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Abstract The pose graph is a central data structure in graph-based SLAM approaches.
It encodes the poses of the robot during data acquisition as well as spatial constraints
between them. The size of the pose graph has a direct influence on the runtime and
the memory requirements of a SLAM system since it is typically used to make data
associations and within the optimization procedure. In this paper, we address the
problem of efficient, information-theoretic compression of such pose graphs. The cen-
tral question is which sensor measurements can be removed from the graph without
loosing too much information. Our approach estimates the expected information gain
of laser measurements with respect to the resulting occupancy grid map. It allows
us to restrict the size of the pose graph depending on the information that the robot
acquires about the environment. Alternatively, we can enforce a maximum number of
laser scans the robot is allowed to store, which results in an any-space SLAM system.
Real world experiments suggest that our approach efficiently reduces the growth of
the pose graph while minimizing the loss of information in the resulting grid map.

1 Introduction

Maps of the environment are needed for a wide range of robotic applications including
transportation and delivery tasks, search and rescue, or efficient automated vacuum
cleaning robots. The capability of building an appropriate model of the environment
allows for designing robots that can efficiently operate in complex environments only
based on their on-board sensors and without relying on external reference systems.
In the past, several effective approaches to robot mapping have been developed. A
popular approach to address the simultaneous localization and mapping (SLAM)
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Fig. 1: The goal of our work is to compress the SLAM pose graph (left) to a sparse pose graph (right),
while minimizing the loss of information in the graph and the resulting map.

problem models the poses of the robot as nodes in a graph. Spatial constraints between
poses resulting from observations and odometry are encoded as edges. Often, graph-
based approaches marginalize out features or local grid maps and reduce the problem
to trajectory estimation without prior map knowledge, followed by mapping with
known poses.

Most of the SLAM approaches assume that map learning is carried out as a
preprocessing step and that the robot then uses the acquired model for tasks such as
localization and path planning. A robot that has to extend the map of its environment
during long-term operation cannot apply most of the existing graph-based mapping
approaches since their complexity grows with the length of the robot’s trajectory. The
reason for this is that standard graph-based approaches constantly add new nodes
to the graph. As a result, memory and computational requirements grow over time,
preventing long-term mapping applications. A constantly growing graph slows down
graph optimization and makes it more and more costly to find constraints between
the current pose and former poses, i.e., to identify loop closures. There exist also
incremental methods for online corrections that perform partial optimizations. These
methods are mostly orthogonal to our contribution.

The contribution of this paper is an information-theoretic approach to lossy pose
graph compression to allow graph-based SLAM systems to operate over extended
periods of time. Fig. 1 depicts a motivating example. The top image shows the
pose graph and the resulting map obtained by a standard graph-based approach to
SLAM. The bottom image displays the corresponding pose graph along with the
map resulting from our information-theoretic compression approach. As can be seen,
significantly less nodes are required to provide a comparable mapping result. We
present an approach to select laser scans for removal such that the expected loss of
information with respect to the map is minimized. Our unbiased selection applies the
information-theoretic concept of mutual information to determine the laser scans that
should be removed. In order to keep the pose graph compact, the corresponding pose
node needs to be eliminated from the pose graph. This is achieved by applying an
approximate marginalization scheme that maintains the natural sparsity pattern that
is observed in the context of SLAM. Our approach is highly relevant to long-term
mapping, particularly when the robot frequently re-traverses already visited areas. It
allows us to build an any-space SLAM system that aims at minimizing the expected
loss of information.
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2 Related Work

A large variety of graph-based SLAM approaches have been proposed [5, 7, 8, 11,
15, 17, 19]. Most of these approaches to SLAM do not provide means to effectively
prune the graph. Instead, they add more and more nodes to the graph over time. Some
approaches group nodes into rigid local sub-maps [7] or subdivide the map into
connected frames that contain maps that capture the local environment [1]. Typically,
these methods do not discard nodes that store information about the environment and
therefore do not prevent the graph from growing.

