length of the cycle is cl(p) = m − k.
Then we set root(pi) = i − k for k ≤ i ≤ m. After that, for each cycle state q we run
Breadth First Search (BFS) in the tree tree(q) by reversed arrows, and at j-th step
we set for a current state s:

height(s) = j, tree(s) = q, cluster(s) = p, root(s) = root(q), cl(s) = cl(p).

We process a full cluster by this subroutine. Since we observe each state only in one
subroutine and at most twice, the algorithm is linear. Clearly we can simultaneously
evaluate the number of clusters and check whether there is a unique highest tree.

� �

We may assume that the number of clusters does not exceed 5 ln n due to Lemma 5.
If the unique highest tree has been found for one of the letters, we can compute in
linear time the highest 1-branch in this tree, for instance, applying the same algorithm
on this tree instead of the whole graph. Hence using the cluster structure, one can
check in linear time that one of the letters (say a) in A satisfies Theorem 18. This is
not the case with probability O( 1

n ) due to Corollary 19. Due to Theorem 20, some
states of the crown of a belong to B with probability 1 − O( 1

n ).
For the letter a and its highest 1-branch T , we find a pair {r, q} where r is the root

of T and q is the predecessor of the root of the tree containing T on the a-cycle. The
pair {r, q} is stable by Theorem 17 and independent of b.

10This can be done in amortized linear time by maintaining a bit mask of unobserved states and
a queue of states. We pop states from the queue until we find one which is unobserved.
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Next, following the proof of Theorem 15, we try to extend {r, q} to sets Za, Zb of
n0.45 distinct stable pairs each, independent for a and b respectively. The maximum
number of pairs that we need to observe during this procedure is bounded by O(n0.45),
whence this step can be done in linear time. Again, due to Theorem 15, we fail with
probability O( 1

n ) at this stage.
Recall that, given x ∈ {a, b}, Sx is the set of clusters of Γx containing more than

n0.45 states and Tx is the complement of Sx. Given a pair {p, q}, either {p, q} in one
a-cluster or the states p and q belong to different a-clusters. In the latter case, we
say that {p, q} connects these a-clusters. Consider the graph Γ(Sa, Za) with the set
of vertices Sa, and draw an edge between two clusters if and only if some pair from
Za connects them. Since |Sa| ≤ 5 ln n and |Za| ≤ n0.45 + 1, one can construct the
graph Γ(Sa, Za) and verify that it is connected in linear time by Depth First Search
(DFS) yielding the spanning tree of Γ(Sa, Za) simultaneously. Due to Lemma 10, we
fail here with probability O( 1

n ).
Next, we calculate the greatest common divisor d of the cycle lengths of the clusters

in Sa. Using the Euclidean algorithm it can be done in O(ln2 n) time (at most
|Sa| ≤ 5 ln n runs each having logarithmic time complexity in terms of the maximal
cycle size).

Due to Lemma 11 if d > 1, we additionally have to verify that no colouring of Sa

is possible in d colours which would preserve monochrome pairs under the action of
a. Suppose there is such a colouring. Let σ be a partition on Q defined by the letter
a as follows. States p, q are in the same σ-class if and only if p.an = q.an. Thus
for each cluster Ci with the cycle length si, all states of Ci are partitioned into si

classes of equivalence Ci,j for j ∈ {0, 1, . . . , si − 1} such that Ci,j .a ⊆ Ci,(j+1 mod si).
We can assume that Ci,0 contains a state p with root(p) = 0 which implies that
q ∈ Ci,root(q). Notice that each such class must be monochrome and d | si for all
i (see (II) of Lemma 11), and each cycle of Sa has states of each colour (see (I) of
Lemma 11). Hence there must be 0 ≤ xi ≤ d − 1 such that Ci,xi is 0-coloured. Then,
for a given state q its colour can be computed as

d − xi + root(q) − (height(q) mod d) mod d.

