Skip to main content

Hybrid System Identification via Switched System Optimal Control for Bipedal Robotic Walking

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 100))

Abstract

While the goal of robotic bipedal walking to date has been the development of anthropomorphic gait, the community as a whole has been unable to agree upon an appropriate model to generate such gait. In this paper, we describe a method to segment human walking data in order to generate a robotic model capable of human-like walking. Generating the model requires the determination of the sequence of contact point enforcements which requires solving a combinatorial scheduling problem. We resolve this problem by transforming the detection of contact point enforcements into a constrained switched system optimal control problem for which we develop a provably convergent algorithm. We conclude the paper by illustrating the performance of the algorithm on identifying a model for robotic bipedal walking.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Ambrose, H. Aldridge, R. Askew, R. Burridge, W. Bluethmann, M. Diftler, C. Lovchik, D. Magruder, F. Rehnmark, Robonaut: Nasa’s space humanoid. IEEE Intell. Syst. Appl. 15(4), 57–63 (2000)

    Article  Google Scholar 

  2. A. Ames, R. Vasudevan, R. Bajcsy, Human-data based cost of bipedal robotic walking, in Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control (ACM, 2011), pp. 153–162

    Google Scholar 

  3. S. Au, P. Dilworth, H. Herr, An ankle-foot emulation system for the study of human walking biomechanics, in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006, ICRA 2006 (IEEE, 2006), pp. 2939–2945

    Google Scholar 

  4. G. Bergmann, G. Deuretzbacher, M. Heller, F. Graichen, A. Rohlmann, J. Strauss, G. Duda, Hip contact forces and gait patterns from routine activities. J. Biomech. 34(7), 859–871 (2001)

    Article  Google Scholar 

  5. D.J. Braun, M. Goldfarb, A control approach for actuated dynamic walking in bipedal robots. IEEE Trans. Rob. 25, 1–12 (2009)

    Article  Google Scholar 

  6. J.H. Choi, J.W. Grizzle, Planar bipedal walking with foot rotation. pp. 4909–4916, Portland, OR (2005)

    Google Scholar 

  7. S.H. Collins, M. Wisse, A. Ruina, A 3-d passive dynamic walking robot with two legs and knees. Int. J. Robot. Res. 20, 607–615 (2001)

    Article  Google Scholar 

  8. J. Duysens, H. Van de Crommert, Neural control of locomotion; part 1: the central pattern generator from cats to humans. Gait & Posture 7(2), 131–141 (1998)

    Article  Google Scholar 

  9. H. Gonzalez, R. Vasudevan, M. Kamgarpour, S. Sastry, R. Bajcsy, C. Tomlin, A numerical method for the optimal control of switched systems, in 2010 49th IEEE Conference on Decision and Control (CDC) (IEEE, 2010), pp. 7519–7526

    Google Scholar 

  10. H. Gonzalez, R. Vasudevan, M. Kamgarpour, S. Sastry, R. Bajcsy, C. Tomlin, A descent algorithm for the optimal control of constrained nonlinear switched dynamical systems, in Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control (ACM, 2010), pp. 51–60

    Google Scholar 

  11. A. Goswami, B. Thuilot, B. Espiau, Compass-like biped robot part I : Stability and bifurcation of passive gaits. Rapport de recherche de l’INRIA (1996)

    Google Scholar 

  12. J.W. Grizzle, G. Abba, F. Plestan, Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Autom Control 46, 51–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. J.W. Grizzle, C. Chevallereau, A.D. Ames, R.W. Sinnet, 3d bipedal robotic walking: models, feedback control, and open problems, in NOLCOS, Bologna, Italy (2010)

    Google Scholar 

  14. T. McGeer, Passive walking with knees, in IEEE International Conference on Robotics and Automation, Cincinnati, OH (1990)