One way to reduce the number of nodes in the graph is to sample the trajectory of
the robot at an appropriate spatial decimation [6]. A similar method is to only add a
new node to the graph if it is not spatially close to any existing node [11]. Konolige
and Bowman [12] presented an approach to lifelong mapping that uses a single
stereo camera and that is able to update the map when the environment changes.
Their method discards views based on a least recently used algorithm. The above-
mentioned techniques do not rely on information-theoretic concepts to determine
which measurements to discard. Similar to that, hierarchical techniques [8, 5, 17]
have been employed to bound the computational requirements by optimizing only
higher levels of the hierarchy.

In contrast to that, Davison [3] analyzes mutual information, particularly in the
case of Gaussian probability distributions, to guide image processing. In the vision
community, Snavely et al. [20] aim to find a skeletal subgraph with the minimum
number of interior nodes that spans the full graph while achieving a bound on the
full covariance. Their technique is used for reconstructing scenes based on large,
redundant photo collections.

Kaess and Dellaert [10] consider the information gain of measurements in the state
estimate within the iSAM framework. In contrast to that, our approach estimates the
mutual information of laser scans and the occupancy grid map, thus considering the
effect on the resulting grid map explicitly. Ila et al. [9] propose to only incorporate
non-redundant poses and informative constraints based on the relative distance
between poses in information space and the expected information gain of candidate
loop closures. As opposed to our maximum-likelihood approach to SLAM based
on pose graphs, their method applies an information filter and does not marginalize
out poses that were already added. Recently, Eade et al. [4] presented a view-based
monocular SLAM system that reduces the complexity of the graph by marginalization
and subsequent suppression of edges incident to nodes of high degrees. Their heuristic
discards the constraints that most agree with the current state estimate. This, however,
introduces a bias into the system.

When discarding laser range scans, our approach will marginalize out the corre-
sponding pose node from the pose graph. Exact marginalization, however, would
result in a dense pose graph and thus we apply an approximate marginalization
scheme [14] that is based on local Chow-Liu trees. Other robotics researchers also
use Chow-Liu trees for approximating probability distributions, e.g., [2].
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3 Brief Introduction to Graph-Based SLAM

Graph-Based approaches to SLAM model the poses of the robot as nodes in a graph.
The edges of the graph model spatial constraints between the nodes. These constraints
arise from odometry measurements and from feature observations or scan matching.
The so-called SLAM front-end interprets the sensor data to extract the constraints.
The so-called SLAM back-end typically applies optimization techniques to estimate
the configuration of the nodes that best matches the spatial constraints.

Our laser-based front-end uses correlative scan matching to estimate a constraint
between the current node and the previous node. Our method also generates loop
closure hypotheses by matching the current laser scan against a set of scans that is
determined by the relative positional uncertainties and then rejects false hypotheses
using the spectral clustering approach described by Olson [18]. Our method incre-
mentally optimizes the pose graph while adding the poses and the constraints to it.
Once the poses are estimated, the laser scans are used to render an occupancy grid
map of the environment. The robot therefore stores the laser scans that correspond to
the pose nodes in the pose graph.

The back-end aims at finding the spatial configuration x∗ of the nodes that max-
imizes the log likelihood of the observations. Let x = (xT

1 , . . . , xT
n )

T be a vector
where xi describes the pose of node i, and let zi j and Ωi j be the mean and the infor-
mation matrix of an observation of node j seen from node i assuming Gaussian noise.
Furthermore, let ei j(x) be an error vector which expresses the difference between an
observation and the current configuration of the nodes and let C be the set of pairs of
nodes for which a constraint exists. Assuming the constraints to be independent, we
have

x∗ = argmin
x

∑
〈i, j〉∈C

ei j(x)T
Ωi jei j(x). (1)

Our approach applies the technique proposed in [8], which uses sparse Cholesky
factorization to efficiently solve the system of linearized equations that is obtained
from Eq. (1).

