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Active Classification: Theory and Application to
Underwater Inspection

Geoffrey A. Hollinger, Urbashi Mitra, and Gaurav S. Sukhatm

Abstract We discuss the problem in which an autonomous vehicle massify an
object based on multiple views. We focus on the active diaation setting, where
the vehicle controls which views to select to best perform tlassification. The
problem is formulated as an extension to Bayesian activaileg, and we show
connections to recent theoretical guarantees in this &vedormally analyze the
benefit of acting adaptively as new information becomeslavi®. The analysis
leads to a probabilistic algorithm for determining the béstvs to observe based
on information theoretic costs. We validate our approa¢Wwanways, both related to
underwater inspection: 3D polyhedra recognition in sytitheeepth maps and ship
hull inspection with imaging sonar. These tasks encompaisthe planning and
recognition aspects of the active classification problene. results demonstrate that
actively planning for informative views can reduce the nembf necessary views
by up to 80% when compared to passive methods.

1 Introduction

Consider the following scenario, which occurs when obsgrain environment with
an underwater vehicle: given a playback of imaging sonaa ffatm the vehicle,
the task is to determine which frames contain objects oféste(e.g., mine@.Q],
explosives, ship wreckage, enemy submarines, marin@‘}; gtc.). We will refer
to these problems asderwater inspectigrsince an object is being inspected to
determine its nature. We are interested in utilizing sedsda, such as depth map
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Fig. 1 An explosive device (circled) placed on a ship hull viewethgsan imaging sonar. The
explosive is easier to identify when viewed from the siddt (lmage) than when viewed from
above (right image). This difference motivates active piag to identify the object.

information, to determine the nature of a potential objéatrest. Such problems
are typically formulated apassiveclassification, where some data are given, and
the goal is to determine the nature of this data.

While passive classification problems are challenging @mtbelves, what is of-
ten overlooked is that robotic applications allow émtivedecision making. In other
words, an autonomous vehicle performing a classificatisk li@as control over how
it views the environment. The vehicle could change its pasitmodify parameters
on its sensor, or even manipulate the environment to impitewéew. For instance,
it may be difficult to determine the nature of an object wheswad from the top
(due to lack of training data, lack of salient features, osidns, etc.), but the same
object may be easy to identify when viewed from the side. Aexample, FigurEll
shows an explosive device placed on a ship’s hull viewed freandifferent angles
with imaging sonar. The explosive is easier to identify wh@wed from the side
(left image) versus from above (right image) due to the réflequalities of its
material.

In addition to choosing the most informative views of theaalbj an autonomous
vehicle is able to act adaptively by modifying its plan as riefermation from
viewing the object becomes available. Consider an objedttefest, such as an
explosive, that has an identifiable feature on a particudi. $f the vehicle receives
a view that increases the likelihood of that object beinghie frame, it would be
advantageous to search for that identifiable feature teeékclude or confirm the
identification of that object. A significant benefit from axgfiadaptively has been
shown in the stochastic optimization and planning dom :ﬂ][.

In this paper, we apply the above insights to active inspadt the underwater
domain. This paper makes three main contributions. We

1. formalize the active classification problem, combining classicalkinrsequen-
tial hypothesis testing with recent work in active learning
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2. analyzethe benefit of adaptivity, leading to an information thewrbeuristic for
planning informative paths for active classification, and

3. apply and testthe approach to underwater classification in a simulatedagom
and using real-world data.

2 Related Work

The problem of active classification is closely related te ttassical problem of
sequential hypothesis testing, where a sequence of nomriexents are used to
determine the nature of an unknov@[lS]. This early work &sad on determin-
ing when to discontinue testing and make a final decision enhipothesis. In
classical sequential hypothesis testing, one performegesexperiment until the
Bayes' risk is below a threshold. A key distinction betweenquential hypothesis
testing and active classification is that the type of expentroes not change in
sequential testing. One of the first applications of sedqakhypothesis testing to
sensor placement applications was due to Cameron and DWiiayte B]. They
discuss a Bayesian selection framework for identifying #iages with multiple
sensor placements. This work provides a foundation for dheadilation discussed
in the current paper, though it is limited to 2D images andsdua discuss the use
of salient features to determine informativeness.

The active classification problem can be seen as an instdmec®onative path
planning ]. Informative path planning optimizes thelpaf a robot to gain the
maximal amount of information relative to some performamedric. It has been
shown in several domains, including sensor placenent [a@]target search [9],
that many relevant metrics of informativeness satisfy lle®tetical property asub-
modularity Submodularity is a rigorous characterization of the titainotion of
diminishing returns that arises in many active plannindiappon.

Recent advances in active learning have extended the pyapfesubmodular-
ity to cases where the plan can be changed as new informatiocaorporated.
The property ofadaptive submodularityas introduced by Golovin and Krause [71,
which provides performance guarantees in many domainsdfaire adaptive deci-
sion making. Their recent work examines these theoreticgdgrties in the context
of a sequential hypothesis testing problem with noisy olzéms |[_$]. The idea
of acting adaptively has also been examined in stochastim@ation and shown
to provide increases in performance for stochastic cogeh’napsacH]4], and sig-
nal detection@Z]. To our knowledge these ideas have nat fenally applied to
robotics applications.

In the underwater inspection and surveying domains, thasebleen significant
work in applying learning technigues to determine the reatfra marine environ-
ment. For example, Steinberg et [16] utilize Gaussiaxtivie Models to classify
marine habitats. They explain the need for adaptive claasifin, and the learning
methods they develop help to facilitate that goal. In additthere has been limited
work in utilizing multiple views to classify underwater n&g. In some work, an as-
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sumption is made that all views provide the same amount ofinétion ], and
in other work the focus is on designing high-level missioanpling capabilities to
ensure coverage of the sea fI[20]. To our knowledge, tbel@m of determin-
ing a path that maximizes classification accuracy based @mpaints of differing
informativeness has not been studied in the underwateeatism domain.

The problem of active multi-view recognition has been stddextensively for
computer vision applicationall, 13], including the e$elepth maps in med-
ical imagery ]. Ma and Burdicml] also provide a recepplcation of active
planning for simultaneous pose estimation and recogndfaam moving object us-
ing a mobile robot. While different forms of information gaplay a critical role
in these prior works, a key distinction in our work is the oatiof adaptivity. In
active classification problems, selecting the next bestmagion, or even an initial
ordering of informative observations, may not result in ralleperformance opti-
mization. Itis in this regard that we provide new analysithefbenefit of adaptivity
and make connections to performance guarantees in subanazhtimization and
active learning. Our analysis is complementary to prior potar vision work and
could potentially be extended to many of these alternateaméworks.

3 Problem Formulation

We will now formulate the active classification problem viiththe sequential hy-
pothesis testing frameworﬂ18]. The goal is to determireediass of an unknown
object given a set dfl possibilities77 = {hy,...,hn}. LetH be a random variable
equal to the true class of the object. In the simplest casmamybclassification task
is considered (e.gH = hp denotes an object of interest ahid= h; denotes the
lack of such an object). We can observe the object from a sgbsdible locations
< ={Ly,...,Lm}, where the locations themselves are not informa&ivaere is a
cost of moving from locatiot; to locationLj, which we denote adj. In robotics
applications, this cost is determined by the kinematickefehicle and the dynam-
ics of both the vehicle and environment.

A set of features” = {Fy,...,F«} is also given that distinguishes between ob-
jects. Each featurg; is a random variable, which may take on some values (e.g.,
binary, discrete, or continuous). Given one or more tereglagges for each class
n, we can calculate a functioB(L) : ¥ — .% mapping viewing locatioth. to the
features for which realizations will be observed from thiatwng location. In gen-
eral, this mapping may be stochastic and dependent on tb& dlae mapping from
location to features is a key characteristic of roboticdiappons that differentiates
our problem from the more common problem where the featuaase observed
directly [3]. Figurd2 shows a graphical model of the resigifproblem.

1 We formulate the problem for the case of discrete locatirmantinuous locations are available,
an interpolation function can be used to estimate the irdtianess of a location based on the
discrete training data (see Sectidn 6).
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Fig. 2 Graphical model of an active classification problem. Thel go&o determine the value
of the hypothesi$l by observing a subset of features, ..., F«. The features cannot be viewed
directly, but must instead be viewed by moving to some locei, ..., Lym. The solid lines denote

stochastic dependence, and the dashed lines denote whtahefe can be viewed by visiting each
location. Dependencies between the features could alsg @#iich would break the conditional
independence assumption.

We assume knowledge of a prior distribution for each ck@$), as well as a
conditional probability for each feature given the cl&& | H). The conditional
distribution represents the probability of each featukéntjon each of its possible
values given the class. These probabilities can be estihvédetraining data. The
features that have been viewed evolve as the robot moveddication to location.
At a given timet, the robot is at locatioh(t), and we observe realizations of some
new features# C .%. Let us define%,4 := u}:r% as the features observed up
until timet. If we assume that the features are conditionally indepeingieen the
class, we can calculate a distributibt) = {bs,...,by} using standard recursive
Bayesian inferenc&ll?]:

b(t) :=P(H [ F11) 1)
=nbt-1) [] P(F[H), (@)

wheren is a normalizing constant.

The goal is to find a policyr that takes a belief distributidn(t), current location
L(t), and observation history1+ and determines the next location from which to
view the object. Note that the dependence on the observatsbory and current
distribution allows the policy to be adaptive as new infotimabecomes available.

3.1 Noiseless Case

Ideally, we would like to run the policy until we know the objis class. If the
observations do not contain any noise, this goal is reaeh&bl each hypothedis
a policy mwill have a cost(m, h) associated with the locations the policy visits. We
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define the expected cost of this policy relative to a distidsuon hypothesi®(H)
as:

c(m) :=En|c(m,h)] (3)

This equation represents the expected cost for the patidyor the noiseless
case, we assume that each hypothlesias an associated vectgr= [f1, ..., fx] of
feature values thatlwaysoccur for that hypothesis. As a resuFy,...,Fx | H)
only takes on the values of one or zero. An incomplete feateceorV is said to be
consistent with a hypothedisf for all f €V we havef € .

Without observation noise, we may fully determine the higsts by observing
some features (in some cases all features)7L(&t) represent the number of classes
that are consistent with partial feature vedfofalso referred to in prior work as the
version space|18]). LeY(m,h) be the feature vector that results from executing
policy T with hypothesish. The optimal policy is now the one that optimizes the
equation below:

= argminc(m) s.t. ¥ (V(m,h)) =1 forallh € J# 4
m
Even in the noiseless case, there may be insufficient festardetermine the
exact class of the unknown object. In these cases, the gaddlee to observe the
fewest number of features that reduce the number of consisesses as much as
if all features were observed.

3.2 Noisy Observations

When the observations are noisy, it will likely be impossiti determine the class
of an unknown object with certainty. However, as in the deocisheory literature,
we minimize the expected loss (also known as the Bayes’ [of the final
classification decision. We will now formulate the problefmanimizing Bayes’
risk for the case of noisy observations. With noisy obséowat P(F | H) takes on
values other than one or zero. As a result, there is no longetexministic vector
V;, associated with each hypothesis, and typically we canriquety determine the
hypothesis even by observing all features.

In the noisy observation case, we can generate a policy tiramizes a loss
function|(d, h) associated with making a decisidrfor that object (i.e., deciding
on the object’s class). For instance, if the object is an @sipé, a false negative
could incur a very high cost, but a false positive would beveelocost. If we select
the class with maximura posterioriprobability after running a policyr, we can
calculate the expected loss for running that policy to catigh:

I(m1) :=En[I(d,h) | 1 ()
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Let T be an acceptable threshold on expected loss. A naturalgtaincur the
lowest cost and achieve the same expected loss. The rgsoftimization problem
is given below:

" = argminc(m) s.t.I(m) <1 (6)

4 Proposed Solution

The goal is to optimize the expected loss for a polityThe expected loss is a
function of the final belieb(T), which represent®(H | .%#1.1). Calculating this
loss on an infinite horizon would require examining an exmiaénumber of paths
in the horizon length. To make the computation feasible, are use the truncated
expected loss:

m = argminEy([l(d,h) | m(1:T)] (7)
mell(1:T)

A related measure of the quality bfT ) is theinformation gainof the class given
the features observé®(H;.%1.1) = H(H) —H(H | .#1.7), whereH is the entropy.
We will motivate the use of information gain further in Secti3. A heuristic for
solving the active classification problem using informatgain can be formulated
as below:

m = argmaxEn [IG(H; Z11) | m(1:T)], (8)
mell(1:T)
wherel1(1:T) is the set of all possible policies truncated at tifnelf this opti-
mization is performed on the receding horizon, it allowsddaptive decision mak-
ing with a finite lookahead. The path costs can be implicitorporated by looking
ahead to a “cost horizon.” This approach has been shown forgewell in similar
information gathering domains [9].

For some loss functions, the information gain objectivejisiealent to minimiz-
ing the Bayes'’ risk. One such function for the binary hypsieease is the standard
0/1 loss, where cost of one is incurred for an incorrect clasgifin, and no cost is
incurred for a correct classification.

5 Theoretical Analysis

We now relate the active classification problem to recenaades in active learning
theory that allow us to analyze the performance of both raaptve and adaptive
policies. Active classification falls into a class of infaative path planning prob-
lems Eh]. Given some potential locations to make obseswuatithe informative
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path planning problem is to maximize a functiéfA), whereA = {L,Lo,...,L7}
is a set of locations visited by the vehicle up to an end timén most cases, the
sets of possible locations to visit are constrained by abesavehicle kinematics,
or other factors. For the active classification probl&tA) = —Ey|[I(d,h) | A], the
negative expected loss after observing along path

5.1 Performance Guarantees

A non-adaptive policys one that generates an ordering of locations to view and
does not change that ordering as features are observedomnkedaptive policy will
typically be easier to compute and implement, since it caarg@lly be computed
offline and run without modification. Performance guarasteethe non-adaptive
informative path planning domain are mainly dependent endtbjective function
(i.e., the informativeness of the views) being non-deéngaand submodular on
the ground set of possible views. A set function is non-desirey if the objective
never decreases by observing more locations in the envenhrA set function is
submodular if it satisfies the notion of diminishing retu¢sse Singh et alm4] for
a formal definition).

Information gain has been shown to be both non-decreasig@pmodular if
the observations are conditionally independent given Iﬂt&s@], asisassumed in
this paper (see Sectibh 3). Thus, if the loss function isvedeint to information gain
(e.g., 0/1 loss with binary hypotheses), then the activestfiaation problem opti-
mizes a non-decreasing, submodular function A'€tbe the set of locations visited
by the information gain heuristic with a one-step lookahé&at non-adaptive poli-
cies without path constraints (e.g., when traversal castigden locations are negli-
gible compared to observation cost), we have the followigdgymance guarantee:
F(AI®) > (1 1/€)F (AP [10].

When path constraints are considered, the recursive gragdyithm, a modi-
fication of greedy planning that examines all possible n@ddtations while con-
structing the path, can be utilized to generate a [Ai%h[lﬂ]. Recursive greedy
provides a performance guaranted=g\"9) > F (A°P) /log(|A°PY|), where|A°P!| is
the number of location visited on the optimal path. Howetle, recursive greedy
algorithm requires pseudo-polynomial computation, whitdkes it infeasible for
some application domains. To our knowledge, the developwfea fully polyno-
mial algorithm with performance guarantees in informape¢h planning domains
with path constraints is still an open problem. Hence, wi&zeta one-step heuristic
in our experiments in Sectign 6.

The performance guarantees described above do not dir@gtly to adap-
tive policies. Anadaptivepolicy is one that determines the next location to se-
lect based on the observations at the previously vieweditota Rather than a
strict ordering of locations, the resulting policy is a tifdocations that branches
on the observation history from the past locations. As neadier, the concept
of adaptive submodularity [7] allows for some performanoargntees to extend
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to adaptive policies as well. When the observations areefess, the information
gain heuristic satisfies the property of adaptive submaiwlarhis result leads
to a performance guarantee on the cost of the one-step iafammgain adap-
tive policies in sequential hypothesis testing domaindeit path constraints:
c(rig) < c(m®PY(In(1/Pmin) + 1), Where pmin := Minne » P(h). When noisy ob-
servation are considered, a reformulation of the probleradsired to provide per-
formance guarantees (i.e., information gain is not adegitbomodular). However,
Golovin et al. lEa] show that the related Equivalence ClasteBrination Problem
(ECDP) optimizes an adaptive submodular objective fumctind yields a similar
logarithmic performance guarantee. The direct applicatibECDP to active clas-
sification is left for future work.

5.2 Benefit of Adaptivity

We now examine the benefit of adaptive selection of locatioise active classifi-
cation problem. As described above, the non-adaptiveywlictypically be easier
to compute and implement, but the adaptive policy could gty perform better.
A natural question is whether we can quantify the amount okfieto be gained
from an adaptive policy for a given problem. To begin our gsialof adaptivity, we
consider the problem of minimizing the expected cost of olzg®n subject to a
hard constraint on lods

Problem 1. Given hypotheses?” = {hy,hy,... hn}, features? = {Fi,F,...,F« },
locations.Z = {Ly,...,Lm}, costsc(Li,Lj) = di; for observing locatiorn when at
locationj, and a loss function defined Egl, h) for selecting hypothesiswhen the
true hypothesis ib. We wish to select a policyr such that:

" = argminc(m) s.t.1(m) <, 9)
T
wherel (1) := En[l(d,h) | r1, c(m) := En|c(71,h)], andT is a scalar threshold.

We now show that the optimal non-adaptive policy can reqekgonentially
higher cost than an adaptive policy for an instance of thidlgm:

Theorem 1.Let yqaptbe the optimal adaptive policy, amgon-adaptbe the optimal
non-adaptive policy. There is an instance of Probldm 1 witérggap) = log(N)
and qThon-adapt) = N — 1, where is N is the number of hypotheses.

Proof. We adopt a proof by construction. Let= 0, i.e., the required expected loss is
zero. Let the features be observed directly through theespanding locations (i.e.,
G(Lj) = F andM = K). Let there beN hypotheses anbll = N — 1 features. Assign

2 Note that the related problem of minimizing expected lodgesi to a hard constraint on budget
is also relevant. While similar examples show that there ligefit to acting adaptively in this
case, we defer detailed analysis to future work.
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a costc(F) = 1 for all features. The lod$d,h) = 1 for alld # h andl (d,h) = 0 for
d=h.

Let P(h) > 0 for all h e 7. Let P(Fi|hj) =1 for all i € {1,...,N/2} and
P(Fi/hi) = 0 for all i € {N/2+ 1,N}. That is, featurd is capable of determin-
istically differentiating between the first half and secdralf of the hypotheses.
P(Fzlhi) = 1 for all i € {1,N/4}, P(Fs|hy) =0 for all i € {N/4+1,N/2}, and
P(Rzlhi) =1/2 foralli € {N/2+1,N}. That s, featurd~ is capable of determin-
istically differentiating between the first fourth and seddourth of the hypothesis
space but gives no information about the rest of the hypethelimilarly, define
P(Fslhi) =1 foralli € {N/2+1,3N/4}, P(Fs|hj) = 0 for alli € {3N/4+1,N},
andP(R,|hj) = 1/2 for alli € {1,N/2}. The remaining features are defined that dif-
ferentiate progressively smaller sets of hypotheses eath feature differentiates
between two hypotheses.

The adaptive policy will seled, first. If F; is realized positive, it will seledg,.

If F1 is realized negative, it will sele€g. It will continue to do a binary search until
log(N) features are selected. The true hypothesis will now be knoggulting in
zero expected loss. In contrast, the non-adaptive policst salect alN — 1 features
to ensure realizing the true hypothesis and reducing theatgd loss to zero.O

The adaptivity analysis in Theordm 1 requires multiple hiapses, and the po-
tential benefit of adaptivity increases as the number of thgges increases. For the
two hypothesis case, however, the benefit of adaptivity neydsy small. In the
binary examples we have examined, all cases showed little benefit from adap-
tivity. Furthermore, if there is a strict ordering on theanhativeness of the viewing
locations independent of the current distribution on thpdilieses, we conjecture
that the benefit of acting adaptively will be ze@[lZ].

6 Implementation and Experiments

In this section, we examine the active classification pnol@&perimentally through
the use of both synthetic images and data from imaging samanglship hull in-
spection. The results confirm the benefit of active view $ilein these application
domains as well as the benefit of adaptivity when more tharhiypotheses are con-
sidered. For all experiments, we assume a simple 0/1 los&imetere a cost of
one is incurred for a false classification, and a cost of zeindurred for a correct
classification.

6.1 Synthetic Images

The goal of our first experiments is to differentiate betwpessible polyhedra us-
ing depth maps from different views. The relevance of poliyaerecognition to
underwater inspection is direct, as explosive devicesfea aubic or pyramidal in
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Fig. 3 Top: SURF features extracted from viewing depth maps oéletiron and cube faces and
vertices. Bottom: SURF feature correlations when comptrenbisy depth maps.

shapel[6]. This is a particularly challenging active redtign problem due to sim-
ilarities and symmetries between polyhedra. These expeaitisrare designed to (1)
demonstrate the benefit of selecting the views with the Hgpetential for infor-
mation about the unknown object, and (2) examine the berfeditting adaptively
when multiple possible objects are examined.

To identify the polyhedra, we utilize salient features agted from the synthetic
depth map. Training images were created from 24 differeswpbints around the
objects, and the OpenCV [2] SURF feature extractor [1] waslis extract features
for the different object and viewpoints viewpoints. Noigsttimages were then
created with Gaussian white noise £ 0.25m).

6.1.1 Two objects

The intuition is that it will be easier to identify the objentsome viewpoints than
in others, due to the presence of additional salient featurigure 8 shows SURF
features and correlations for a tetrahedron and cube viéwetthe face and vertex.
The number of SURF features and correlations is greateriéwing the vertices
when compared to viewing the faces. Particularly for theegubewing the face
provides few correlations and little information about digect class.

For quantitative analysis, we now compare informative \defection to random
view selection on the synthetic depth map data from a cubéadrahedron. The in-
formation gain of each view was calculated based on the nuoflexpected salient
features corresponding to the true object minus the exgeuimber of false cor-
respondences. This calculation requires comparing alls/i® the corresponding
views of each other objec®(N?) computation in the number of hypotheses). After
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Fig. 4 Multi-view classification experiments with synthetic inesgof a cube and tetrahedron
viewed from 24 different angles (best viewed in color). Idifig the expected information gain
of the next view improves the number of SURF feature cormedpnces when limited views are
used. Random view results are averaged over 100 orderingsbars are one standard deviation.

the cross-correlations were computed, planning was cdetpla milliseconds. To
apply adaptive view selection, we calculate the informraiain from the current
distribution over the features, which changes as new viea/slaserved.

In these experiments, path constraints are ignored, ththwglview ordering
could easily be used to generate a feasible path on the fimiizdm. Figuré$ shows
results comparing the information gain heuristic with ramdview orderings. Uti-
lizing the information gain heuristic to determine the miosbrmative views leads
to as much as a 35% increase in the number of correct featurespondences
with limited views. Adaptive view selection does not prazithuch benefit over
the non-adaptive technique, as expected from the smaltiadggap in the binary
hypothesis case (see Sectidn 5). Note that, for comparisdyn 24 views are con-
sidered, and all methods will provide the same performaftee seeing all these
views.

6.1.2 Multiple objects

The benefit of active classification is now examined for cagesre more than two
object classes are considered. In addition to the cube @rathéelron, we include
training images of the icosahedron, octahedron, and dbeecan as possible object
classes. The theoretical analysis in Sedfion 5 suggestadtiag adaptively should
improve performance for the multi-hypothesis problem uiréfd shows results for
classifying the cube and tetrahedron when additional hygxs#s are considered for
the other three platonic solids. The adaptive policy odtpers both random view
selection and the non-adaptive policy the majority of timeeti The difference is
particularly significant for the tetrahedron. Note that doeninance of the adaptive
policy is not true at all data points. These results sugdest adding additional
hypotheses in some cases reduces the performance of aetiveealection.
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Multi-hypothesis classification of cube Multi-hypothesis classification of tetrahedron
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Fig. 5 Classification experiments with synthetic images of the katonic solids (best viewed in
color). The results for a cube and tetrahedron test objecstamwn. Adaptively selecting the most
informative views based on past information tends to imgrokassification accuracy, and acting
adaptively increases this benefit. Random view results wraged over 100 random orderings;
error bars are one standard deviation.

