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Abstract. This paper proposes a personal authentication method based
on the 3D configuration of micro-feature points such as moles and freck-
les, plus common feature points such as corners of eyes, edges of mouth
and nostrils. The basic idea behind the proposed method is the assump-
tion that such 3D configuration can be uniquely determined by indi-
viduals. To compare two configurations of feature points effectively, the
concept of 3D shape subspace in a high-dimensional vector space is intro-
duced. With this idea, the task of comparing the sets of feature points
is converted to that of measuring the structural similarity between the
corresponding shape subspaces. The validity of the proposed method is
demonstrated through experiments with feature points from actual face
images. In addition, the performance limit of the method is explored
using sets of artificially generated feature points.

Keywords: Personal authentication · Facial feature · Shape subspace ·
Grassmann discriminant analysis

1 Introduction

This paper presents a personal authentication method based on the 3D config-
uration of micro-feature points, such as moles and freckles, on a facial surface,
and facial feature points such as corners of eyes, edges of mouth and nostrils.
Common appearance-based face recognition methods [1–7] often fail to distin-
guish a pair of faces with similar appearance by its nature. In contrast, the most
remarkable advantage of the proposed method is that it can distinguish even a
pair of twins with the completely same appearance, since the 3D configuration
of micro-features includes both inherent and acquired features.

The proposed method is motivated by a 3D object recognition method based
on the structure similarity between shape subspaces [8]. In this method, each set
of feature points is compactly represented by a linear subspace, which is called
shape subspace as shown in Fig. 1. A shape subspace of an image is known to
be generated by applying factorization method [9] to the trajectories of a set of
feature points, which are extracted and tracked from sequential images. This con-
verts the task of comparing two given sets of feature points to that of measuring
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Fig. 1. A conceptual diagram of the proposed framework. Sets of T 3D feature points
are extracted from RGB-D images to constitute shape subspaces in T -dimensional
vector space, and their similarity is evaluated by the notion of canonical angles.

the structural similarity between two corresponding shape subspaces, by using
the canonical angles between them [8]. Suppose there are several different classes
(e.g., different persons), and shape subspaces are already enrolled in the system
for each class. Then, an input set of feature points is classified into the class with
the highest similarity.

The above framework based on the shape subspace can work well under
stable lighting condition and no occlusion. However, the framework has the fol-
lowing two issues: (1) stable extraction and tracking of a set of feature points are
required, while they are difficult in practical situations, (2) classification ability
is insufficient for discriminating persons with very similar 3D structure of feature
points.

To address the first issue, we propose an effective method to generate a shape
subspace from a single depth image captured by an RGB-D sensor. This method
does not require feature points tracking. For the second issue, we enhance the clas-
sification ability by introducing a powerful subspace-based classification method
called Grassmann discriminant analysis (GDA [10]). An additional issue is that
facial feature detection is often error-prone, which may reduce the performance of
our method. To deal with this issue, we generate multiple perturbed shape sub-
spaces from an input depth image by repeating the random sampling of reliable
feature points, instead of generating one subspace from the depth image.

The validity of the proposed method is demonstrated through simple experi-
ments with feature points from actual face images. In addition, the performance
limit of the method is explored using sets of artificially generated feature points,
simulating the situation of distinguishing similar faces.

2 Preliminary

The core idea of the proposed method is the use of structural similarity between
shape subspaces, which is measured by using the canonical angles between these
subspaces. In the following, we firstly explain how to calculate canonical angles
from two given sets of facial feature points. Then, we outline the algorithm of
Grassmann discriminant analysis for realizing a highly accurate classifier using
shape subspaces.
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2.1 Definition of Structural Similarity with Canonical Angles

Consider an nA-dimensional subspace SA and an nB-dimensional subspace SB ,
where nA ≤ nB . The principal canonical angle θ1 is uniquely defined by [11]

cos2 θ1 = sup
u∈SA,v∈SB

u�v
‖u‖2‖v‖2 , (1)

where ‖ · ‖ denotes the norm of a vector. Let QA and QB denote the orthogonal
projection matrices of the subspaces SA and SB , respectively. Then, cos2 θ for
the canonical angle θ between SA and SB is equal to the eigenvalue of QAQB

or QBQA [11]. The largest eigenvalue corresponds to the smallest angle θ1,
whereas the second largest eigenvalue corresponds to the smallest angle θ2 in
a direction perpendicular to that of the largest canonical angle. The values
cos2 θl(l = 3, . . . , nA) are calculated in the same manner.