4 Discarding Laser Scans by Information-Theoretic Means

The main contribution of this paper is an approach to select the laser scans that are
most informative with respect to the map estimate. Our technique aims at minimizing
the expected loss of information in the resulting map without introducing a bias
during the selection of the laser scans. Such a technique is important to allow for
long-term robot mapping since a robot that keeps all scans will run out of resources
at some point. In addition to that, our method can be used to directly implement
an any-space SLAM system. Whenever the memory limit is reached, our algorithm
discards the laser scans that are expected to be least informative about the map and
marginalizes out the corresponding pose nodes.
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4.1 Finding the Most Informative Subset of Laser Scans

We define the map M as a random variable describing the state of the world. It is
highly correlated to the random variables Z1:t describing the laser scans z1:t recorded
at the poses x1:t . We use Z j

i to refer to an individual beam of laser scan Zi. To estimate
the state of the world m, we consider the posterior probability distribution of the
map M given the laser measurements z1:t . In this section, we are interested in finding
the subset Z∗ ⊆ Z1:t of at most n laser measurements that is expected to result in the
smallest uncertainty about the map M.

Following the notation of MacKay [16], the average reduction in the uncertainty
of the map M due to a set Z of laser measurements is given by the mutual information

I(M;Z) = H(M)−H(M | Z), (2)

where H is the entropy. Hence, we want to find the subset Z∗ ⊆ Z1:t of at most n laser
measurements such that the mutual information of the map M and the subset Z∗ is
maximized, i.e.,

Z∗ = argmax
Z⊆Z1:t ,|Z|≤n

H(M)−H(M | Z). (3)

The conditional entropy H(M | Z) of the map M given the set Z of measurements is
the expected value, over the space of all possible measurements, of the conditional
entropy of the map given the individual measurements z:

H(M | Z) =
∫

z
p(z)H(M | Z = z) dz (4)

4.2 Efficiently Estimating Mutual Information

Unfortunately, computing the conditional entropy given in Eq. (4) is infeasible
without approximations since integrating over the space of all possible combinations
of up to n laser measurements is practically impossible. In addition to that, computing
the entropy H(M | Z = z) of a map given a set of measurements z typically requires
model assumptions about the world.

To efficiently compute H(M | Z), we make the following assumptions. We
assume the laser measurements and the individual laser beams to be indepen-
dent. Furthermore, we model the map M as a standard occupancy grid map, i.e.,
a grid of independent discrete binary random variables C that take the values
Val(C) = {“free”,“occupied”}. The entropy of an occupancy grid map M given
a set of measurements z is then given by

H(M | Z = z) = ∑
C∈M

H(C | Z = z) (5)

= − ∑
C∈M

∑
c∈Val(C)

P(C = c | z) logP(C = c | z). (6)
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To efficiently compute Z∗, we additionally ignore the distribution over x1:t and
operate on the most likely estimate x∗1:t , which is given in Eq. (1). Furthermore,
similar to most works on robot localization, we assume the likelihood of sensing a
specific object to decrease with range. The a-priori probability of the jth beam of a
range measurement zi, denoted as z j

i , without any knowledge of the map M can be
described by the exponential distribution

p(z j
i ) =

{
ηλe−λ z j

i z j
i ≤ zmax,

0 z j
i > zmax,

(7)

where zmax denotes the maximum range of the scanner, λ is a parameter of the
measurement model, and η is a normalizing constant.

There are three possible outcomes of a measurement of a laser beam with respect
to a particular grid cell that is located along the ray of the beam and given no prior
map information. The laser beam either traverses the cell and thus observes the cell
as free, the laser beam ends in the cell and thus observes the cell as occupied, or the
laser beam does not observe the cell. The probability distribution of the outcome can
be computed by integrating over the density p(z j

i ). For the three cases, namely, the
probabilities that (i) the beam Z j

i does not reach a particular grid cell C that is located
along the ray of the beam, (ii) the beam ends in that cell (measured as occupied), and
(iii) the beam passes through that cell (measured as free) are given by

P(Z j
i does not observe C) =

∫ d1(x∗i ,C)