6.2 Imaging Sonar Data

To examine the benefit of active classification on real-wddth, we ran experi-
ments on imaging sonar depth maps taken from a ship hull aigmewith an un-
derwater vehicle. The goal is to determine whether an ek@d®ms been placed on
the ship hull. The explosive appears as a small patch of tyigkls on the imaging
sonar depth map. Since the sonar data is not dense enougbvidepsalient fea-
tures, we take a simpler approach of using the brightnedsegiikels as the feature
base. A brightness threshold was learned by minimizing timeler of misclassified
pixels in labeled data. The performance metric is the tatailoer of pixels correctly
classified as part of the explosive device. We utilize thisriméecause images with
a large number of corresponding pixels may provide addigrformation during
post-processing or to a human operator.

A separate test set was held out of the labeled set to deteiifmine most in-
formative views could be predicted using the learned thokelshnd expected view
quality. There were 100 frames in the training and 75 framdésa test set. The train-
ing and test frames were from different trajectories, buhwhe same background.
The frame rate was approximately 2 fps. The information gathese experiments
was calculated based on the expected number of pixels pomdig to the explo-
sive in a given view, which was found using an average of timelHabeled pixels in
the training set images weighted by their distance (usirg lam a DVL sensor).
A squared exponential weighting was used.

Figure[® shows the results of running the information gaiprapch versus ran-
dom views. We also compare to the initial (very poor) viewesidg from the data
as well as two simple ordering methods: sorting the viewgthas minimum dis-
tance to the object and sorting based on the maximum angliewf(gee Figurgll
for the intuition behind this method). The results show thetively choosing the
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Multi-view classification of explosive
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Fig. 6 Multi-view classification experiments with imaging sondemtifying an explosive on a ship

hull. With limited views, utilizing information gain lead® a larger number of pixels correctly

identified as part of the object of interest. Random view Iltesare averaged over 100 random
orderings; error bars are one standard deviation.

(a) Exp. gain: 3.7 (b) Exp. gain: 2.1 (c) Exp. gain: 1.5 (d) Exp. gain: 0.8

Fig. 7 Imaging sonar depth maps of an explosive device (circleatga on a ship’s hull. The depth
maps are ordered based on the expected number of pixelsimédlge corresponding to a possible
explosive. Note that the explosive is easy to identify ingeéa), more difficult to identify inimage
(b), and very difficult to identify in image (c). Image (d) igpected to be a low information view,
when in fact the explosive is relatively easy to identify.

views with the highest expected information improves dfecsdion performance.
For example, choosing informative views reduces the nurobeiews for 15 cor-
rect pixel identifications by nearly 80% versus random s&ladfrom 38 views to
8 views).

For visual reference, Figufé 7 shows images of decreasipgotad pixel clas-
sifications. Intuitively, the images where the explosivansis out from the back-
ground should provide the most information. Despite soneerirect predictions,
it is clearly beneficial to examine those viewpoints pregticto be informative. It
should be noted that the informativeness of the images disganthe quality of the
low-level sonar processing. With perfect low-level datagassing, all images may
have high informativeness, which would reduce the benefitt¥e classification.
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7 Conclusions and Future Work

This paper has shown that actively choosing informed viem@oves performance
for inspection tasks in the example underwater domain. Kperémental results
demonstrate that depth map information can be utilized¢ogeize objects of in-

terest, and that (compared to passive methods) up to 80% feewes need to be
examined if the views are chosen based on their expectednatmn content. In

addition, acting adaptively by re-evaluating the mostiinfed views as new infor-
mation becomes available leads to improvement when morettha classes are
considered. These results are consistent with theoretilysis of the benefit of
adaptivity.

Future work includes further theoretical analysis of plolesperformance guar-
antees, particularly in the case of path constraints. Intiadd the results in this
paper utilize features for classification. Recent work iatfieeless classification
through the use of point clouds would benefit from active sifasmtion methods
as well. Finally, the analysis in this paper has applicatibayond underwater in-
spection. Tasks such as ecological monitoring, reconaiaigs and surveillance are
just a few domains that would benefit from active planningtf@ most informed
views. Through better control of the information we receiwe can improve the
understanding of the world that we gain from robotic pericept
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