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Abstract

A constrained pseudorandom function F : K×X → Y for a family T ⊆ 2X of subsets of X is
a function where for any key k ∈ K and set S ∈ T one can efficiently compute a constrained key
kS which allows to evaluate F (k, ·) on all inputs x ∈ S, while even given this key, the outputs
on all inputs x /∈ S look random. At Asiacrypt’13 Boneh and Waters gave a construction
which supports the most general set family so far. Its keys kC are defined for sets decided by
boolean circuits C and enable evaluation of the PRF on any x ∈ X where C(x) = 1. In their
construction the PRF input length and the size of the circuits C for which constrained keys
can be computed must be fixed beforehand during key generation.

We construct a constrained PRF that has an unbounded input length and whose constrained
keys can be defined for any set recognized by a Turing machine. The only a priori bound we
make is on the description size of the machines. We prove our construction secure assuming
public-coin differing-input obfuscation.

As applications of our constrained PRF we build a broadcast encryption scheme where the
number of potential receivers need not be fixed at setup (in particular, the length of the keys is
independent of the number of parties) and the first identity-based non-interactive key exchange
protocol with no bound on the number of parties that can agree on a shared key.

Keywords: Constrained PRFs, broadcast encryption, identity-based non-interactive key ex-
change.

1 Introduction

Constrained PRFs. A pseudorandom function (PRF) [GGM86] is a keyed function F : K×X →
Y for which no efficient adversary, given access to an oracle O(·), can distinguish the case where
O(·) is F(k, ·) with a random key k ∈ K from the case where O(·) is a uniformly random function
X → Y.

Three papers [BW13, BGI14, KPTZ13] independently introduce the concept of a constrained
PRF. Consider a set P, where each v ∈ P specifies some predicate pv : X → {0, 1} that defines a
(potentially exponential-size) subset Sv = {x ∈ X | pv(x) = 1}. A constrained PRF for a predicate
family P is a PRF F with an additional constrain algorithm kv ← F.Constr(k, v) that on input a
key k ∈ K and a predicate v ∈ P outputs a constrained key kv that can be used to compute F(k, x)
on all x ∈ Sv, while, given this key, all values F(k, x) for x 6∈ Sv still look random.

Constrained PRFs (CPRF) have been constructed for several interesting predicates. All three
papers [BW13, BGI14, KPTZ13] show that the classical GGM construction [GGM86] of a PRF with
input domain {0, 1}n yields a prefix-constrained PRF. This means P = {0, 1}≤n and for any v ∈ P
the derived key kv allows to compute F(k, x) for all x with prefix v, i.e., x = v‖x′ ∈ {0, 1}n for some
x′. Assuming (leveled) multilinear maps [GGH13a, CLT13, LSS14], Boneh and Waters [BW13]
construct CPRFs for much more general set systems. They present a bit-fixing PRF, where
P = {0, 1, ?}n and for v ∈ P we have pv(x) = 1 if x agrees with v on all indices different from ‘?’,
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i.e., for all i = 1, . . . , n, either v[i] = ? or v[i] = x[i]. They moreover construct a circuit-constrained
PRF, where the predicates are arbitrary circuits C : {0, 1}n → {0, 1} of some fixed depth.

CPRFs have already found many interesting applications. From a prefix CPRF, one can
construct a puncturable PRF [SW14], which is a constrained PRF for predicates P = {0, 1}n
where for v ∈ P, the key kv lets one compute F(k, x) on all x 6= v. The GGM construction
yields a puncturable PRF with punctured keys whose length is linear in the PRF input length.
Puncturable PRFs play a crucial role in the security proofs of most of the recent constructions
based on indistinguishability obfuscation [BGI+12, GGH+13b], and we will also use them in this
paper.

The more general bit-fixing and circuit-constrained PRFs can be used to construct a variety
of sophisticated cryptographic tools including broadcast encryption (BE) and identity-based non-
interactive key-exchange, as outlined next.

Broadcast encryption. In a BE scheme [FN94, YFDL04, BGW05, BH08, PPS11, BWZ14]
there is a set of n users, and for any given subset S ⊆ {1, . . . , n} of users, we want to be able to
encrypt a message (as a short ciphertext) that can be decrypted only by the users included in S.
This can be achieved using a bit-fixing PRF with domain {0, 1}n: Sample a random key k, and
give a constrained key kvi to user i where vi[i] = 1 and vi[j] = ? for any j 6= i. Thus, kvi allows to
evaluate the PRF on exactly those inputs with a ‘1’ in position i.

To broadcast a message m to a set S of users, we simply send a symmetric encryption of m
under the key F(k, xS), where xS [i] = 1 if i ∈ S and xS [i] = 0 otherwise. Note that user i can
compute F(k, xS) (and thus decrypt) iff her key kvi satisfies vi[i] = xS [i], which by construction
holds iff i ∈ S.

Non-interactive key exchange. In an identity-based non-interactive key exchange (ID-
NIKE) [SOK00, FHPS13, BW13] scheme there are parties that each have some identity id ∈ {0, 1}`.
For any set S of at most n parties we want the parties in S to be able to locally compute
a shared key KS which is indistinguishable from random for all parties outside of S. Such a
scheme can be constructed from a bit-fixing PRF F with domain {0, 1}n·`. At setup, sample a

key k for F and give to party id ∈ {0, 1}` a set of n constrained keys k
(1)
id , . . . , k

(n)
id , where k

(i)
id

is a key for the set ?(i−1)`‖id‖?(n−i)`. Now, only parties id1, . . . , idn can compute the joint key
KS := F(k, id1‖id2‖ . . . ‖idn).

CPRFs with unbounded input length. The disadvantage of the BE and ID-NIKE construc-
tions just outlined is that the number n of possible recipients (for BE) or parties agreeing on a key
(for ID-NIKE) must be fixed when setting up the system. Moreover, the length of the constrained
keys given to every user is at least linear in n.

In this paper we construct a constrained PRF for which there is no a priori bound on the input
length. The constraints on keys are given by Turing machines (TM), that is, given a key k and a
machine M , we can derive a constrained key kM that allows to compute F(k, x) for any input x
for which M(x) = 1. The only thing that must be bounded beforehand is the size of the TMs that
we want to support. In our construction a constrained key for a machine M will be an obfuscated
circuit whose size only depends on the size of M .

Adaptive vs. selective security. Security of constrained PRFs is defined via a game in
which a challenger picks a random key k and the adversary chooses x∗ ∈ X and must distinguish
F(k, x∗) from random. The adversary has also access to oracles to query constrained keys for sets
S 63 x∗. We prove selective security of our CPRF where the adversary must choose x∗ before it can
query constrained keys. From a selectively secure CPRF we can get an adaptively secure CPRF
(where the adversary can decide on x∗ after its key queries) via “complexity leveraging”—but
this reduction loses a factor that is exponential in the input length. Proving adaptive security
for CPRFs without an exponential security loss is generally hard and Fuchsbauer et al. [FKPR14]
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show that for the bit-fixing CPRF from [BW13] any “simple” security reduction must lose an
exponential factor.

Adaptive security of CPRFs was proved for the GGM-based prefix-constrained PRF in [FKPR14]
losing only a quasi-polynomial (rather than an exponential) factor. Moreover, Hohenberger, Kop-
pula and Waters [HKW14] construct an adaptively secure puncturable PRF with polynomial se-
curity loss using indistinguishability obfuscation (iO) [GGH+13b, SW14, PST14]. Hofheinz et
al. [HKKW14] construct an adaptively secure bit-fixing PRF, also using iO, and additionally re-
lying on the random-oracle model. We leave the construction of adaptively secure constrained
unbounded-length PRFs (for any interesting set of constraints) as a challenging open problem.

Applications. As two applications of our constrained PRFs we show that they directly yield
broadcast encryption and ID-NIKE for an unbounded number of parties. In particular, all pa-
rameters (private/public key size and for BE also ciphertext overhead) are poly-logarithmic in the
number of potential parties (or equivalently, polynomial in the length of the identities). For BE,
this has only recently been achieved by Boneh, Waters and Zhandry [BWZ14], who construct a
BE scheme supporting n parties directly from O(log(n))-way multilinear maps. For ID-NIKE, our
construction is the first to achieve this; all previous schemes require the maximum size of the group
of users agreeing on a key to be fixed at setup, and they have parameters that depend at least
linearly on this size.

A circuit-constrained PRF. A first idea for constructing a constrained PRF is to start with a
standard PRF F; given a key k and a set S, we can define a constrained key as a program PS which
on input x checks whether x ∈ S, and if so, outputs F(k, x). We cannot define the constrained key
as the program PS as such, since an adversary could extract the key k from PS , and hence F(k, ·)
would not be pseudorandom for x /∈ S given PS .

When S is decided by a circuit, the above issue can be avoided by obfuscating PS before
outputting it. The strong notion of virtual black-box obfuscation, which requires that an obfuscated
program leaks nothing about the program apart from its input/output behavior, is not achievable
for general functionalities [BGI+12]. We therefore use indistinguishability obfuscation (iO), which
only guarantees that obfuscations of two circuits (of the same size) that output the same on any
input are indistinguishable. A candidate iO scheme was proposed by Garg et al. [GGH+13b].
Although the notion seems weak, it has proven to be surprisingly useful.

Consider a CPRF derived from a puncturable PRF F for which a constrained key kC for a
circuit C is defined as an iO obfuscation of the circuit PC , which on input x returns F(k, x) if
C(x) = 1 and ⊥ otherwise. In the selective-security game an adversary A chooses an input x∗,
can then ask for constrained keys for circuits C with C(x∗) = 0 and must distinguish F(k, x∗)
from random. In the security proof we first define a modified game where A, when asking for a
constrained key for a circuit C, is given an iO obfuscation of a circuit P ′C that outputs F(kx∗ , x) if
C(x) = 1 and ⊥ otherwise. The difference between PC and P ′C is that in the latter F is evaluated
using a key kx∗ that is punctured at x∗.

Recall that the adversary can only submit circuits C with C(x∗) = 0 to its oracle. For every
such C we have PC(x∗) = P ′C(x∗) = ⊥, and on any other input x, PC and P ′C also return the same
output (namely F(k, x) if C(x) = 1 and ⊥ otherwise). By security of iO, obfuscations of PC and
P ′C are thus indistinguishable, which means that the modified game is indistinguishable from the
original game. From an adversary A winning the modified game we obtain an adversary B that
breaks the puncturable PRF F: When A commits to x∗, B asks for a punctured key kx∗ , which
allows B to answer A’s constrained-key queries in the modified game. If A distinguishes F(k, x∗)
from random then so does B.

A TM-constrained PRF. The above construction uses iO for circuits. Recently, Koppula,
Lewko and Waters [KLW15] constructed iO for Turing machines. However, we cannot simply
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replace circuits by TMs in the construction just sketched. In the security proof we need to upper-
bound the size of the TM to be obfuscated when we switch from a TM using k to a TM using
kx∗ . This is however impossible because the size of the underlying punctured key kx∗ cannot be a
priori bounded for unbounded inputs x∗.

To overcome this problem, we use a collision-resistant hash function H to map long inputs
to inputs of fixed length. Concretely, we define our CPRF as F(k, x) := PF(k,H(x)), where PF
is a puncturable PRF. Consequently, a constrained key would be an obfuscation of the TM PM
that checks the input legitimacy of x, i.e., whether M(x) = 1, and evaluates PF on H(x). In
order to give a reduction of security to the puncturable PRF PF, we would, as before, replace the
obfuscation of PM by one of P ′M , which uses kH(x∗) instead of k. While this solves the size-bounding
problem, it poses new challenges. Namely, iO is not sufficient as PM and P ′M are in general not
functionally equivalent: consider a machine M with M(x∗) = 0 and M(x) = 1 for some x with
H(x) = H(x∗); then PM (x) = F(k, x), whereas P ′M (x) = ⊥.

Differing-input obfuscation. Instead of iO, we resort to a stronger form of obfuscation.
Whereas iO yields indistinguishable obfuscations of programs that are functionally equivalent,
differing-input obfuscation (diO, a.k.a. extractability obfuscation) introduced by [BGI+12, BST14]
for circuits and later by [BCP14, ABG+13] for TMs, guarantees that from an adversary that
distinguishes obfuscations of two circuits (or TMs), one can extract an input on which they differ.
diO is a strong assumption and in fact was shown to be implausible to exist [GGHW14]. We
will use a weaker assumption suggested by Ishai, Pandey and Sahai [IPS15] and called public-
coin diO, for which no such implausibility results are known. Informally, this notion only implies
indistinguishability for pairs of programs if it is hard to find an input on which the two programs
differ even when given the randomness used to sample this pair of circuits.

We replace iO in our CPRF construction by public-coin diO for TMs with unbounded inputs
from [IPS15] and define a constrained key for M as a diO obfuscation of PM . This solution is not
without limitations; a constrained key is now a diO-obfuscated TM and therefore keys are large
and their size depends on the running time of the constraining TM M , which we show how to
avoid next.

SNARKs. We “outsource” the check of input legitimacy (whether x satisfies M(x) = 1) to the
party that evaluates the PRF. The latter first computes a succinct non-interactive argument of
knowledge (SNARK) of a legitimate x and passes this SNARK to the obfuscated program. A
SNARK system is a computationally sound non-interactive proof of knowledge for which proofs
are universally succinct. That is, the length of a proof π for a statement η as well as its verification
time are bounded by an a-priori-fixed polynomial in the length |η| of the statement. In particular,
we use a SNARK system for the language Llegit := {(H,M, h) | ∃x : M(x) = 1 ∧H(x) = h}.

Instead of running M , the program PM now only needs to verify a SNARK, which can be
implemented by a circuit ; we thus only require obfuscation of circuits. Let PM be the circuit that
on input (h, π) outputs PF(k, h) iff π is a valid SNARK for (H,M, h). A constrained key is then
a public-coin diO obfuscation of PM , whose size only depends on the size of M but not on its
running time.

As we use public-coin diO, we require the hash function H to be public-coin [HR04], that is,
collision-resistance (CR) must hold when the adversary is given the randomness used to sample
a hash function from the family; moreover, the SNARK must be in the common random string
model. Such hash functions and SNARKs exist as discussed in [IPS15]. Assuming puncturable
PRFs, public-coin CR hash functions, a SNARK for the language Llegit and public-coin diO for
circuits, our construction is a TM-constrained PRF for inputs of unbounded length.
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ExpO,bF,A(λ)

k ← F.Smp(1λ); C,E := ∅
(x∗, st)← AO1

1 (1λ)
If x∗ ∈ E then abort
If b = 1 then y := F.Eval(k, x∗)
Else y ← Y
C := C ∪ {x∗}
Return b′ ← AO2

2 (st, y)

Oracle Constr(S)

If S /∈ Sλ ∨ S ∩ C 6= ∅
Return ⊥

E := E ∪ S
kS ← F.Constr(k, S)
Return kS

Oracle Eval(x)

If x /∈ X ∨ x ∈ C
Return ⊥

E := E ∪ {x}
y = F.Eval(k, x)
Return y

Figure 1: The security game for constrained PRFs.

2 Preliminaries

2.1 Constrained and Puncturable PRFs

Definition 1 (Constrained Functions). A family of keyed functions Fλ = {F : K × X → Y} over
a key space K, a domain X and a range Y is efficiently computable if there exist a PPT sampler
F.Smp and a deterministic polynomial-time (PT) evaluator F.Eval such that:

• k ← F.Smp(1λ): On input a security parameter λ, F.Smp outputs a key k ∈ K.

• F(k, x) := F.Eval(k, x), for k ∈ K and x ∈ X .

We say Fλ is constrained w.r.t. a family Sλ of subsets of X , with constrained key space KS such
that KS ∩ K = ∅, if F.Eval accepts inputs from (K ∪ KS) × X and there exists the following PPT
algorithm:

• kS ← F.Constr(k, S): On input a key k ∈ K and a description1 of a set S ∈ Sλ, F.Constr
outputs a constrained key kS ∈ KS such that

F.Eval(kS , x) =

{
F(k, x) if x ∈ S
⊥ otherwise

.

Definition 2 (Security of Constrained PRFs). A family of (efficiently computable) constrained
functions Fλ = {F : K × X → Y} is selectively pseudorandom, if for every PPT adversary A =

(A1,A2) in ExpO,bF,A, defined in Fig. 1, with O1 = ∅ and O2 = {Constr(·),Eval(·)}, it holds that

AdvOF,A(λ) :=
∣∣Pr

[
ExpO,0F,A(λ) = 1

]
− Pr

[
ExpO,1F,A(λ) = 1

]∣∣ = negl(λ) . (1)

Fλ is adaptively pseudorandom if the same holds for O1 = O2 = {Constr(·),Eval(·)}.

Puncturable PRFs [SW14] are a simple type of constrained PRFs whose domain is {0, 1}n for some
n, and constrained keys can only be derived for the sets {{0, 1}n \ {x1, . . . , xm} | x1, . . . , xm ∈
{0, 1}n,m = poly(λ)}, i.e., a punctured key kx1...xm can evaluate the PRF on all inputs except
on polynomially many x1, . . . , xm. We only require pseudorandomness to hold against selective
adversaries.

Definition 3 (Puncturable PRFs [SW14]). A family of PRFs Fλ = {F : K × {0, 1}n → Y} is
puncturable if it is constrainable for sets {0, 1}n \ T , where T ⊆ {0, 1}n is of polynomial size. Fλ
is (selectively) pseudorandom if for every PPT adversary A = (A1,A2) in ExpPCT-b

F,A (λ), defined
in Fig. 2, we have

AdvPCT
F,A (λ) :=

∣∣Pr
[
ExpPCT-0

F,A (λ) = 1
]
− Pr

[
ExpPCT-1

F,A (λ) = 1
]∣∣ = negl(λ) .

1As outlined in the introduction, we assume that every set in S can be specified by a short and efficiently
computable predicate.
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ExpPCT-b
F,A (λ)

(x∗, T, st)← A1(1λ); If x∗ /∈ T , then abort
k ← F.Smp(1λ); kT ← F.Constr(k, {0, 1}n \ T )
If b = 1 then y := F.Eval(k, x∗); else y ← Y
Return b′ ← AEval(·)

2 (st, kT , y)

Oracle Eval(x)

If x = x∗, return ⊥
Return F.Eval(k, x)

Figure 2: The selective-security game for puncturable PRFs.

Puncturable PRFs are easily obtained from prefix-constrained PRFs, which were constructed
from the GGM PRF [GGM86] in [BW13, BGI14, KPTZ13].

2.2 Collision-Resistant Hash Functions

A family of hash functions is collision-resistant (CR) if given a uniformly sampled function, it is
hard to find inputs on which it collides. It is called public-coin CR if this is hard even when given
the coins used to sample the function.

Definition 4 (Public-Coin CR Hash Functions [HR04]). A family of (efficiently computable) func-
tions Hλ = {H : {0, 1}∗ → {0, 1}n}, for which Smp samples a random function, is public-coin
collision-resistant if for every PPT adversary A it holds that

Pr

[
r ← {0, 1}poly(λ);H := Smp(1λ, r);
(x1, x2)←A(1λ, r)

:
H(x1) = H(x2)

∧ x1 6= x2

]
= negl(λ) .

2.3 Indistinguishability and Differing-Input Obfuscation

As a consequence of the impossibility of virtual black-box obfuscation, Barak et al. [BGI+12],
proposed two weaker notions: indistinguishability obfuscation (iO) and differing-input obfuscation
(diO). The first, iO, guarantees that obfuscations of equivalent functionalities are computationally
indistinguishable.

Definition 5 (iO [GGH+13b]). A uniform PPT algorithm iO is an indistinguishability obfuscator
for a family of polynomial-size circuits Cλ, if the following hold:

• For all λ ∈ N, C ∈ Cλ, and x: Pr
[
C̃ ← iO(1λ, C) : C(x) = C̃(x)

]
= 1.

• For every PPT adversary A and all C0, C1 ∈ Cλ s.t. ∀x, C0(x) = C1(x):∣∣Pr
[
A
(
iO(1λ, C0)

)
= 1
]
− Pr

[
A
(
iO(1λ, C1)

)
= 1
]∣∣ = negl(λ) .

Differing-input obfuscation is a stronger notion which requires that for any efficient adversary
that distinguishes obfuscations of two functionalities, there exists an efficient extractor E that
extracts a point on which the functionalities differ. Ishai, Pandey and Sahai [IPS15] weaken this
to public-coin diO, where the extractor is given the coins used to sample the functionalities. We
will use this concept for circuits, which is formalized by requiring that indistinguishability only
holds for circuits output by a sampler Samp for which no differing-input extractor exists.

