Skip to main content

Human Mobility and the Dynamics of Measles in Large Geographical Areas

  • Conference paper
  • First Online:
Book cover Proceedings of ECCS 2014

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

  • 639 Accesses

Abstract

In recent years the global nature of epidemic spread has become a well established fact, however there have been limited studies on the detailed propagation of infectious diseases on regional scales. We have recently introduced a simulation program that explores disease propagation on such scales: the model uses a gridded geographical description of human settlements on top of which mobility is implemented using the Radiation Model. Parallel computation permits unlimited complexity. Both individual and equation based simulations of epidemiological models can be performed, thus permitting the exploration of the effects of mobility locally and globally. Using a SIR model parametrized for measles, we perform simulations for the area of British Isles, which we assume isolated. Exploring how the dynamics is influenced by human mobility, we show that mobility influences the dynamics globally and locally. In particular, the interplay of mobility and city size, enhances or reduces the contribution of the different mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunyak, J., Martin, C., Lampe, R.: Analysis of the influence of social structure on a measles epidemic. Appl. Math. Comput. 92, 283 (1988)

    Google Scholar 

  2. Sander, L.M., Warren, C.P., Sokolov, I.M.: Epidemics, disorder and percolation. Phys. A 325, 1 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eubank, S., et al.: Structure of social contact networks and their impact on epidemics. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 70, 181 (2010)

    MathSciNet  Google Scholar 

  4. Colizza, V., et al.: The modelling of global epidemics: stochastic dynamics and predictability. Bull. Math. Biol. 68, 1893 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colizza, V., et al.: The role of the airline transportation network in the prediction and predictability of global epidemics. PNAS 103, 2015 (2006)

    Article  ADS  Google Scholar 

  6. Colizza, V., et al.: Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study. BMC Med. 5, 34 (2007)

    Article  Google Scholar 

  7. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453, 779 (2008)

    Article  ADS  Google Scholar 

  8. Marguta, R., Parisi, A.: Impact of human mobility on the periodicities and mechanisms underlying measles dynamics. J. R. Soc. Interface 7, 20141317 (2015). doi:10.1098/rsif.2014.1317

    Article  Google Scholar 

  9. Simini, F., Gonzalez, M.C., Maritan, A., Barabasi, A.L.: A universal model for mobility and migration patterns. Nature 484, 96 (2012)

    Article  ADS  Google Scholar 

  10. Keeling, M.J., Rohani, P., Grenfell, B.T.: Seasonally forced disease dynamics explored as switching between attractors. Phys. D 148, 317 (2001)

    Article  MATH  Google Scholar 

  11. Alonso, D., McKane, A.J., Pascual, M.: Stochastic amplification in epidemics. J. R. Soc. Interface 4, 575 (2007)

    Article  Google Scholar 

  12. Black, A.J., McKane, A.J., Nunes, A., Parisi, A.: Stochastic fluctuations in the susceptible-infective-recovered model with distributed infectious periods. Phys. Rev. E 80, 021922 (2009)

    Article  ADS  Google Scholar 

  13. Bjornstad, O.N., Finkenstädt, B.F., Grenfell, B.T.: Endemic and epidemic dynamics of measles: Estimating epidemiological scaling with a time series SIR model. Ecol. Monogr. 72, 169 (2002)

    Article  Google Scholar 

  14. Cliff, A.D., Haggett, P.: Changes in the seasonal incidence ofmeasles in Iceland, 18961974. J. Hyg. Camb. 85, 451 (1980)

    Google Scholar 

  15. Cliff, A.D.: Spatial Diffusion: an Historical Geography of Epidemics in an Island Community. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  16. Alonso, D., McKane, A.J., Pascual, M.: Stochastic amplification in epidemics. J. R. Soc. Interface 4, 575 (2007)

    Article  Google Scholar 

  17. Lloyd., A.: Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods. Proc. R. Soc. Lond. B 268, 985 (2001)

    Google Scholar 

  18. Center for International Earth Science Information Network (CIESIN)/Columbia University, United Nations Food and Agriculture Programme (FAO), and Centro Internacional de Agricultura Tropical (CIAT).: Gridded Population of the World, Version 3 (GPWv3): Population Count Grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC) (2005)

    Google Scholar 

  19. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the Fundação para a Ciência e a Tecnologia (FCT) under contract no. PTDC/SAU-EPI/112179/2009, and centre grant (to BioISI, centre reference: UID/MULTI/04046/2013), obtained from FCT/MCTES/PIDDAC, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Parisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Marguta, R., Parisi, A. (2016). Human Mobility and the Dynamics of Measles in Large Geographical Areas. In: Battiston, S., De Pellegrini, F., Caldarelli, G., Merelli, E. (eds) Proceedings of ECCS 2014. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-29228-1_15

Download citation

Publish with us

Policies and ethics