The simplest classification method using the canonical angles is known as the
mutual subspace method (MSM [3]). In this method, the structural similarity ϕ
between SA and SB is defined by

ϕ =
1

nA

nA∑

l=1

cos2 θl. (2)

If two shape subspaces coincide completely with each other, ϕ is 1, since all
canonical angles are zero. The similarity ϕ gets smaller as the two spaces deviate.
The similarity ϕ is zero when the two subspaces are orthogonal to each other.
In the MSM, we calculate the similarities between an input subspace S and
reference subspaces Si (i = 1, 2, . . . ). The input subspace is classified into the
class with the highest similarity. As explained in detail later, the shape subspaces
are 3-dimensional subspaces, hence we can compute three canonical angles. By
using them, the similarity between shape subspaces SA and SB is defined as

sim(SA,SB) =
1
3

3∑

l=1

cos2 θl. (3)

2.2 Grassmann Discriminant Analysis

The structural similarity calculated by the MSM is effective for discriminating
two sets of facial feature points. However, its classification ability for the struc-
tural similarity is insufficient in discriminating persons with very similar feature
points configurations.

A linear subspace considered in the MSM is regarded as a point on a Grass-
mann manifold [12], and the concept underlying the MSM is the computation
of distance between points on the Grassmann manifold. To improve the classifi-
cation ability of the MSM, we introduce the notion of Grassmann discriminant
analysis (GDA [10]), which is a generalization of linear discriminant analysis
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Fig. 2. Conceptual diagram of the use of Grassmann discriminant analysis. Each shape
subspace is considered as a point on a Grassmann manifold. Distance between points
on the manifold corresponds to the canonical angle between the subspaces.

(LDA [13]) for dealing with a set of data points as a single datum as shown
in Fig. 2. Grassmann discriminant analysis can find the classification axis that
maximizes the class separability taking the relative similarity between subspaces
into account.

Grassmann discriminant analysis is an extension of linear discriminant analy-
sis by replacing vectors for samples with subspaces generated from the set of
samples. For this extension, GDA utilizes the kernel trick [14] with the kernel
function on the space of subspaces defined as

k(Si,Sj) = sim(Si,Sj), (4)

where sim is defined by Eq. (3). We then define the empirical kernel feature
map [15] of a shape subspace S as

k(S) = (k(S,D1,1), k(S,D1,2), . . . , k(S,D2,1), . . . , k(S,DC,NC
))�, (5)

where Dc,l(c = 1, . . . , C, l = 1, . . . , Nc) are subspaces consist of training samples,
C is the number of the classes (i.e., each person), and Nc is the number of the
samples of class c (i.e., sets of feature points). For the details of GDA, refer
to [10].

3 Proposed Framework

In this section, we explain the detail of the proposed framework for person
authentication. First, we extract facial feature points by applying the circu-
lar separability filter [16] for a gray scale image of a face. Then, we obtain the
3D coordinates of the feature points from a depth image captured with the gray
scale image at the same time.
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A shape subspace is spanned by the three column vectors of a T × 3 matrix
S, which is defined by

S = (d1,d2, . . . ,dT )� =

⎛

⎜⎜⎜⎝

x1 y1 z1
x2 y2 z2
...

...
...

xT yT zT

⎞

⎟⎟⎟⎠ , (6)

where dt = (xt yt zt)�, (1 ≤ t ≤ T ) denotes the positional vector of the t-th
feature point.

In the next subsection, we explain how we extract the feature points on a
face. Then, we explain the way we correspond two sets of feature points extracted
from two face images.

3.1 Feature Extraction with Separability Filter

The separability filter computes the separability η of two regions of an image as
shown in Fig. 3(a). The separability η (0.0 ≤ η ≤ 1.0) of two regions R1 and R2

in an image is calculated as follows.

η =
σ2
b

σ2
T

, (7)

σ2
b =

q1
q

(P̄1 − P̄ )2 +
q2
q

(P̄2 − P̄ )2, (8)

σ2
T =

1
q

∑

Pi∈(R1∪R2)

(Pi − P̄ )2 = P 2 − ¯(P )
2
, (9)

R1

R2

r1 r2

(a)

Separability
filter

Separability
filter

Facial image Separability map

Examples of 
extracted feature 
points (η > 0.5)

(b)

Fig. 3. Circular separability filter (a) and examples of separability map and extracted
feature points (η > 0.5) (b). In (b), salient features such as eyes, nose, and mouth
region are excluded. From another image of the same subject, many feature points are
extracted in the almost same position.
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where σ2
b is the between-class variance, σ2

T is the total variance, q1, q2 are the
numbers of pixels in R1 and R2, respectively, and q = q1 + q2. Pi is the image
feature at pixel i, P̄1, P̄2 are the mean values of the image features in R1 and
R2. P̄ , P 2 are the mean value and the mean of square of the image features from
both regions.

By applying the separability filter on the whole facial image, we can obtain
a separability map, where each local maximum point corresponds to the center
point of a circular object, such as eyeballs, nostril or moles. The separability map
and the example of the extracted feature points are shown in Fig. 3(b). Most of
feature points are obtained accurately. The separability can be regarded as a
measure of reliability of detection. In addition to them, the separability filter
can also extract the corners of eyes and the edges of mouth stably and precisely
[18]. See [16–18] for the details of the separability filter.

3.2 Corresponding Feature Points using Autocorrelation Matrix

Although a shape subspace can be easily generated as the column space of the
matrix S as mentioned previously, the generated shape subspace changes if the
order of the feature points changes. Therefore, we need to correspond points
between two images before calculating the similarity of the shape subspaces.

To deal with this issue, we introduce an effective method for corresponding
points from two images based on autocorrelation matrices, which is an extension
of the method proposed in [8]. The orthogonal projection matrix was used for
corresponding feature points in [8]. In contrast, the autocorrelation matrix is
used in this paper. As the autocorrelation remains more information of the fea-
ture points, we can conduct the corresponding points more stably. The method
is based on the fact that if two shape subspaces are close with respect to canon-
ical angles, the two corresponding autocorrelation matrices can also be close. In
the particular case that the two shape subspaces coincide completely, the cor-
responding autocorrelation matrices also coincide completely after changing the
order of the feature points appropriately.

Let Si and Sj be shape matrices defined by Eq. (6) for two shape subspaces
Si and Sj , respectively. We define autocorrelation matrices of these subspaces as

Ai = SiS�
i , Aj = SjS�

j . (10)

By iteratively comparing rows of the autocorrelation matrices, we correspond the
points in the shape subspaces as follows. Elements of autocorrelation matrices
Ai and Aj are sorted in column-wise manner, and Ai and Aj are re-defined
by the resultant sorted matrices. Then, for each row of Ai, find the row index
of Aj such that the Manhattan distance from the row of Ai is minimum. The
pair of rows from Ai and Aj found by minimizing the Manhattan distance is
associated. This matching procedure is repeated until the residual error defined
between the two autocorrelation matrices is lower than a threshold.
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3.3 Overall Procedure of the Proposed Framework

We summarize the procedure of the proposed framework, considering the case of
classifying an input shape subspace of an unknown person into C person classes.
Given a set of N ′

c RGB-D images (gray image and depth image for each person).

Learning Phase

1. We detect a set of feature points from each gray scale image. To reduce the
influence of the error in detecting feature points as described in Sect. 1, we
generate multiple perturbed shape subspaces by randomly selecting feature
points from the gray images repeatedly. Consequently, the number of the
feature sets of each person class, N ′

c, increases to Nc.
2. We set reference shape matrices Sc,l(c = 1, . . . , C, l = 1, . . . , Nc) in Eq. (6),

and then generate autocorrelation matrices Ac,l in Eq. (10) from them. These
autocorrelation matrices are used as the references in the testing phase.

Testing Phase

1. We set input shape matrix Sinput from a pair of gray scale image and its
corresponding depth image of an unknown person. Then, we generate the
autocorrelation matrix Ainput to correspond the feature points.

2. We conduct the corresponding process between the input shape matrix Sinput

and reference shape matrices Sc,l. In this process, the input shape matrix
Sinput is used as the reference. Namely, the row elements of Sc,l are sorted
based on the that of input matrix Sinput.

3. After completing the corresponding process, we calculate the similarity
among each reference subspaces using Eq. (3). With the similarities, we calcu-
late a discriminative space (its basis) on the Grassman manifold by applying
the GDA to the Gram matrix, which is calculated from the similarities among
all the reference subspaces.

4. We project each subspace onto the discriminative space, and calculate the
distance between the projected input subspace Sinput and reference subspace
Sc,l. Finally, the input subspace is classified to the class of the nearest refer-
ence subspace.

4 Experimental Results and Consideration

We conducted four experiments. (1) To verify the effectiveness of the proposed
framework, we evaluated its basic performance for real face data, (2) to show
the validity of using the information of 3D configuration, we compared the
performances of the methods with 3D configuration and 2D configuration of
feature points, (3) to address the issue that the detected facial feature points
include errors, we evaluate the effectiveness of using a large number of subspaces
obtained by repeated random sampling from the reliable candidates of the fea-
ture points, (4) to evaluate the performance limit of the proposed method, we
emulate the tough situation of distinguishing between twins.
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4.1 Experiment 1

Experimental Condition. We captured a pairs of a depth image and its
corresponding gray scale image by using an RGB-D sensor (Microsoft Kinect
v2) from 16 subjects. The sensor was about 0.6 m away from the subjects sitting
on a chair.

It is desirable to extract 3D coordinates of feature points directly from the
pairs. However, it was difficult to extract very unclear and weak feature points,
due to the comparatively low resolution of 512×424 pixels. To avoid the problem,
we also captured gray scale images with higher resolution of 4, 000×6, 000 pixels
by using a single-lens reflex camera. The camera was about 1.2 m away from the
subjects. We captured 5 high resolution images from subjects in one session. The
subjects were asked to stand up and sit down at the beginning of each session
to produce natural fluctuations in face direction and position. We repeated the
session four times to totally capture 20 images.

We cropped a facial region of 120 × 120 pixels from the low resolution image
and then extracted eight common feature points: the four corners eyes, two nos-
trils, and two edges of mouth. For the high resolution image, we cropped a facial
region of 1, 200×1, 200 pixels from the whole image and detected micro-features
by applying the separability filter to the region except that of eyes, nostrils, and
a mouth as shown in Fig. 3(b). The detected micro-feature is selected by the
descending order of the separability. Besides, we manually extracted the eight
facial feature points. Figure 4 shows an example of the extracted feature points.
Finally, based on the correspondence relation of the positions of the eight facial
feature points of the high- and low- resolution images, we obtained 3D coordi-
nates of the feature points.

In many cases, the features on facial surface are affected by factors such as
genetic or age of subjects. Therefore, the number of obtainable feature points
depends on the subjects. Later in this section, we will see the dependencies of
the classification error on the number of extracted feature points.

Subject 1 Subject 2 Subject 3

Fig. 4. Examples of the extracted feature points. Small points are edge of eyes, nostril,
and corners of the mouth, which are considered as commonly extracted feature points.

The above evaluation procedure is summarized as follows:

1. We obtain the feature points from the images taken from 16 persons. From
each person, 20 images are taken, hence the total number of the collected
images is 320.
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2. We make N = 16 persons’ shape subspaces by using the obtained feature
point sets.

3. Since 20 images were taken from each person, we evaluate the classification
accuracy by 20-fold cross validation. That is, we used one image from each
of N different persons as test dataset, and the rest 19×N subspaces from N
persons as training datasets for constructing shape subspaces for N classes.

The MSM and GDA were used as classifiers and their accuracies were compared.
We considered two simple methods in the classification process:

1-NN: a test sample (a set of feature points) is assigned the class for that of the
closest subspace in the registered subspaces. The closeness is measured based
on the Euclidean distance in the empirical kernel feature space induced by
the kernel function defined in Eq. (4).