Let {p, q} be a stable pair such that p ∈ Ci,root(p), q ∈ Cj,root(q). Then
p.and−root(p)+xi ∈ Ci,(xi+nd mod si) which is 0-coloured whence

q.and−root(p)+xi ∈ Cj,(root(q)+nd+xi−root(p) mod sj)

must be 0-coloured too. Hence root(q)+nd+xi−root(p) = xj modulo d or equivalently

d | (root(p) − root(q)) − (xcluster(p) − xcluster(q)). (44)

Thus, it is enough to check whether (44) holds for some xi | i ∈ {1, 2, . . . , |Sa|}
(such that 0 ≤ xi ≤ d − 1) and for all pairs {p, q} ∈ S.

Let us show how this property can be checked in linear time. Consider the spanning
tree T of Γ(Sa, Za) (which we have computed previously) and recall that each edge
of Γ(Sa, Za) corresponds to a pair from Za. We start from the root r of T and set
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xcluster(r) = 0. Next, we traverse the edges of the tree T using DFS. For each next
edge and a corresponding pair {p, q} ∈ Za, we have that either xcluster(p) or xcluster(q)

is already defined. This allows to determine the other index between 0 and d − 1 in
the unique way to satisfy (44). While traversing the tree, we define all xi. After all
xi are defined, we can check (44) for all the pairs from Za. Clearly, the success of
the procedure does not depend on the choice of xcluster(r). Since there are at most
n0.45 + 1 of pairs in Za, this routine can be done in linear time. Due to Lemma 11,
we fail with probability O( 1

n ).
Thus, due to Lemma 11, we may assume that all clusters of Γa of size at least

n0.45 are contained in one synchronizing class Ŝa, i.e. each pair from Ŝa can be
synchronized. Moreover, since Sa is defined by the letter a, this class is independent
of b. We can do the same for the letter b and obtain the corresponding set Sb with
the same properties.

It remains to prove that we can check the sufficient conditions for automaton being
synchronizable following the proof of Theorem 6 in linear time. Notice that we can
decide whether a state belongs to T̂a or T̂b in constant time.

Let cp, cq be two (possibly equal) a-cycles, sp, sq being their respective lengths, and
d be the g.c.d. of sp and sq as in Theorem 6. Using the Euclidean algorithm d can be
computed in O(ln2 n) time. Notice that if both sp and sq are greater than nαc , then
both clusters belong to Sa and thus cannot contain a deadlock pair. Hence without
loss of generality, we can assume that sp ≤ nαc and sp ≤ sq.

Now, for a cycle cp we compute the set of indices Ip ⊆ Zd = {0, 1, . . . , d − 1} such
that for each i ∈ Ip we have cp,(i+k1d) mod sp

∈ T̂b for all k1. Then we do the same for
Iq. This clearly can be done in O(sp + sq) time. Then, if |Ip| + |Iq| < d, we know that
there cannot be a deadlock pair as we would be able to map such a pair to one that
belongs to Ŝb (see Theorem 6 for the details). Notice also that in total we consider
at most 25 ln2 n of pairs of clusters and the complexity for each pair is O(d) which is
O(nαc ) = O(n0.95) whence the overall complexity is linear.

If |Ip| + |Iq| ≥ d, let us denote k = |Ip| and z = ksp+(d−k)sq

d as in Theorem 6.
If z ≥ 1.1

1−αc
(Case 1 of Theorem 6), we can just fallback to the general quadratic

algorithm as this happens with probability O(1/n). If z < 1.1
1−αc

and k < d (Case 2
of Theorem 6), then we check all pairs p ∈ cp, q ∈ cq following Lemma 8 which can
be done in constant time. As a result we either get that no pair is a deadlock or that
we can fallback to the general algorithm due to the proof of Case 2 of Theorem 6.

Finally, in the case k = d we take a state qmin with the minimal index on the cycle
cq and check whether any of the pairs {p′, qmin} for p′ ∈ cp can be a deadlock following
Lemma 8. If we find such a pair we again can fallback to the general algorithm due to
the proof of Case 3 of Theorem 6. Otherwise, we know there cannot be a deadlock
cycle pair {p, q} for p ∈ cp, q ∈ cq and thus in the corresponding clusters. As in this
case sp = z ≤ 1.1

1−αc
we need to check only constant number of pairs, each in constant

time.
If we did not fail up to this moment, we return ‘Yes’. The correctness of the

algorithm now follows from Theorem 6. Thus we have shown that we can confirm all
the required properties in linear time and fail with O( 1

n ) probability. This concludes
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the proof for the 2-letter alphabet case.
Suppose we have an automaton A = 〈Q, {a1, a2, . . . , ak}〉 for k > 2. In this case,

we run the aforementioned algorithm for the 2-letter alphabet case for the automaton
A1 = 〈Q, {a1, a2}〉 but in the case of failure at some stage, we neither execute the
quadratic algorithm nor return ‘No’. Instead, we consider the automaton for the next
two letters A2 = 〈Q, {a3, a4}〉 and continue this way while there are two other letters.
If at some iteration, the considered automaton is synchronizing, we return ‘Yes’. In
the opposite case, in the end we just run the quadratic algorithm having complexity
O(n2k) for the entire automaton A. Since the letters are chosen independently, this
happens with probability O( 1

n[k/2] ). Since k > 2, the overall expected complexity

O( n2k
n[k/2] ) is linear again. �

Pavel Ageev, a former master student of Mikhail Volkov, has implemented a mod-
ified version of the above algorithm [1]. He relaxed some conditions in the properties
we have to check, namely, the property that stable pairs (found according to Sec-
tion 4.5) consist of pairwise distinct states. Clearly, this relaxation does not affect
correctness of the algorithm. He then launched the modified algorithm on 1000 of
random binary automata with n states for n ∈ {1000, 2000, . . . , 10000}. The results
are shown in the following table.

meaning /
n/1000

1 2 3 4 5 6 7 8 9 10

average
#bad au-
tomata per
n automata

5.09 4.84 4.76 4.82 5.07 5.26 4.76 5.13 5.00 5.32

elapsed ms.
per good
automaton

1 2 3 3 4 5 6 7 8 9

These experiments indirectly confirms that random binary automaton is synchronizing
with probability 1 − α(n)

n (1 + o(1)) where α(n) ≤ 0.0055.

6. Conclusions

Theorem 1 gives an exact order of the convergence rate for the probability of being
synchronizable for 2-letter automata up to a constant factor. It is fairly easy to verify
that the convergence rate for t-size alphabet case (t > 1) is 1 − O( 1

n0.5t ) because the
main restriction comes from the probability of having a unique 1-branch for some
letter. Thus perhaps the most natural open question here is about the tightness of
the convergence rate 1 − O( 1

n0.5t ) for the t-letter alphabet case.
Since only weakly connected automata can be synchronizing, the second natural

open question is about the convergence rate for random weakly connected automata
of being synchronizable for the uniform distribution. Especially, binary alphabet is of
certain interest because the upper bound for this case comes from a non-weakly con-
nected case. We predict exponentially small probability of not being synchronizable
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for this case and Θ( 1
nk−1 ) for random k-letter automata (for k > 1).

Another challenging problem concerns a generalization of synchronization property.
Namely, given d ≥ 1 what is the probability that for uniformly at random chosen
strongly (or weakly) connected automaton – the minimum rank of words is equal to
d. Notice that the case d = 1 corresponds to the original problem of synchronization,
and for d = n it is the probability that all letters are permutations, which is (n!/nn)k ∼
nk/2e−nk. We believe that for d > 1 the probability is exponentially close to 1 and,
if one could prove it, this would lead to the positive answer to the aforementioned
hypothesis for the weakly connected case.
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