Definition 6 (Public-Coin Differing-Input Sampler [IPS15]). A non-uniform PPT sampler Samp
is a public-coin differing-input sampler for a polynomial-size family of circuits Cλ if the output of
Samp is in Cλ × Cλ and for every non-uniform PPT extractor E it holds that

Pr
[
r ← {0, 1}poly(λ); (C0, C1) := Samp(1λ, r);x← E(1λ, r) : C0(x) 6= C1(x)

]
= negl(λ) . (2)
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Definition 7 (Public-Coin diO [IPS15]). A uniform PPT algorithm diO is a public-coin differing-
input obfuscator for a family of polynomial-size circuits Cλ if the following hold:

• For all λ ∈ N, C ∈ Cλ and x: Pr
[
C̃ ← diO(1λ, C) : C(x) = C̃(x)

]
= 1.

• For every public-coin differing-input sampler Samp for a family of polynomial-size circuits
Cλ, every non-uniform PPT distinguisher D and every λ ∈ N:∣∣Pr

[
r ← {0, 1}poly(λ); (C0, C1) := Samp(1λ, r); C̃ ← diO(1λ, C0) : 1← D(r, C̃)

]
− (3)

Pr
[
r ← {0, 1}poly(λ); (C0, C1) := Samp(1λ, r); C̃ ← diO(1λ, C1) : 1← D(r, C̃)

]∣∣ = negl(λ) .

A candidate iO was constructed based on a simplified variant of multilinear maps and proven
secure in an idealized model [GGH+13b]. The candidate was conjectured to be a diO for NC1

[BCP14]. Unfortunately, Garg et al. [GGHW14] present an implausibility result for diO for arbi-
trary distributions. However, Ishai et al. [IPS15] argue that current candidate constructions for
iO satisfy their notion of public-coin diO.

2.4 Succinct Non-interactive Arguments of Knowledge

A succinct non-interactive argument of knowledge (SNARK) is a computationally sound non-
interactive proof-of-knowledge system for which proofs are universally succinct. A proof π of
knowledge of a witness w to a statement η is succinct if the proof length and its verification time
are bounded by an a priori fixed polynomial in the statement length |η|.

Definition 8 (The Universal Relation RU [BG08]). The universal relation RU is the set of in-
stance/witness pairs of the form ((M,m, t), w) where M is a TM accepting an input/witness pair
(m,w) within t steps. In particular |w| ≤ t.

We define SNARK systems in the common-random-string model following Bitansky et al.
[BCCT13, BCC+14, IPS15] as follows.

Definition 9 (SNARK). A pair of PPT algorithms (Prove,Verify) is a succinct non-interactive
argument of knowledge (SNARK) in the common-random-string model for a language L with wit-
ness relation R ⊆ RU if there exist polynomials p, `, q independent of R such that the following
hold:

1. Completeness: For every (η = (M,m, t), w) ∈ R the following holds:

Pr
[
crs← {0, 1}poly(λ); π ← Prove(crs, η, w) : Verify(crs, η, π) = 1

]
= 1 .

Moreover, Prove runs in time q(λ, |η|, t).

2. (Adaptive) Soundness: For every PPT adversary A:

Pr
[
crs← {0, 1}poly(λ); (η, π)← A(crs) : Verify(crs, η, π) = 1 ∧ η /∈ L

]
= negl(λ) .

3. (Adaptive) Argument of knowledge: For every PPT adversary A there exists a PPT extractor
EA such that

Pr

[
crs← {0, 1}poly(λ); r ← {0, 1}poly(λ)
(η, π) := A(crs; r);w ← EA(1λ, crs, r)

:
Verify(crs, η, π) = 1

∧ (η, w) /∈ R

]
= negl(λ) .

4. Succinctness: For all (crs, η, w) ∈ {0, 1}poly(λ)×R, the length of a proof π ← Prove(crs, η, w)
is bounded by `(λ, log t) and the running time of Verify(crs, η, π) is bounded by p(λ + |η|) =
p(λ+ |M |+ |m|+ log t).
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Bitansky et al. [BCC+14] construct SNARKs forRc ⊂ RU where t = |m|c and c is a constant, based
on knowledge-of-exponent assumptions [BCCT13] and extractable collision-resistant hash functions
(ECRHF) [BCC+14]. These are both non-falsifiable assumptions, but Gentry and Wichs [GW11]
prove that SNARKs cannot be built from falsifiable assumptions via black-box reductions. Relying
on exponentially hard one-way functions and ECRHF, [BCC+14] construct SNARKs for RU .

3 Constrained PRFs for Unbounded Inputs

As a warm-up we first construct a constrained PRF for sets decided by polynomial-size circuits
and show how to extend it to Turing machines in Sect. 3.2.

3.1 A Circuit-Constrained PRF

Our circuit-constrained PRF F uses a puncturable PRF PF with input space X = {0, 1}n. The
output of F(k, x) is simply PF(k, x). To constrain F w.r.t. a circuit C, we construct a circuit Pk,C ,
which on input x runs C on x and outputs PF(k, x) if C(x) = 1, and ⊥ otherwise. A constrained
key kC for C is then an indistinguishability obfuscation of Pk,C , i.e., kC ← iO(1λ, Pk,C).

Construction 1 (Circuit-Constrained PRF). Let Cλ = {C : {0, 1}n → {0, 1}} be a family of
polynomial-size circuits, PFλ = {PF : K × {0, 1}n → Y} a family of selectively secure puncturable
PRFs, and iO an indistinguishability obfuscator for a family of poly-size circuits Pλ that contains
all circuits defined in (4) for all C ∈ Cλ. We construct a family of PRFs Fλ = {F : K×{0, 1}n → Y}
constrained w.r.t. Cλ with a constrained-key space KC such that KC ∩ K = ∅.2

k ← F.Smp(1λ): Given security parameter λ, output k ∈ K as k ← PF.Smp(1λ).

kC ← F.Constr(k,C): On input a secret key k ∈ K and a description of a circuit C ∈ Cλ, output

kC ∈ KC as kC ← iO(1λ, Pk,C), with Pk,C ∈ Pλ defined as:

Pk,C(x) :=

{
PF(k, x) if |x| = n ∧ C(x) = 1
⊥ otherwise

. (4)

y := F.Eval(κ, x): On input κ ∈ K ∪ KC and x ∈ {0, 1}n, do the following:

• If κ ∈ K, output PF.Eval(κ, x).

• If κ ∈ KC, interpret κ as a circuit and output κ(x).

The proof of selective security of F , as just constructed, is relatively straightforward. Recall
that in the selective-security game the adversary A outputs x∗, then the challenger chooses k ←
F.Smp and gives A access to a constrained-key oracle Constr, which can be queried on any C
with C(x∗) = 0. A must then distinguish F(k, x∗) from random. We modify this game by deriving
from k a key kx∗ which is punctured at x∗ and computing constrained keys as obfuscations of
Pkx∗ ,C (defined like Pk,C but using kx∗ instead of k). Since PF(k, x) = PF(kx∗ , x) for all x 6= x∗,
and since for any circuit C that the adversary can query we have Pk,C(x∗) = Pkx∗ ,C(x∗) = ⊥,
the circuits Pkx∗ ,C and Pk,C are functionally equivalent, and thus by Def. 5 the two games are
indistinguishable. Note that we also need to ensure that these circuits are of the same size, which
can be achieved by appropriate padding.

An adversary A winning the modified game can be translated into an adversary B against PF .
In the security game for PF (Fig. 2), B runs (x∗, st)← A and outputs (x∗, {x∗}, st). Given kx∗ and
y, B can simulate the modified game and output whatever A outputs. B’s probability of breaking
the security of PF is the same as that of A winning the modified game.

2W.l.o.g. we assume from now on that K ∩KC = ∅, as this can always be achieved by simply prepending a ‘0’ to
elements from K and a ‘1’ to elements from KC .
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3.2 A TM-Constrained PRF

In this section we construct a family of constrained PRFs for unbounded inputs whose keys can
be constrained to sets decided by Turing machines (TM). As a first attempt, in Construction 1 we
could replace C in Pk,C with a TM M , yielding a TM Pk,M . We would thus have to use obfuscation
for Turing machines rather than just circuits. However, the problem with this construction is that
in the proof we would have to replace the underlying PRF key k with a punctured key kx∗ for
some x∗ whose length is not a priori bounded. It is thus not clear how to pad the original key,
which could be done in our previous construction.

To overcome this problem we compress the unbounded input to a fixed length by applying a
collision-resistant hash function H to it, that is, we evaluate the PRF on hashed inputs. Moreover,
we outsource the check of input legitimacy outside the program Pk,M by using a SNARK. In
particular, when evaluating the PRF, the user computes a SNARK proving that a given hash is
the hash value of a legitimate input. The program Pk,M is then only given the hash of the input
to the PRF and a SNARK proof confirming the legitimacy of a preimage, and evaluates the PRF
on the hash if the proof verifies.

Note that Pk,M can now be implemented by a circuit, which means that we can avoid obfus-
cation of Turing machines altogether. In our construction a constrained key kM for a TM M is a
public-coin diO obfuscation of a circuit Pk,M which is given (h, π) and checks whether π proves
knowledge of an x such that H(x) = h and M(x) = 1, and if so, evaluates PF on h.

Let us justify the use of (public-coin) diO and SNARKs. As for our circuit-constrained PRF,
we want to reduce the selective security of the TM-constrained PRF F to the selective security of
the underlying puncturable PRF PF. In a first game hop we replace Pk,M with Pkh∗ ,M , which is
identical to Pk,M except that the key k is replaced with a key kh∗ that punctures out h∗ := H(x∗).
Unfortunately, the two circuits Pk,M and Pkh∗ ,M are not equivalent: there exists x 6= x∗ such that
H(x) = H(x∗), and on input H(x), Pk,M outputs PF(k,H(x)) = PF(k, h∗) and Pkh∗ ,M outputs ⊥.
We thus cannot use iO and hence we use diO instead. This requires that it be hard to find an
input (h, π) on which the two circuits differ, which means that either π proves a wrong statement
or it proves knowledge of some x with H(x) = H(x∗). That is, finding a differing input amounts
to either breaking soundness of the SNARK or breaking collision-resistance of H. Since both are
hard even for adversaries that know the coins used to sample the hash function or the common
random string for the SNARK, it suffices to use public-coin diO.

Finally, hash-function collisions are also the reason we need to use SNARKs rather than
SNARGs: if an adversary can distinguish obfuscations of Pk,M and Pkh∗ ,M by finding a colli-
sion for H then we need to extract this collision in the security proof, which SNARKs (arguments
of knowledge) allow us to do.

Definition 10 (Rlegit). We define the relation Rlegit ⊂ RU , with RU defined in Def. 8, to be
the set of instance/witness pairs (((H,M), h, t), x) such that M(x) = 1 and H(x) = h within t
steps, and M is a TM and H is a hash function. We let Llegit be the language corresponding to
Rlegit. For notational convenience, we abuse the notation and write ((H,M, h), x) ∈ Rlegit to mean
(((H,M), h, t), x) ∈ Rlegit while implicitly setting t = 2λ.

Remark 1. Let t = 2λ in the definition of Rlegit; then by succinctness of SNARKs (Def. 9), the
length of a SNARK proof is bounded by `(λ) and its verification time is bounded by p(λ + |M | +
|H|+ |h|), where p, ` are a priori fixed polynomials that do not depend on Rlegit.

Construction 2 (TM-Constrained PRF). Let PFλ={PF : K×{0, 1}n→Y} be a selectively secure
puncturable PRF, Hλ = {H : {0, 1}∗ → {0, 1}n}λ a family of public-coin CR hash functions, diO
a public-coin diO obfuscator for a family of polynomial-size circuits Pλ, and SNARK a SNARK
system for Rlegit (cf. Def. 10). We construct a family of PRFs Fλ = {F : K × {0, 1}∗ → Y}
constrained w.r.t. to any polynomial-size family of TMs Mλ as follows:
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Exp
(∅,{Constr,Eval}),b
F,A (λ)

(x∗, st)← A1(1λ)
K ← F.Smp(1λ)
If b = 1
y∗ := F.Eval(K,x∗)

Else
y∗ ← Y

b′←AConstr(·),Eval(·)
2 (st, y∗)

Return b′

Oracle Constr(M)

If M /∈Mλ ∨M(x∗) = 1
Return ⊥

kM ← F.Constr(K,M)
Return kM

Oracle Eval(x)

If x = x∗

Return ⊥
y = F.Eval(K,x)
Return y

Exp
b,(c)
F,A(λ) // c ∈ {0, 1, 2}

(x∗, st)← A1(1λ)
H ← H.Smp(1λ)
crs← {0, 1}poly(λ)

k ← PF.Smp(1λ)
kh∗ ← PF.Constr(k, {0, 1}n \ {H(x∗)})

pp := (H, crs)

If b = 1, y∗ := PF.Eval(k,H(x∗)), else y∗ ← Y
b′ ← AConstr(·),Eval(·)

2 (st, y∗)
Return b′

Oracle Constr(M)

If M /∈Mλ ∨M(x∗) = 1
Return ⊥

If c = 0

P := PM,H,crs,k

(as defined in (5))
Else
P := PM,H,crs,kh∗

P̃ ← diO(1λ, P )

Return kM := (M, P̃ ,pp)

Oracle Eval(x)

If x = x∗

Return ⊥
If c ≤ 1

y := PF.Eval(k,H(x))
Else

If H(x) = H(x∗), abort
Else y := PF.Eval(kh∗ , H(x))

Return y

Figure 3: The original security game and hybrids used in the proof of Theorem 1.

K ← F.Smp(1λ): On input a security parameter λ, sample H ← H.Smp(1λ), crs← {0, 1}poly(λ), k ←
PF.Smp(1λ), set pp := (H, crs)) and return K := (k, pp).

kM ← F.Constr(K,M): On input K = (k,pp = (H, crs)) and M ∈Mλ, set

PM,H,crs,k(h, π) :=

{
PF.Eval(k, h) if SNARK.Verify(crs, (H,M, h), π) = 1
⊥ otherwise

(5)

and compute P̃ ← diO(1λ, PM,H,crs,k). Return kM := (M, P̃ , (H, crs)).

y := F.Eval(κ, x): On input κ ∈ K ∪ KM and x ∈ {0, 1}∗, do the following:

• If κ ∈ K, κ = (k, (H, crs)): return PF.Eval(k,H(x)).

• If κ ∈ KM, κ = (M, P̃ , (H, crs)): if M(x) = 1, let h := H(x) (thus ((H,M, h), x) ∈
Rlegit), compute π ← SNARK.Prove(crs, (H,M, h), x), interpret P̃ as a circuit and return

P̃ (h, π).

Remark 2. Note that Pλ is in fact a family of circuits with an input length n + |π| where |π| is
upper bounded by `(λ) even for an exponentially long x (cf. Remark 1).

Theorem 1. Fλ of Construction 2 is a selectively secure family of constrained PRFs with in-
put space {0, 1}∗ for which constrained keys can be derived for any set that can be decided by a
polynomial-size Turing machine.

Proof. Let A be an arbitrary PPT adversary for game Exp
(∅,{Constr,Eval}),b
F,A (λ), as defined in

Fig. 3, which we abbreviate as Expb for simplicity. We need to show that Exp0 and Exp1 are
indistinguishable. Our proof will be by game hopping and we define a series of hybrid games
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Expb,(0) := Expb, Expb,(1) and Expb,(2), which are all defined in Fig. 3. We show that for b = 0, 1
and c = 0, 1 the games Expb,(c) and Expb,(c+1) are indistinguishable and that Exp0,(2) and Exp1,(2)

are also indistinguishable, which concludes the proof.

Expb,(0) is the original game Exp
b,(∅,{Constr,Eval})
F,A (λ) for Construction 2.

Expb,(1) differs from Expb,(0) by replacing the full key of the puncturable PRF PF, with one that
is punctured at H(x∗) in the definition of P .

Expb,(2) differs from Expb,(1) by answering Eval queries using the punctured key kh∗ and aborting
whenever the query is a collision with x∗ for H.

The only difference between Expb,(0) and Expb,(1) is the definition of the circuits P that are
obfuscated when the Constr oracle is queried. In Expb,(0) the circuit P is defined as in (5), with
k ← PF.Smp(1λ). In Expb,(1), the key k is replaced by kh∗ ← PF.Constr(k, {0, 1}n\{H(x∗)}), a key
that punctures out H(x∗). By a hybrid argument there must exist some query (say the ith for Mi)
where the adversary distinguishes a diO obfuscation of PMi,H,crs,k from one of PMi,H,crs,kh∗ . Thus,

there exists a diO extractor that extracts an input (ĥ, π̂) on which PMi,H,crs,k and PMi,H,crs,kh∗

differ.
By correctness of PF, the circuits only differ on inputs (ĥ, π̂), where

ĥ = H(x∗) , (6)

as that is where the punctured key behaves differently. Moreover, the extracted proof π̂ must
be valid for (H,Mi, ĥ), as otherwise both circuits output ⊥. By SNARK extractability, we can
extract a witness x̂ for (H,Mi, ĥ) ∈ Llegit, that is, (i) Mi(x̂) = 1 and (ii) H(x̂) = ĥ. Since Mi is a
legitimate query, we have Mi(x

∗) = 0, which together with (i) implies x̂ 6= x∗. On the other hand,
(ii) and (6) imply H(x̂) = H(x∗). Together, this means (x̂, x∗) is a collision for H.

Proposition 1. For b = 0, 1, Expb,(0) and Expb,(1) are computationally indistinguishable if diO
is a public-coin differing-input obfuscator and H is public-coin collision-resistant.

For the game hop from games Expb,(1) to Expb,(2), indistinguishability follows directly from
collision resistance of H, as the only difference is that Expb,(2) aborts when A finds a collision.

Proposition 2. For b = 0, 1, Expb,(1) and Expb,(2) are computationally indistinguishable for if
H is collision-resistant.

We have now reached a game, Expb,(2), in which the key k is only used to create a punctured
key kh∗ . The experiment can thus be simulated by an adversary B against selective security
of PF , which first asks for a key for the set {0, 1}n \ {H(x∗)} and then uses A to distinguish
y∗ = PF.Eval(k,H(x∗)) from random.

Proposition 3. Exp0,(2) and Exp1,(2) are indistinguishable if PF is a selectively secure family of
puncturable PRFs.

Theorem 1 now follows from Propositions 1, 2 and 3, whose proofs can be found in Appendices A.1,
A.2 and A.3.

4 Applications

As a first application of TM-constrained PRFs we construct the first identity-based non-interactive
key-agreement protocol with no a priori bound on the number of parties agreeing on a shared
key. Our second application is a broadcast encryption scheme where during setup the number of
potential receivers need not be known.

11



4.1 ID-Based Non-interactive Key Exchange for Unbounded Groups

Identity-based non-interactive key exchange (ID-NIKE) [SOK00] allows users to compute shared
keys without any interaction—it suffices to know the identity of the users one wants to share a key
with. In our construction a user can compute a shared key for any group of users and there is no
a priori bound on the size of these groups. We generalize the construction of [BW13, HKKW14],
in which identities are elements from {0, 1}` and the system is set up by creating a secret key
msk for a constrained PRF. A key for a group of users {id1, . . . , idn} is defined as F.Eval(msk, x),
where x = id1‖ . . . ‖idn and we assume identities are always ordered lexicographically. Boneh and
Zhandry [BZ14] suggest a similar scheme (assuming indistinguishability obfuscation) which does
not require any setup, but where each party publishes a value, and a key for a set of parties can
be computed when knowing this values for each party in the set.

Since in the previous constructions the CPRF is set up for a fixed input length m there is
an a-prior-fixed maximum number of users that can share a key, namely m/`. As a user’s id
could appear in any position of the string x, the owner of id is given constrained keys for the sets
id‖?(n−1)` := {id‖z | z ∈ {0, 1}(n−1)·`}, ?`‖id‖?(n−2)`, . . . , ?(n−1)`‖id. These keys then allow the
user to compute the key for any set which she is part of.

We generalize this to sets of users of unbounded size. Again, a key for a (lexicographically
ordered) set {id1, . . . , idn} is defined as F.Eval(msk, id1‖ . . . ‖idn), but now n can be arbitrary and
is not fixed in advance. In order to let a user with identity id compute the keys of the sets which
she is part of—but not anything else—, she is given a constrained key for the following Turing
machine Mid: on input x ∈ {0, 1}∗, machine Mid outputs 1 if and only if id is a substring of x,
which starts at position i · `+ 1, for some i ≥ 0, that is, at position 1 or `+ 1 or 2`+ 1, etc.

ID-NIKE. An (unbounded) ID-NIKE scheme consists of three algorithms:

• (pp,msk) ← Setup(1λ): On input λ, output public parameters pp and a master secret key
msk.

• skid ← Extract(msk, id): On input msk and id ∈ {0, 1}`, output a secret key skid.

• kI ← KeyGen(pp, skid, I): On input pp, a key skid for id and a list I ⊆ {0, 1}` of n (for
arbitrary n) users with id ∈ I, output a shared key kI .

Correctness is defined as follows: for all id, id′ ∈ {0, 1}`, all I ⊆ {0, 1}` with id, id′ ∈ I, all
(pp,msk) ← Setup(1λ), skid ← Extract(msk, id) and skid′ ← Extract(msk, id′), it holds that
KeyGen(pp, skid, I) = KeyGen(pp, skid′ , I).

Following [PS09], we define security via a game where an adversary can obtain secret keys skid
for identities of his choice and can query secret keys kI for sets I of his choice. The scheme is
secure if the adversary cannot distinguish a key kI∗ for a set I∗ of his choice from random, where
we must have id /∈ I∗ for all id for which the adversary queried key extraction, and I∗ 6= I for all
I for which the adversary queried a shared key. We prove that our scheme satisfies the selective
variant of this definition, where the adversary must output I∗ before getting access to its oracles.

ID-NIKE from constrained PRFs for unbounded inputs. Our unbounded ID-NIKE is
obtained from a TM-constrained PRF (F.Smp,F.Constr,F.Eval) as follows.

• Setup(1λ): Return msk← F.Smp(1λ). (There are no parameters pp.)

• Extract(msk, id): On input id ∈ {0, 1}` do the following: define a Turing machine Mid that
on input a string x ∈ {0, 1}∗ outputs 1 iff x is of the form x′‖id‖x′′ with x′ ∈ {0, 1}n′·` and
x′′ ∈ {0, 1}n′′·` for some n′, n′′ ∈ N; return skid ← F.Constr(msk,Mid).

• KeyGen(skid, I): If I = {id1, . . . , idn} ⊆ {0, 1}` for some n and id ∈ I then define x :=
idi1‖ . . . ‖idin , with idij < idij+1 for all j, and output kI := F.Eval(skid, x); else output ⊥.
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Correctness of our scheme follows from correctness of the underlying constrained PRF. Selective
security of the ID-NIKE follows from selective security of the CPRF (Def. 2). Given an adversary A
against the ID-NIKE, we construct an adversary B against the CPRF. First B runs A to obtain I∗
and sends x∗, the concatenation of the lexicographically ordered elements of I∗, to its challenger.
B answers A’s queries as follows: When A queries a secret key for id ∈ I∗ or the shared key

for I∗ then reply with ⊥. On a legal secret-key query for id, construct a Turing machine Mid as
in the definition of Extract, query the Constr oracle on Mid and forward the reply to A. When
A queries a shared key for a set I 6= I∗, construct x as in KeyGen, query Eval on x and forward
the reply.

Note that B makes no illegal queries (any queried M evaluates x∗ to 0 and x∗ is never queried
to Eval) and perfectly simulates the game for A. When B receives a value y which is either
F.Eval(msk, x∗) or random, it forwards y as the challenge key kI∗ to A and outputs whatever A
returns. B thus breaks the CPRF with the same probability as A breaking the ID-NIKE, which
concludes the proof.

4.2 Broadcast Encryption to Unbounded Number of Users

As a second application we use a constrained PRF for unbounded inputs to construct a broadcast
encryption (BE) [FN94] where there is no limit on the number of receivers. We start with defining
dynamic BE, which allows users to join the system after it is set up. Each user is identified by a
consecutive number i.

A broadcast encryption scheme BE for a symmetric encryption scheme (enc, dec) with key space
Ksym consists of the following four PPT algorithms:

• (bk,msk) ← Setup(1λ): On input a security parameter λ, output a broadcast key bk and a
master secret key msk, used to enroll new members in the system.

• ski ← KeyGen(msk, i): On input a master key msk and a member identity i, output ski, a
secret key for member i.

• (hdr,K) ← Encrypt(bk, S): On input a set S ⊆ N and a broadcast key bk, output a header
hdr and a key K ∈ Ksym. (A message m is then broadcast as (S,hdr, enc(K,m)).)

• K ← Decrypt(i, ski, S,hdr): On input a member identity i, an associated secret key ski, a
set S ⊆ N and a header hdr, if i ∈ S then output a symmetric key K ∈ Ksym. (A broadcast
(S, hdr, C) can then be decrypted via m← dec(K,C).)

Like Boneh and Waters [BW13], whose construction we build on, we will construct a secret-key
BE scheme, where bk must only be known to the broadcaster. Correctness of a BE scheme is
defined as follows: for all S ⊆ N, i ∈ S, all (bk,msk) ← Setup(1λ), ski ← KeyGen(msk, i) and
(hdr,K)← Encrypt(bk, S), we have K ← Decrypt(i, ski, S,hdr).

Selective security is defined via the following game ExpBE-b for an adversary A:

ExpBE-b
BE,A(λ)

(bk,msk)← Setup(1λ)
(S∗, st)← A1(1λ)
(hdr∗,K∗)← Encrypt(bk, S∗)
If b = 0 then K∗ ← Ksym

b′ ← AKey(·),Encrypt(·)
2 (st, (hdr∗,K∗))

Return b′

Oracle Key(i)

If i ∈ S∗
Return ⊥

ski ← KeyGen(msk, i)
Return ski

Oracle Encrypt(S)

If S = S∗

Return ⊥
(hdr,K)← Encrypt(bk, S)
Return (hdr,K)

We say BE is secure if

AdvBE
BE,A(λ) :=

∣∣Pr[ExpBE-0
BE,A(λ) = 1]− Pr[ExpBE-1

BE,A(λ) = 1]
∣∣ = negl(λ).
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BE from constrained PRFs for unbounded inputs. For a finite set S ⊆ N, we define the
characteristic vector χS as the binary vector whose length equals the largest element in S and
whose entry at position i is 1 iff i ∈ S. Let (enc, dec) be a symmetric encryption scheme with key
space Ksym. Let F = {F : K × X → Y} be a constrained PRF with input space X = {0, 1}∗ and
range Y = Ksym for which constrained keys ki for the following set can be computed:

Si := {x ∈ {0, 1}∗ |xi = 1} . (7)

(As Si can be decided by a polynomial-time Turing machine, our construction from Sect. 3.2 can
be used.) We define a broadcast encryption scheme BE with optimal ciphertext length (that is, the
header is empty: hdr = ∅) as follows:

• Setup(1λ): Generate k ← F.Smp(1λ) and return bk := k, msk := k.

• KeyGen(msk, i): Return ki ← F.Constr(msk, Si) with Si as in (7).

• Encrypt(bk, S): Let χS ∈ {0, 1}∗ be the characteristic vector of S; computeK ← F.Eval(bk, χS)
and output (∅,K).

• Decrypt(i, ski, S,hdr): With χS as above, output K ← F.Eval(ski, χS).

Correctness of BE follows from correctness of F ; security follows by reduction to selective pseu-
dorandomness of F . Let A be a PPT adversary that breaks security of BE ; then we construct a
PPT algorithm B = (B1,B2) that breaks F with the same probability:

B1(1λ)

– (S∗, stA)← A1(1λ).

– Let x∗ be the characteristic
string of S∗.

– Return (x∗, stA).

BConstr(·),Eval(·)
2 (st,K∗)

– b′ ← AKey(·),Encrypt(·)
2 (st, (∅,K∗));

– simulate Key(i): define Si as in (7);
query ki ← Constr(Si); reply ki;

– simulate Encrypt(S): define the characteristic
vector χS ∈ {0, 1}∗ of S;
query K ← Eval(χS); reply (∅,K).

– Return b′.