Distance to mean: mean points of subspaces for each class is calculated, and a
test sample is assigned the class with the closest mean point. For calculating
mean points of subspaces, distance is calculated based on the Euclidean
distance in the feature space induced by the kernel function defined in Eq. (4).

Results and Discussion. Figure 5(a) and (b) show the error rates (ER) and
equal error rates (EER), respectively, obtained by the MSM followed by 1NN
method (MSM-1NN), the MSM followed by classification based on the distance
to mean vector method (MSM-Mean), GDA followed by 1NN method (GDA-
1NN), and GDA followed by the classification based on the distance to mean
vector method (GDA-Mean).
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Fig. 5. Error rates (a) and equal error rates (b) of classification. GDA- and MSM-1NN
in the legend indicate 1-nearest neighbor method in GDA and MSM, respectively. GDA-
and MSM- Mean indicate classification method based on the mean of the distance from
all the sample data in each class.
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From Fig. 5, MSM-Mean does not show good performance compared to the
other three methods. In the sense of ER, the other three methods are compara-
tively the same. From Fig. 5, we can see that GDA based two methods outper-
form the other two MSM based methods. The better performance of GDA based
methods can be contributed to the fact that GDA can find the most discrimina-
tive classification axes in the same manner as LDA, which cannot be obtained
by using a simple subspace based method such as the MSM. Finally, it is our
surprise that the number of extracted feature points does not have a significant
effect on the classification error rates based on GDA. This suggests that, the
proposed method is applicable even for person with only few feature points such
as moles or freckles on a facial surface.

4.2 Experiment 2

In our proposed framework, the shape subspace is constructed by using the 3D
shape matrix defined in Eq. (6). To see the effectiveness of the use of 3D struc-
tural information for classification, we performed the following simple experi-
ment. Here, we compared the performances of two methods with the 3D shape
matrix in Eq. (6), and with 2D shape matrix which is defined by removing the z
axis of the 3D shape matrix. Classification methods are the same as those used
in the previous section.

The plots of ER and EER of classification results are shown in Fig. 6(a)
and (b), respectively. From these results, we can see that the use of 3D structural
information contributes to the improvement of the classification accuracy.
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Fig. 6. Error rates (a) and equal error rates (b) of classification. One nearest neighbor
based method with GDA and MSM using either 2D or 3D shape matrices are compared.
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4.3 Experiment 3

In this experiment, we use the same dataset and settings as Experiment 1 to
evaluate the effectiveness of using enhance references with perturbed subspaces,
which is described in Sect. 3.3. For this purpose, we compared two types of the
methods: “maximum separability” without the enhanced reference references,
and “random sampling method” with the enhancement.

In maximum separability, 10 feature points with the 10 highest separabilities
were simply selected. Thus, the same as Experiment 1, only 19 shape subspaces
were used as the references for each person. In contrast, in “random sampling
method”, 10 feature points were randomly selected from a set of 15 candidates
of feature points with the 15 highest separabilities. By repeating this process 15
times, we obtained 15 sets feature points. In this case, 19 × 15 shape subspaces
were used as the reference for each person.

For the random sampling, the average of 5 trials was used as the final result.
Table 1 shows the evaluation results of the both methods. In the random sam-
pling, the ER of MSM is 1.19 %, and that of GDA is 1.63 %. In contrast, in the
maximum separability, the ER of MSM is 1.88 %, and that of GDA is 3.44 %.
From these results, we can see clearly the advantage of the random sampling
method. Thus, we conclude that the reference enhancement by the random sam-
pling is valid to solve the problem of the unstable detection of facial feature
points.

Table 1. Error rates and equal error rates of Experiment 3. Maximum separability in
the table indicates the feature points selection method that chooses 10 feature points
from the descending order of the higher separability. Random sampling indicates the
method that chooses 10 feature points from 15 candidate feature points which have
higher separability 15 times to increase the reference data.

Maximum separability Random sampling

ER (%) EER (%) ER (%) EER (%)

MSM GDA MSM GDA MSM GDA MSM GDA

1.88 3.44 3.08 1.88 1.19 1.63 2.32 1.75

4.4 Experiment 4

In this experiment, we consider a more difficult recognition problem of classifi-
cation between twins. To simulate such tough situation, we generated artificially
sets of feature points on a face and explored the performance limit of the pro-
posed method by using them. We should note that the conventional view-based
methods in principle cannot distinguish them completely.
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Experimental Condition. We took 15 almost frontal face images, which has
160 synthetic micro-feature points (Fig. 7, left), from on a subject. These syn-
thetic feature points were generated by pasting a thin film with dots on the face
of a subject. In addition to these micro-feature points, we extracted 8 common
feature points, four edges of two eyes, two edges of a mouth, and two nostrils
(Fig. 7). We assume that the eight facial feature points are stably extracted, and
the artificially generated feature points has the ground truth locations.

8 common 
feature points

Randomly selected
10 artificial 

feature points

class 50class2class1 …

…

160 artificial 
feature points

+

Fig. 7. A schematic diagram of the procedure of Experiment 4. A thin film with markers
is pasted on a face to generate synthetic feature points. Then we obtain eight common
feature points (the edge of eyes, nostril, and corner of the mouth) and 160 artificial
feature points on the film. We select 10 artificial feature points randomly 50 times to
generate artificial twins datasets.

Finally, we randomly selected 10 points from the 160 micro-features and
obtained shape subspaces from them. The random selection was repeated 50
times to obtain N(N = 50) shape subspaces (Fig. 7, right). These 50 classes
correspond to very similar 50 persons with exactly the same eight facial feature
points and with different micro-feature points. By conducting the same procedure
for each of the 15 face images, each of the 50 person can have 15 sample images.

We performed a classification experiments in the same manner as the Exper-
iment 1. One out of 15 sample feature set was drawn from each class and consti-
tuted a test set. The rest 14× 50 sets of feature points were used as the training
data, and in the same manner as in Experiment 1, the ER and EER of both
MSM and GDA based classifiers were evaluated by 15-fold cross validation. The
evaluation was repeated 10 times by varying the seed of random number gener-
ator for generating the 160 random feature points. The experimental results are
summarized in Table 2 and the ROC curve is depicted in Fig. 8. From Table 2,
we can see that the proposed method has favorable classification ability. The ER

Table 2. Error rates and equal error rates of simulation for Experiment 4.

ER (%) EER (%)

MSM GDA MSM GDA

0.08 0.00 0.55 0.19
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Fig. 8. ROC curve of recognition simulation of the situation of distinguishing between
very similar appearance persons.

of the MSM is 0.08 %, while that of GDA is 0.00 %. In addition, from Fig. 8, the
results become better when we use GDA as a classifier than in the case when we
use the MSM. From the above results, we can conclude that our method with
GDA has high classification accuracy even if the objects to discriminate have
similar salient feature points such as those observed for twins, when we utilize
the micro-feature points and apply GDA using 3D structural shape subspace
similarity.

5 Concluding Remarks

In this paper, we proposed a novel framework for personal authentication based
on the 3D configuration of micro-feature points, such as moles and freckles, on a
facial surface. The proposed framework is instantiated by using the separability
filter for feature extraction, feature point association based on the autocorrela-
tion matrix, the notion of shape subspace, and Grassmann discriminant analysis.
The usefulness and validity of the proposed framework are examined through a
set of simple experiments. From the experimental results, we can confirm that
RGB-D images contain features that can be used to form the shape subspace,
and GDA offers highly accurate classification results.

The aim of this paper is to introduce a novel framework for person authenti-
cation, hence there remains a number of problems to be addressed. Making the
feature extraction procedure fully automatic is the most important problem to
be addressed. Also, our future works include large scale experiments to evaluate
the proposed method, and comparison to state-of-the-art methods in the liter-
ature. The reproducibility of feature extraction is not guaranteed, even for the
same person. Sensitivity of the proposed method to the feature points extraction
should be also examined in more detail, and the way to stably extract feature
points from the same person should be also investigated.

Acknowledgement. Part of this work is supported by JSPS KAKENHI Grant
Number 25870811.
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