    Google Scholar 

  15. R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation, Boca Raton, FL (1993)

    Google Scholar 

  16. J. Perry, J. Burnfield, Gait Analysis: Normal and Pathological Function, SLACK (2010)

    Google Scholar 

  17. E. Polak, Optimization: Algorithms and Consistent Approximations (Springer, 1997)

    Google Scholar 

  18. M. Rodgers, Dynamic biomechanics of the normal foot and ankle during walking and running. Phys. Ther. 68(12), 1822 (1988)

    Google Scholar 

  19. T. Schaub, M. Scheint, M. Sobotka, W. Seiberl, M. Buss, Effects of compliant ankles on bipedal locomotion, in IROS, St. Louis, Missouri, USA (2009)

    Google Scholar 

  20. A. Seireg, R. Arvikar, The prediction of muscular load sharing and joint forces in the lower extremities during walking. J. Biomech. 8(2), 89–102 (1975)

    Article  Google Scholar 

  21. R. Sinnet, M. Powell, R. Shah, A. Ames, A human-inspired hybrid control approach to bipedal robotic walking, in International Federation on Automatic Control (2011)

    Google Scholar 

  22. R.W. Sinnet, A.D. Ames, 2D bipedal walking with knees and feet: a hybrid control approach, in 48th IEEE Conference on Decision and Control, Shanghai, P.R. China (2009)

    Google Scholar 

  23. S. Srinivasan, E. Westervelt, A. Hansen, A low-dimensional sagittal-plane forward dynamic model for asymmetric gait and its application to study the gait of transtibial prosthesis users. J. Biomech. Eng. 131, 031003 (2009)

    Article  Google Scholar 

  24. R. Tedrake, T. Zhang, H. Seung, Learning to walk in 20 minutes, in Proceedings of the Fourteenth Yale Workshop on Adaptive and Learning Systems, New Haven, Connecticut, USA (2005)

    Google Scholar 

  25. D. Tlalolini, C. Chevallereau, Y. Aoustin, Comparison of different gaits with rotation of the feet for planar biped. Robot. Auton. Syst. 57, 371–383 (2009)

    Article  Google Scholar 

  26. R. Vasudevan, A. Ames, R. Bajcsy, Persistent homology for automatic determination of human-data based cost of bipedal walking, in Nonlinear Analysis: Hybrid Systems (2013), pp. 101–115

    Google Scholar 

  27. R. Vasudevan, H. Gonzalez, R. Bajcsy, S. S. Sastry, Consistent approximations for the optimal control of constrained switched systems---part 1: A conceptual algorithm. SIAM J. Control Optim. 51(6), 4463–4483 (2013)

    Google Scholar 

  28. R. Vasudevan, H. Gonzalez, R. Bajcsy, S. S. Sastry, Consistent approximations for the optimal control of constrained switched systems---Part 2: An implementable algorithm. SIAM J. Control Optim. 51(6), 4484–4503 (2013)

    Google Scholar 

  29. E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J. Choi, B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion. Control and Automation. Boca Raton, FL (2007)

    Google Scholar 

  30. J. Yang, D. Winter, R. Wells, Postural dynamics of walking in humans. Biol. Cybern. 62(4), 321–330 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Sam Burden for the many conversations on system identification, Humberto Gonzalez and Maryam Kamgarpour for their help with the development of the switched system optimal control algorithm, Ryan Sinnet for his help with robotic model considered in the Application Section. I am also grateful to Aaron Ames for the many insightful discussions on bipedal walking and system identification and Ruzena Bajcsy for her willingness to try to solve hard problems. This research is supported in part by NSF Awards CCR-0325274, CNS-0953823, ECCS-0931437, IIS-0703787, IIS-0724681, IIS-0840399 and NHARP Award 000512-0184-2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Vasudevan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vasudevan, R. (2017). Hybrid System Identification via Switched System Optimal Control for Bipedal Robotic Walking. In: Christensen, H., Khatib, O. (eds) Robotics Research . Springer Tracts in Advanced Robotics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-29363-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29363-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29362-2

  • Online ISBN: 978-3-319-29363-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics