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Abstract. Crowd counting based on video camera recordings faces two
major problems, namely inter-occlusion among the people, and perspec-
tive scaling. Though the former issue has been adequately addressed
using different regression- and model-based schemes, a solution to the
later problem remains an open problem so far. This paper proposes a
novel scene-independent solution to perspective scaling. We show that it
supports promising results. A property matrix, combining both a grey-
level co-occurrence matrix and segmentation properties, is first obtained
which is subsequently weighted using logarithmic relationships between
pixel distances and foreground regions. We apply a Gaussian process
regression, using a compounded kernel, to acquire an estimate for the
crowd count. We show that results are comparable to those obtained
when using more complex and costly techniques.

Keywords: Crowd counting · Perspective scaling · Grey-level
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1 Introduction

Crowd density estimation of moving humans gains increasing attention in the
field of video surveillance due to its importance for crowd statistics, monitoring,
crowd control, and security-related observations.

Crowd counts are directly dependent upon pixel regions occupied by the
crowd itself [8]; therefore, one commonly used step is foreground extraction using
segmentation. This process is supported by having stationary cameras. A seg-
mentation step is followed by relevant property or feature extraction tools. (A
property is a measured value; a feature is defined by a location in an image and
a property vector [16].) Subsequently, property regression is then used to map
extracted properties into a crowd count.

Another technique used for crowd counting is a model-based template match-
ing method [3] in which a template of a human head and shoulder moves across
the scene. Most probable matches in the scene are declared as being humans.
Both these methods (i.e. property regression and model-based crowd counting)
are mainly focused on blob refinement and measurement.
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In the property-regression technique, perspective distortion is catered for by
using two basic methods. The first method is scene-specific perspective correction
based on a linear perspective-map formulation, whereas in the second method
low-level features have been used. In both cases, the feature set or the property
vector expand at a level where the complexity of property regression escalates
exorbitantly, resulting in over-fitting. On the other hand, template scaling for the
head-shoulder template-matching scheme is also confined to a specific scenario,
and needs to be redefined for different scenes. Consequently, researchers have
been adopting more complex methods to achieve better estimates.

The paper is structured as follows: Sect. 2 provides a brief review of related
work. Section 3 outlines the proposed approach. Section 3.1 elaborates the use-
fulness of the selected textural feature set based on a grey-level co-occurrence
matrix GLCM. In Sect. 3.2, techniques defined elsewhere used for segmenting
extracted features, including the ViBe algorithm and the optical flow method,
are briefly introduced. Section 3.3 proposes our novel approach adopted in this
work for the correction of perspective distortion. Gaussian process regression,
using a compounded kernel, is detailed in Sect. 4. Section 5 provides an exper-
imental evaluation of the proposed approach, including a comparison of our
algorithm with some benchmark techniques. Section 6 concludes.

2 Literature Review

The crowd estimation problem is mainly handled as a classification problem
where crowd density is categorised as being low, medium, or high. A well-known
example of crowd-density estimation [18] is by applying improved local binary
patterns for obtaining a histogram of the considered crowd, for comparing it
against model histograms by calculating their inter-distance. This supports cat-
egorising the crowd as being of very low, low, medium, high, or very high density.
Crowd-count estimation, on the other hand, is a tedious problem which focuses
mainly on accurately counting the number of people making up the given crowd.
This problem is mainly tackled in one of the following three ways:

1. Counting by detection uses a visual object detector which segments individual
objects of interest. Reference [11] shows a unique crowd-segmentation method
which uses Fourier descriptors for shape indexing of crowd blobs while [22]
uses a generic head detector to segment and count the number of people
making up the crowd.

2. Counting-by-regression methods do not consider solving the task by a detec-
tion of individual objects. In these methods, the number of object counts
is learnt mainly through a supervised learning methodology [21]. The main
interest of this technique lies in the number of people determined by fore-
ground pixels. Regression-based techniques involve background segmenta-
tion followed by foreground-property measurements (e.g. the area of regions,
or texture characteristics) and then using linear, Bayesian, support vector
machine (SVM), or neural-network regression techniques to learn the human
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count. An example of regression counting is reference [6] where neural-network
regression is applied.
Another distinguished technique is Chan’s method; for example, see [18].
Here, the problem of counting people in a moving crowd is addressed by
using a Poisson regression in a Bayesian framework over low-level features
extracted from the images. A crowd count is taken as an outcome of a linear
function by presenting a prior distribution on the weights of selected low-level
features.
In [12], the perspective distortion problem has been addressed by assigning
linear weights to the scale-invariant feature transform (SIFT) based on inter-
est points at different locations in the image. These weights are assigned with
respect to the ratio between height of a reference individual at two different
locations in the video. Subsequently, Gaussian process regression is used to
map interest points into a people count.

3. A hybrid method uses both detection and regression techniques. For example,
[20] focuses on the fact that each blob in a crowd at a different perspective
should be dealt with separately. Weights are assigned to each pixel based on
a perspective plot. Multiple feature extraction is the second step after which
each feature is assigned a different weight based on least-square regression. An
artificial neural network (ANN) is used to obtain a number-of-people count
in each blob based on distinct features and corresponding weights assigned.

3 Proposed Approach

Our approach focuses on crowd counting by regression. It presents a novel and
natural solution to the problem of perspective distortion, thereby improving
results by keeping time complexity of the regression algorithm at a low level.

For counting moving people, a set of textural and geometric segment features
is extracted from each frame of a video sequence. Foreground segmentation of
moving people is obtained using optical flow (for an original paper, see [15], or
for a recent text on optic flow, see [16]) and a variant of the ViBe algorithm [2,5].
This allowed us to improve the handling of illumination invariance, “foreground
erosion”, and “stationary object blindness”, all known as being issues in this area.
Segmentation is further improved by using morphological dilation and erosion.
A fundamental segmentation feature, which is directly proportional to the crowd
count, is the foreground area. Logarithmic perspective correction is applied to the
foreground blob area-property with respect to its centroid location in the image.
Thereafter, this property set is mapped to the crowd count using a Gaussian
process regression.

The proposed method outperforms methods presented in [1,9,10,12,20] in
terms of simplicity of selected features, clustering method, perspective correc-
tion, and, altogether, better results.

3.1 Textural Feature Selection

Textural content descriptors provide useful information about distinguishing
characteristics of an image such as coarseness, homogeneity, or smoothness.
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Gonzalez [14] categorises approaches of textural analysis or synthesis into three
main classes, called structural, spectral, or statistical. [23] added a model-based
class to the three classes mentioned by Gonzalez. We decided for a statistical
approach, and the textural features, chosen to obtain accurate estimates of crowd
counts, are derived from a grey-level co-occurrence matrix (GLCM). A GLCM
elaborates the frequency and combination of pixels with different brightness val-
ues (e.g., see the text [16]). Common GLCM features are defined with respect
to contrast, homogeneity, energy, or correlation.

3.2 Geometric Feature Extraction for Segments

Foreground segmentation of the images is carried out by using two different
sets of algorithms, including background subtraction and image foreground clus-
tering algorithms. ViBe and optical flow are the two background subtraction
algorithms, whereas Gaussian mixture model (GMM), k-means clustering, adap-
tive GMM, and hidden Markov model and expectation maximisation (HMM-
EM) frameworks have been used to classify the foreground into distinct clusters.
Experimentally it was observed that the background subtraction algorithms pro-
vided faster segmentation owing to lesser complexity and comparatively better
results.

GMM Segmentation. GMM-based segmentation [17] distributes the image
into a set of different classes, assuming that each class can be modelled as a
normal distribution with a separate mean and variance. This assumption, though
not accurate, provides a fairly reasonable segmented image as shown in Fig. 1,
using an image from the PETs 2009 dataset [13].

Fig. 1. Foreground segmentation using GMM for a sample from PETS 2009

Optimum result obtained for this sample of the PETs 2009 dataset is by
using four classes. The algorithm does not need to be trained using background
images. Segmentation results are obtained directly without the need of back-
ground subtraction. However, some of the background is still being classified as
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human blobs. Another problem with the algorithm is that for each new scene, a
number of classes is required to be set separately, and processing time increases
with an increase in the number of classes.

ViBe Segmentation. A ViBe algorithm does not rely on one particular pixel
distribution assumption such as for the GMM. It results in faster processing,
provides illumination invariance by uniformly updating a background model,
and has reduced mathematical complexity. Classification of a pixel as foreground
or background in ViBe is based on the simple criteria of considering a disk of
specified radius around the current pixel and determining the cardinality of the
set of pixel values arising from intersecting the disk in the image with the disk
at the same location in the background model.

Fig. 2. Foreground segmentation using a ViBe algorithm. Left: Input sample from
PETS 2009. Right: Segmentation result using a ViBe algorithm

To ensure intensity invariance and ghost suppression, a background pixel
model is updated randomly using a uniform distribution. The erosion of the
foreground is suppressed by disallowing an already declared foreground pixel in
the current frame to become a part of the background in the next frame. Finally,
morphological operations [14], including opening, closing and hole filling, are
used to ensure the desired level of foreground segmentation. See Fig. 2 for an
example.

HMM-EM Algorithm Based on GMM and k-Means Clustering. Taking
its lead from segmentation of human brain images, the HMM-EM framework pro-
posed in [25] is an edge-prior preserving segmentation algorithm which was also
used for obtaining accurate segmentation labels for the PETS-2009 dataset. In
this algorithm, an initial segmented image is obtained using k-means clustering
or GMM with estimated parameters including mean and variance. Subsequently,
these estimates are then refined using the HMM-EM framework.

The algorithm was tested for a number of classes starting from 2 to 8. See
Fig. 3 for an example.

Optical Flow Segmentation. For segmentation using optical flow, we apply
the original Horn-Schunck algorithm [15]. Optic flow is the relative motion of
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Fig. 3. Image segmentation using the HMM-EM framework. Left: Initial segmentation
obtained using k-means clustering. Right: Initial segmentation obtained using GMM
clustering

visible texture w.r.t. an observer in time and space. For calculating optic flow,
the Horn-Schunck algorithm uses the intensity constancy assumption (ICA, see
[16]) that reflectance is directly proportional to surface brightness, and also
that surface brightness varies continuously with time. It is known that these
assumptions are limiting the accuracy of calculated optic flow, especially the ICA
is harmful. However, the Horn-Schunck algorithm is time-efficient and proved to
be sufficient for our purpose.

Fig. 4. Foreground segmentation using optical flow. Left: Input sample from the PEDS
dataset. Right: Segmented foreground

In our experiments with data of the PEDS database [24], foreground seg-
mentation was obtained by applying a threshold to the minimum optical flow
magnitudes at a pixel in both directions. We decided for a value of 3 as a thresh-
old for flow velocities u and v in both x and y directions (i.e. u > 3 and v > 3);
this produced the desired results. For an example, see Fig. 4.
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Neither ViBe nor optical flow-based segmentation provide accurate segments
of visible persons. However, this is also not required for the considered applica-
tion as we will verify below.

3.3 Perspective Correction

Properties of fundamental importance, drawn from the segmented foreground,
are blob area and perimeter. Due to the camera pose, an individual blob entering
from one side of the image and traveling to the other side, suffers from shortening
of both height and width which is a result of perspective distortion. This problem
has been treated as a linear problem in previous work such as in [7,8,12,20] by
taking into account height-to-distance ratios to cater for perspective distortion.
However, a perspective linearization approach is not scene-independent, which
means that for each new scenario, camera calibration is required again. Moreover,
the formulation of an inherently nonlinear problem as a linear problem is an
inappropriate simplification which causes errors in the final result.

Another method, which can be used to correct perspective distortion in
images, is camera calibration [4]. This method involves a conversion from the
2D camera plane into the 3D real world. The complexity of the approach
requires extra processing power despite followed optimisation efforts, thus mak-
ing it unsuitable for real-time applications. This method has basically not been
adopted into crowd-counting algorithms.

The inverse square law explains the relationship between the intensity of
light and the distance of a point-light source from an object which is being
illuminated by this light source. The Weber-Fechner law (identified as being
a psycho-physical law) is another important relationship between human eye
intensity response and contrast sensitivity. These two laws have been tested to
automate perspective correction. Experiments have shown that a Weber-Fechner
law implementation provides far better results compared to the inverse square
law. The perspective scaling problem has been modelled in terms of logarithmic
ratios as follows:

RD =
√

R2
IO + R2

IA (1)

Acorr =
Ablob

log Cblob
log RD (2)

Pcorr =
Pblob

log Cblob
log RD (3)

where, RIO is the reference image ordinate, RIA the reference image abscissa,
RD the reference distance, Ablob and Pblob are the blob area and perimeter. Cblob

is the distance of the blob centroid from the reference point. Obtained corrected
area and perimeter variables are Acorr and Pcorr, respectively.

First a reference blob is selected. The distance from a specified reference point
in the image, preferably from a corner point to the reference blob’s centroid, is
then used as the reference distance. In the second step, distances are calculated
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from the selected reference point to centroids of the remaining blobs in the
scene, and we call those blob-centroid distances. A logarithmic ratio between the
reference distance and a blob-centroid distance provides a weighted factor which
can scale blob area or perimeter, basically normalising a blob’s size to the selected
reference blob’s centroid location. This is equivalent to shifting foreground blobs
to the same location, thereby, removing perspective distortion (Fig. 5).

Fig. 5. D1: Distance of the reference blob from the reference point, selected to be the
image origin. D2: Distance of another blob to the reference point selected to be the
image origin. Perspective correction: The logarithmic ratio between D1 and D2 provides
the required factor which is used for perimeter and area correction of the segmented
blobs, i.e. virtually shifting blobs to the reference point.

4 Gaussian Process Regression with Compounded Kernel

After a representing property set is obtained for a given image Ii, it is mapped
into a D× 1 input vector xi, where D is the dimension of the collected property
set. The goal is to design a function f which, if applied to the input property
vector, provides the desired crowd count yi for the given image [19]:

yi = f(xi) + ε (4)

with some error tolerance ε.
In generalisation, a set of vectors xi, obtained for a sequence I1, . . . , In of n

images, is collected into a matrix X of dimension D×n, and we want to estimate

y = [y1, . . . , yn]� = f(X) + ε (5)

In case of linear regression, the function f can be expressed in terms of a
weight vector as follows:

f(xi) = x�
i w (6)
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A Bayesian treatment of the above mentioned regression problem, applying a
Gaussian distribution, assumes that noise is independent and identically distrib-
uted (i.e. Gaussian noise with zero mean and variance σ2

n).
The likelihood of an observation is mutually independent, i.e. we have that

p(y|X,w) =
n∏

i=1

p(yi|xi,w) (7)

The weight vector has zero mean with a covariance matrix Q.
With these assumptions the posterior distribution of the weight vector w is

as follows:

p(w|y,X) =
p(y|X,w)p(w)

p(y|X)
(8)

p(w|y,X) = N(w =
1
σ2
n

A−1Xy,A−1) (9)

A = σ2
nXX� + Q (10)

Therefore, a predictive distribution of values of f , for a set of property vectors
x, can be written as follows:

p(f |x,X,y) = N(
1
σ2
n

x�A−1Xy,x�A−1x) (11)

The defined property-vector matrix X needs to be projected to a higher-
dimensional property space using an unknown basis function φx which converts
a D-dimensional property vector into an N -dimensional array. Therefore, the
model for f can be expressed in terms of φx as follows:

p(f |x,X,y) = N(
1
σ2
n

φ�
xA

−1φX y, φ�
xA

−1φx) (12)

The basis function is unknown; however, fortunately there is no need to find
the exact basis function. Instead the kernel trick is used to obtain the best
possible approximation of a predictive distribution f . We suppose that K is the
kernel matrix on the unknown basis function matrix φX. For the property vector
basis function φx it is represented as k. With the help of kernel trick, instead
of utilizing the property vector for functional prediction, approximation of the
kernel is used instead. After a few mathematical manipulations of Eq. (12), K
is represented as

K = φX Qφ�
X (13)

k = φx Qφ�
x (14)

Let X∗ be the test set property matrix for the training set matrix X, and
let I be the identity matrix. The training and test set property matrices contain
property vectors for each image arranged in columns. For the property matrices,
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the predictive distribution of the output vector f , containing the desired crowd
count, can be represented as follows:

p(f |x,X,y) = N
[
K(X∗,X)[K(X,X)

+ σ2
nI]

−1y,K(X∗,X∗)
− K(X∗,X)[K(X,X)
+ σ2

nI]
−1K(X,X∗)

]
(15)

The kernel function can be a single covariance function, or a combination
of covariance functions. In this work, a compounded kernel function has been
used. To cater for local and global nonlinear trends, a sum of constant, linear
and exponential covariance functions has been used to formulate a compounded
kernel:

k(x, x∗) = σ0
2 +

D∑
i=1

σ2
i xix

∗
i exp

−||xi − x∗
i ||

2l2
(16)

In order to estimate the best possible hyper-parameters σ2
0 , σ2

i , and x̄, and
the characteristic length scale l, maximum likelihood estimation is used by max-
imising the logarithmic function

log p(f |X) = −1
2
y�(K + σ2

nI)
−1y

− 1
2

log |K + σ2
nI| −

n

2
log 2π (17)

Maximum likelihood estimation provides the best possible estimate for the
unknown hyper parameters. For relevant details, see [19].

5 Experiments and Results

In order to evaluate the algorithm, experiments were conducted on two different
datasets, the PETS 2009 dataset and the Peds-1 dataset, with an intention to
establish scene-independence for the algorithm.

For both datasets, half of the frames have been used for training purpose
whereas the other half has been used for testing. The training set of images has
been annotated by manual counting. The testing part remained fully automated
with no requirement of manual interaction for specifying a region of interest
(ROI), to segment a scene into different regions, or any linear interpolation for
scene-specific perspective corrections or separate identifications of pedestrians
walking towards or away from the camera. This, altogether, characterises our
algorithm as being automated in distinction to benchmark techniques published
in [7–9,12].

Figure 6, left, reports about a comparison between estimated crowd count
and ground truth using the Peds-1 dataset. The ground truth or actual crowd
count is indicated by green markers whereas the estimated count is shown by
red dots. For obtaining a better idea about acquired result validity, mean square
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Fig. 6. Comparisons between ground truth and estimated counts (green dots represent
ground truth, red dots represent estimated results). Left: PEDS dataset results. Right:
PETS 2009 dataset results (Color figure online)

error, mean relative error, and mean absolute errors have been calculated using
the proposed algorithm. The results are comparable to [7] but better than those
reported in [12].

By using the logarithmic perspective scaling, Gaussian process regression
(GPR) based crowd estimation results have improved compared to [7]. The min-
imum MSE obtained for the scene motion class in [7] is 3.654 using GPR, whereas
by using the proposed algorithm, the MSE has been reduced to 3.093 which is
comparable to 2.910, the result obtained when using a more complex Bayesian
Poisson regression (BPR) method and a digital terrain model (DTM) segmen-
tation in [7].

PET-2009 dataset results (i.e. manually annotated ground truth versus esti-
mated count) are shown in Fig. 6, right. The red dots show estimated counts
whereas the green dots represent the ground truth which has been manually
annotated. The performance for the PETS-2009 dataset was also evaluated using
mean-square error, mean absolute error, and mean relative error. See Table 1,
which also summarises comparisons against benchmark methods.

Table 1. Examples of results

Error type Mathematical notation PETS Hajer PEDS-1 Chan,s

2009 Fradi (GPR) (BPR)

MSE 1
N

∑N
i=1(ECi −GTi)

2 1.422 - 3.093 2.910

MRE 1
N

∑N
i=1

(ECi−GTi)
2

GTi
0.046 0.071 0.079 -

MAE A 1
N

∑N
i=1

|ECi−GTi|
GTi

0.951 1.38 1.458 1.308
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6 Conclusions

This paper introduced a scene-independent perspective correction methodology
for estimating numbers of moving crowds. Our overall algorithm, starting with
foreground segmentation and ending with crowd estimation, is completely auto-
mated and caters for background and environment variance. The proposed algo-
rithm is inherently parallel, thus implementable in FPGA or DSP hardware for
real-time implementation. Image segmentation used in this approach does not
cater for objects other than humans like a passing-by vehicle or large animals
moving across the scene; such events may disturb the actual count. However,
the problem can be catered using a suitable segmentation method with the abil-
ity to filter out unnecessary objects. The algorithm has been tested with the
reported results on pedestrians moving on a road with negligible traffic, and can
be recommended for comparable scenarios.

References

1. Albiol, A., Silla, M.J., Albiol, A., Mossi, V.: Video analysis using corner motion
statistics. In: Proceedings of IEEE International Workshop PETS, pp. 31–37 (2009)

2. Barnich, O., Droogenbroeck, M.: ViBe: A universal background subtraction algo-
rithm for video sequences. IEEE Trans. Image Process. 20, 1709–1724 (2011)

3. Fu, H., Ma, H., Xiao, H.: Real-time accurate crowd counting based on RGB-d
information. In: Proceedings of ICIP, pp. 2685–2688 (2012)

4. Beardsley, P., Murray, D.: Camera calibration using vanishing points. Int. J. Com-
put. Vis. 4, 127–139 (1992)

5. Barnich, O., Droogenbroeck, M.M.V., Paquot, O.: Background subtraction: exper-
iments and improvements for ViBe. In: Proceedings of CVPR Workshop Change
Detection, pp. 32–37 (2012)

6. Garcia-Bunster, G., Torres-Torriti, M., Oberli, C.: Crowded pedestrian counting
at bus stops from perspective transformations of foreground areas. Comput. Vis.
IET 6, 296–305 (2012)

7. Chan, A., Vasconcelos, N.: Counting people with low-level features and Bayesian
regression. IEEE Trans. Image Process. 21, 2160–2177 (2012)

8. Chan, A.B., Liang, Z.S.J., Vasconcelos, N.: Privacy preserving crowd monitoring:
counting people without people models or tracking. In: Proceedings Computer
Vision Pattern Recognition, pp. 1–7 (2008)

9. Chan, A.B., Morrow, M., Vasconcelos, N.: Analysis of crowded scenes using holistic
properties. In: IEEE International Workshop Performance Evaluation Tracking
Surveillance (2009)

10. Conte, D., Foggia, P., Percannella, G., Tufano, F., Vento, M.: A method for count-
ing people in crowded scenes. In: Proceedings of IEEE International Conference
Advanced Video Signal Based Surveillance, pp. 225–232 (2010)

11. Dong, L., Parameswaran, V., Ramesh, V., Zoghlami, I.: Fast crowd segmentation
using shape indexing. In: Proceedings International Conference Computer Vision,
pp. 1–8 (2007)

12. Fradi, H., Dugelay, J.L.: People counting system in crowded scenes based on feature
regression. In: Proceedings of European Signal Processing Conference, pp. 27–31
(2012)



Logarithmically Improved Property Regression 135

13. Fraile, R.: IEEE International Workshop Performance Evaluation Tracking Sur-
veillance (PETS 2009) (2009). www.cvg.reading.ac.uk/PETS2009/

14. Gonzales, R.C., Wintz, P.: Digital Image Processing, 3rd edn. Prentice Hall, Upper
Saddle River (2009)

15. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203
(1981)

16. Klette, R.: Concise Computer Vision. Springer, London (2014)
17. Lalit, G., Thotsapon, S.: A Gaussian-mixture-based image segmentation algorithm.

Pattern Recogn. 31(3), 315–325 (1998)
18. Mousavi, S.M., Shahdi, S.O., Abu-Bakar, S.A.R.: Crowd estimation using his-

togram model classification based on improved uniform local binary pattern. Int.
J. Comput. Electr. Eng. 4, 256–259 (2012)

19. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press, Cambridge (2006)

20. Ryan, D., Denman, S., Fookes, C.: Crowed counting using multiple local features.
In: Proceedings of Digital Image Computing: Techniques Applications, pp. 81–88
(2009)

21. Shimosaka, M., Masuda, S., Fukui, R., Mori, T., Sato, T.: Counting pedestrians in
crowded scenes with efficient sparse learning. In: Proceedings of Asian Conference
Pattern Recognition, pp. 27–31 (2011)

22. Subburaman, V.B., Descamps, A., Carincotte, C.: Counting people in the crowd
using a generic head detector. In: Proceedings of IEEE International Conference
Advanced Video Signal-Based Surveillance, pp. 470–475 (2012)

23. Tuceryan, M., Jain, A.K.: Texture analysis. In: The Handbook of Pattern Recog-
nition and Computer Vision, pp. 207–248 (1998)

24. UCSD: UCSD Anomaly Detection Dataset (2013). http://www.svcl.ucsd.edu/
projects/anomaly/dataset.htm

25. Wang, Q.: HMRF-EM-image: implementation of the hidden Markov random
field model and its expectation-maximization algorithm, arXiv: 1207.3510 [cs.CV]
(2012)

www.cvg.reading.ac.uk/PETS2009/
http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
http://arxiv.org/abs/1207.3510

	Logarithmically Improved Property Regression for Crowd Counting
	1 Introduction
	2 Literature Review
	3 Proposed Approach
	3.1 Textural Feature Selection
	3.2 Geometric Feature Extraction for Segments
	3.3 Perspective Correction

	4 Gaussian Process Regression with Compounded Kernel
	5 Experiments and Results
	6 Conclusions
	References