0
p(z j

i ) dz j
i (8)

P(Z j
i observes C as occupied) =

∫ d2(x∗i ,C)

d1(x∗i ,C)
p(z j

i ) dz j
i (9)

P(Z j
i observes C as free) =

∫ zmax

d2(x∗i ,C)
p(z j

i ) dz j
i , (10)

where d1(x∗i ,C) is the distance between the pose x∗i (see Eq. (1)) from which the laser
scan Zi is taken and the closest border of the grid cell C in the direction of the jth

beam (the border where the beam enters the cell). Similarly, d2(x∗i ,C) is the distance
to the border of the grid cell C in the direction of the jth beam that is furthest away
from x∗i (the border where the beam leaves the cell).

By exploiting Eq. (8) to (10), we can avoid integrating over all potential measure-
ments as in Eq. (4). Instead, we can sum over all potential measurement outcomes.
This results in the mutual information

I(C;Z) = H(C)− ∑
z′∈AZ

P(z)H(C | z′) (11)

of the grid cell C and the set Z of laser measurements. Here, we consider the set AZ
of all possible measurement outcomes z′ with respect to the grid cell C of all k laser
scans that are recorded close enough to potentially measure the cell.
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In general, the number of possible combinations of grid cell measurement out-
comes is exponential in k as it is illustrated in the left image of Fig. 2. It is therefore
practically infeasible to enumerate all the combinations in a tree. In our approach,
we use a standard inverse measurement model, p(c | z j

i ), for laser range scanners that
updates each cell using one of the three values lfree, locc, and l0. Since the effect of
a set of observations on a particular cell does not depend on the order in which the
measurements were obtained, this model allows us to efficiently combine nodes in
the tree of all possible combinations. In fact, the result only depends on the number
of free and occupied observations, i.e., the histogram of measurement outcomes, see
Fig. 2 (right) for an illustration.

f uo

f uo f uof uo

f uo

f uo f uo f uo

2f 1f,1o 2o 1f,1u 1u,1o 2u

Fig. 2: Left: all combination of measurement combinations that can occur for n beams, here with
n = 2. In the figure, f=free, o=occupied, and u=unknown. The number of combinations is 3n. Right:
Since the order of the measurements is irrelevant, the number of possible outcomes is quadratic in n.

By ignoring the order, the number of histograms that we have to compute is
quadratic in k:

#outcomes(k) =
k

∑
i=0

(
k−i

∑
j=0

1) =
k

∑
i=0

(k− i+1) (12)

= (k+1)2−
k

∑
i=0

i = (k+1)2− (k+1)k
2

(13)

=
k2

2
+

3
2

k+1 ∈ O(k2) (14)

If the individual probabilities of obtaining free/occupied/unknown measurements
were equal for all laser scans, the probabilities of these outcomes could be computed
by a multinomial distribution.

However, this is not the case here due to our model given in Eq. (7), which
specifies that the likelihood of observing a cell depends on the distance from the
view point to the cell under consideration. In our case, computing the probabilities
of all outcomes requires cubic time in k. This can be achieved by using a hash
table that is indexed by the number of free, occupied, and unknown measurements
and that stores the accumulated probability mass for the corresponding outcome.
By traversing the graph of possible outcomes (see right image of Fig. 2), from top
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to bottom, the computations can be performed as shown in Algorithm 1 (where
P(〈·, ·, ·〉) is implemented via a hash table) and the number of probabilities that need
to be considered is

3
k

∑
i=1

#outcomes(k) =
3
2

k3 +
9
2

k2 +3k ∈ O(k3). (15)

Thus, to compute the probability for each possible outcome is cubic in k, i.e. the
number of measurements that can observe the grid cell C.

Fortunately, the number k of scans that the algorithm has to consider is typically
bounded: First, the maximum measurement range of laser scanners restricts the set of
scans that have to be considered. Second, our technique discards laser scans online
while building the graph and thus k typically stays small during mapping. We can
efficiently further reduce the computational burden by only considering at most l laser
scans when computing the histograms. One good way of choosing the l laser scans
is selecting the ones with the highest likelihood of measuring C. This likelihood is
given by 1−P(Z j

i does not observe C), see Eq. (8). Thus, this approximation yields
a linear complexity in k (for selecting the l scans out of k laser scans).

Finally, the mutual information I(M;Z) of the map M and the set Z of laser scans
is given by

I(M;Z) = ∑
C∈M

I(C;Z). (16)

All terms needed to compute Z∗ in Eq. (3) are specified and can be computed or
approximated efficiently.

4.3 Discarding Laser Scans Online

Our approach can be used in two ways. First, by introducing a bound on the total
number of laser scans, our method results in an any-space SLAM system. Second,
setting a threshold for the expected information gain of laser scans, our algorithm

Algorithm 1 Compute probabilities for all measurement outcomes
Require: Z : set of laser measurements, C : cell
Ensure: P(〈·, ·, ·〉) : the probabilities of all outcomes (free, occupied, not observed)

P(〈0,0,0〉) = 1
for r = 1 . . . k do

for all 〈 f ,o,u〉 with f +o+u == r do
P(〈 f +1,o,u〉) + = P(〈 f ,o,u〉)P(Z j

i observes C as free);
P(〈 f ,o+1,u〉) + = P(〈 f ,o,u〉)P(Z j

i observes C as occupied);
P(〈 f ,o,u+1〉) + = P(〈 f ,o,u〉)P(Z j

i does not observe C);
end for

end for
return P(〈·, ·, ·〉)
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only keeps scans that are expected to provide at least a certain amount of information
about the map.

Computing the subset Z∗ of n laser measurements that most reduces the uncertainty
about the map has been shown to be at least NP-hard [13]. Fortunately, the problem
is submodular. Hence, greedily selecting measurements results in obtaining a set
of measurements that is at most a constant factor (≈ 0.63) worse than the optimal
set. Motivated by this insight, our approach estimates the subset Z∗ by successively
discarding laser scans. In each step, it discards the laser scan that is expected to be
least informative.

5 Maintaining a Sparse Pose Graph

A pose graph can be seen as a Gaussian Markov random field (GMRF) that models
the belief of the robot. In this view, each pose is a random variable that is represented
as one node in the GMRF and each constraint between two poses in the pose graph
is a binary potential between the nodes in the GMRF. Marginalizing out a pose
node from the graph implies summarizing the information stored in the edges that
connect that node in the edges between nodes that are kept. The main problem of
exact marginalization is that it introduces new edges between all pairs of variables
that are directly related to the eliminated variables, adding a so-called elimination
clique to the graph, see for example [6]. This, unfortunately, destroys the natural
sparsity pattern that is typical to SLAM problems.

Therefore, we apply an approximate marginalization scheme to maintain sparsity,
which is important for long-term mapping tasks. The key idea is to replace the
elimination clique, which is created when marginalizing a node, by a tree-shaped
approximation of the clique. The optimal tree-shaped approximation with respect to
the Kullback-Leibler divergence is given by the Chow-Liu tree. Here, the Chow-Liu
tree is the maximum-weight spanning tree of the mutual information graph of the
clique. This tree can be computed by assigning the mutual information of each two
variables to the corresponding edges belonging to the elimination clique and then
applying Kruskal’s algorithm. The mutual information is computed according to
Davison [3], which describes an efficient solution for the Gaussian case. We refer the
reader to [14] for more details on the approximate marginalization scheme.

It should be noted that only the elimination clique is transformed to a tree structure,
not the whole pose graph. Otherwise, all loop closing information would be lost.

6 Experimental Evaluation

To evaluate the presented approach, we carried out several experiments using a real
ActivMedia Pioneer-2 robot equipped with a SICK laser range finder. In addition to
that, we applied our method to a series of popular benchmark datasets. We compare
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our approach with the performance when no scans are discarded (referred to as
“standard approach”). The experiments are designed to show that our approach to
informed pose graph compression is well suited for long-term mobile robot mapping
as well as for standard SLAM problems.

6.1 Mapping Results

Four different datasets have been considered for the evaluation. We used one self-
recorded dataset in which the robot traveled in our lab environment for an extended
period of time (Fig. 3), a previously recorded dataset from a Freiburg computer
science building (Fig. 4), as well as the Intel Research Lab (Fig. 5), and the FHW
dataset (Fig. 1), both provided by Dirk Hähnel.

Fig. 3 shows four maps built during our experiments with a fixed limit to 200
nodes. The first one depicts the pose graph obtained with the standard approach. The
second one shows the state of our approach before the robot entered the left side of
the corridor. Therefore, the limit of 200 nodes is used to model the right part only.
The third image shows the pose graph modeling the entire environment. Note how
our approach redistributed the nodes in the environment, still complying with the
200 node limit. Finally, the fourth image shows the map when setting a threshold on
the mutual information.

Further mapping results showing the results of our approach in contrast to the
standard approach are depicted in Fig. 4 and 5 as well as in the motivating example
in Fig. 1. By visual inspection, the obtained grid maps look similar, although only a
fraction of the original laser scans have been used to build the grid maps.

To compare the output of the SLAM algorithm more quantitatively, we also
analyzed the estimate of the pose graph for the resulting nodes. We especially
analyzed the mean and uncertainty estimates for the individual poses of the robot and
compared them to the corresponding ones built without compressing the pose graph.
Fig. 6 depicts the 3σ covariance ellipses of the poses in the graphs. Our approach
keeps less than 9% of the edges of the original graph (349 of 3916) but only 2.8% of
the probability mass of the original pose graph is not covered by our approximation.
The covariance estimates of our approach are typically more conservative (in this
experiment by 41%) since less information is used during mapping.

6.2 Memory and Runtime Requirements

In this section, we analyze the memory requirements of our approach in terms of
the size of the resulting pose graph. In the first experiment, the robot moved around
in our lab environment for an extended period of time (Fig. 3). The plots in Fig. 7
and 8 clearly suggest that the experiment leads to an explosion in terms of memory
requirements when using the standard approach. This has a direct influence on the
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Fig. 3: The robot moved around in an office environment for an extended period of time, visiting
the rooms and the corridor many times. First: Standard approach. 2597 laser scans, 15695 edges
Second: Our approach at an intermediate time step, 200 laser scans, 264 edges. Third: Our approach,
200 laser scans, 315 edges. Fourth: Our approach when setting a threshold for the mutual information,
148 laser scans, 250 edges.
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Fig. 4: Obtained map and pose graph for the FR101 dataset (top: standard approach, bottom: our
approach). Since the robot does not frequently re-traverse known terrain, few scans were discarded
(200 vs. 408 nodes and 246 vs.723 edges).

Fig. 5: Intel Research Lab. Left: Standard approach, 1802 laser scans, 3916 edges. Right: Our
approach preserves the sparsity of the pose graph, 250 laser scans, 349 edges. Arrows indicate
locally blurred areas or small alignment errors in the map obtained by the standard approach. In
contrast to that, exact marginalization would result in 250 laser scans as well, but in 13052 edges.

computational complexity: First, the optimization technique scales with the number
of edges, which grows roughly quadratically since the robot moves in the same
environment and is not exploring new terrain. Second, the loop closing component
of the SLAM front-end, which uses a scan matcher to find constraints between the
current scan and all former scans that were recorded in the vicinity of the robot, has
to consider an increasing number of nodes in each step. In contrast to the standard
approach, our approach compresses the pose graph such that the number of nodes
in the graph remains constant (in Fig. 7 the threshold was set to 200 nodes). If we
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standard
our approach

Fig. 6: Intel Research Lab.: 3σ covariance ellipses of the poses of our approach (red) and the
standard one (blue). Our estimates are typically larger since less observations are used.

set a threshold for the mutual information instead of an upper bound for the number
of nodes, the complexity does not grow as long as the robot does not explore new
territory (see Fig. 8).

Our approach saves computational time as mentioned above but also introduces
an overhead through the information-theoretic node selection. This overhead, how-
ever, is typically bounded since the number of nodes that have to be considered is
bounded since our algorithm runs online and constantly discards nodes. Our current
implementation of the information-theoretic laser scan selection is not optimized for
speed—significant improvements could be obtained by caching results. Depending
on the chosen parameters (particularly l, see Section 4.2) and on the environment
that is mapped, the speed of our compression approach approximately ranges from
running twice as fast as the standard approach to running four times slower than the
standard approach. Our approach is beneficial when the robot frequently re-traverses
already mapped areas. There is no gain if the robot mainly explores new territory.

6.3 Effects on the Most Likely Occupancy Grid Map

We furthermore analyzed the effects of our pruning technique on the resulting
occupancy grid maps. We therefore compared the maps at a resolution of 10 cm
and counted the number of cells that changed their most likely state (free, occupied,
unknown) due to our pruning technique.

When mapping the Intel Research Lab, our pruning approach retained 349 of 1802
laser scans. As a consequence of this, 0.9% of the cells changed. In the long-term
experiment, our method kept 148 of 2597 laser scans and 1.6% of the cells changed.
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Fig. 7: Results of an experiment in which the robot moved around in an office environment for an
extended period of time. The total number of nodes was restricted to 200.
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Fig. 8: Results of an experiment in which the robot moved around in an office environment for an
extended period of time. In this experiment, our algorithm discarded all laser scans whose expected
information gain was below a threshold.

When mapping the FHW, our approach maintained 250 of 2049 scans and 1.2% of
the cells changed. Hence, the changes in the most likely maps are small.

6.4 Scan Alignment and Map Quality

We furthermore evaluated the effects of our pose graph compression technique that
is applied during mapping on the quality of the resulting grid maps. In theory, the
more observations are available, the better is the estimate. Ignoring measurements
will lead to a belief with higher uncertainty. However, todays occupancy grid-based
mapping systems typically involve some form of scan alignment or scan matching
(e.g. to extract constraints). Such systems have the following disadvantage when it
comes to long-term map learning. Whenever the robot obtains a measurement, the
scan matcher aims at aligning the new scan with existing scans in order to solve the
data association problem. The probability that the scan matcher thereby makes a
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small alignment error is nonzero. A scan which is incorporated at a slightly wrong
position blurs the map. As a result, the probability that the scan matcher misaligns
subsequent scans increases since scan matching is performed with misaligned scans.
Hence, the probability of making alignment errors increases with the number of
incorporated scans. In the long run, the map tends to become increasingly blurred
and the mapping approach is likely to diverge.

Fig. 5 and 3 depict the maps and graphs obtained from the Intel Research Lab
dataset and the long-term experiments conducted in our office environment. The grid
maps generated by the standard approach exhibit visibly more blur in several parts of
the maps (see the arrows and the zoomed map view in the corresponding images). In
general, the more often the robot re-traverses already visited terrain, the more blur is
added to the maps. In contrast to the standard approach, our method discards scans
and thus produces maps with sharp obstacle boundaries even in cases in which the
robot frequently re-traverses already visited places. Although we do not claim that
such a sharp map is a better estimate of the world, it better supports the scan matcher
and reduces the risk of divergence in the mapping process.

7 Conclusion

In this paper, we presented a method for information-theoretic compression of pose
graphs in graph-based SLAM, which is an important step towards long-term mapping.
Our approach seeks to select the most informative set of laser scans and allows for
restricting the size of the pose graph either based on a memory limit, resulting in
an any-space mapping system, or based on a threshold on the minimum amount
of information that a laser scan is expected to provide. Our approach estimates
the expected information gain of laser measurements with respect to the resulting
occupancy grid map. Real world experiments illustrate the effectiveness of our
method for computing compressed pose graphs in the context of graph-based SLAM.
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