By construction, we have Exp
(∅,{Constr,Eval}),b
F,B = ExpBE-b

BE,A, which proves the claim.
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A Proofs

A.1 Proof of Proposition 1

Let b ∈ {0, 1} be arbitrarily fixed. Assume towards contradiction that there exists a PPT adversary
A = (A1,A2) that distinguishes Expb,(0) and Expb,(1) with non-negligible probability, i.e., there
exists a polynomial p(·) such that for infinitely many λ∣∣Pr[Exp

b,(0)
F,A (λ) = 1]− Pr[Exp

b,(1)
F,A (λ) = 1]

∣∣ ≥ 1
p(λ) . (8)

We use A to construct a series of PPT adversaries D(1), D(2), . . . , one of which non-negligibly
distinguishes public-coin diO-obfuscations.

Concretely, we construct a series of hybrids between Expb,(0) and Expb,(1) as follows. Let
q = q(λ) be a polynomial upper bound on the total number of constraining queries Amakes. Define
the i-th hybrid Expb,(0,i) like Expb,(0), except that the first i constraining queries are answered by
using the punctured key kh∗ of the puncturable PRF, and all remaining queries are answered by
using private key k. By construction, we have Expb,(0,0) = Expb,(0) and Expb,(0,q) = Expb,(1).

We use A to construct a PPT adversary D(i) which distinguishes public-coin diO-obfuscations.
We define the series of public-coin differing-input samplers Samp(i) as follows:

Samp(i)(1λ, r := rA‖rH‖rs‖rk‖rc‖ry‖r1‖ . . . ‖ri−1) // r ← {0, 1}poly(λ).

– (x∗, stA) := A1(1λ; rA).

– H := H.Smp(1λ; rH) and h∗ := H(x∗).

– crs := rs.

– k := PF.Smp(1λ; rk).

– kh∗ := PF.Constr(k, {0, 1}n \ {h∗}; rc).
– If b = 1 then y∗ := PF.Eval(k,H(x∗))

– Else y∗ ← Y, using randomness ry.

– b′ ← AConstr(·),Eval(·)
2 (stA, y

∗; rA);

– simulate the j-th query Constr(Mj):
– if Mj /∈Mλ ∨Mj(x

∗) = 1, reply ⊥;
– if j < i, compute P = PMj ,H,crs,kh∗ as defined in (5)

and P̃ := diO(1λ, P ; rj) and return kM := (Mj , P̃ , (H, crs)).
– if j = i, stop and output (P0 := PMi,H,crs,k, P1 := PMi,H,crs,kh∗ ).

– simulate Eval(x):
if x = x∗, reply ⊥; else reply y := PF.Eval(k,H(x)).

We now define a public-coin diO distinguisher D(i) as follows:

D(i)(r, P̃ ) // P̃ is either P̃0 ← diO(1λ, P0) or P̃1 ← diO(1λ, P1).

– Using randomness r run all steps of Samp(i).

– Answer A’s i-th Constr query for Mi with (Mi, P̃ ).

– Simulate the remaining Constr(Mj) as follows:

– if Mj /∈Mλ ∨Mj(x
∗) = 1, reply ⊥;

– compute Pj = PMj ,H,crs,k as defined in (5) and P̃j ← diO(1λ, Pj);

– return kM := (Mj , P̃j , (H, crs)).

– When A2 outputs b′, output b′.

If P̃ is a public-coin diO obfuscation of P0 then D(i) simulates Expb,(0,i−1) for A, while if P̃ is
an obfuscation of P1 then it simulates Expb,(0,i) for A. If A distinguishes Expb,(0) = Expb,(0,0)

from Expb,(1) = Expb,(0,q) with probability 1/p(λ), then by a hybrid argument for some i, A
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distinguishes Expb,(0,i−1) and Expb,(0,i) with probability 1/(p(λ)q(λ)). Thus infinitely many λ, it
holds that

1

p(λ)q(λ)
≤
∣∣Pr[Exp

b,(0,i)
A (λ) = 1]− Pr[Exp

b,(0,i−1)
A (λ) = 1]

∣∣ =∣∣Pr
[
r ← {0, 1}poly(λ); (P0, P1) := Samp(1λ, r); P̃0 ← diO(1λ, P0) : 1← D(r, P̃0)

]
−

Pr
[
r ← {0, 1}poly(λ); (P0, P1) := Samp(1λ, r); P̃1 ← diO(1λ, P1) : 1← D(r, P̃1)

]∣∣ .
By security of diO (Def. 7), this means that Samp(i) cannot satisfy Def. 6. Thus, there exists a
non-uniform PPT extractor E(i) that given r finds an input χ = (h, π) on which P0 and P1, output
by Samp(i) on coins r, differ. In particular, for some polynomial `(·) and infinitely many λ it holds
that

Pr

[
r ← {0, 1}poly(λ);
(P0, P1)← Samp(i)(1λ, r);χ← E(i)(r) : P0(χ) 6= P1(χ)

]
≥ 1

`(λ)
. (9)

Let χ̂ = (ĥ, π̂) be a differing input output by E(i). Recall that π̂ is a short proof of η̂ =
(H,Mi, ĥ) ∈ Llegit, i.e., a short proof of knowledge of a witness x such that Mi(x) = 1 and

H(x) = ĥ. By the definition of Samp(i) we have P0 := PMi,H,crs,k and P1 := PMi,H,crs,kh∗ , as

defined in (5). Since (ĥ, π̂) is a differing input, the following conditions must hold.

condition(1): SNARK.Verify(crs, (H,Mi, ĥ), π̂) = 1, for otherwise both P0 and P1 output ⊥.

condition(2): ĥ = h∗ = H(x∗), for otherwise P0 outputs PF.Eval(k, ĥ) and P1 outputs PF.Eval(kh∗ , ĥ),
which are equal by the correctness of puncturing.

condition(3): Mi(x
∗) = 0; otherwise the Constr query would have returned ⊥.

Since the SNARK π̂ extracted by E(i) is a proof of knowledge, we can extract a witness x̂ for
it. In order to formally apply item 3. of Def. 9, we first construct a machine Asnrk that outputs π̂
together with the statement. Asnrk simply runs E(i) except that it embeds the crs from its input
into the randomness.

Asnrk(crs)

– Sample randomness rA, rH , rk, rc, ry, r1, . . . , ri−1
– Set r := rA‖rH‖crs‖rk‖rc‖ry‖r1‖ . . . ‖ri−1.

– Simulate Samp(i)(r);

– let H be the sampled hash function.

– let Mi be the i-th Constr query.

– (ĥ, π̂)← E(i)(crs, r).
– Output (η := (H,Mi, ĥ), π̂).

By the construction of Asnrk, Eq. (9) and condition(1) we have that

Pr
[
crs← {0, 1}poly(λ); (η, π̂)← Asnrk(crs) : Verify(crs, η, π̂) = 1

]
≥ 1

`(λ)
. (10)

Further, since SNARK is an adaptive argument of knowledge, there exists EAsnrk
which extracts a

witness, that is:

Pr

[
crs← {0, 1}poly(λ); r ← {0, 1}poly(λ)
(η, π̂) := Asnrk(crs; r); x̂← EAsnrk

(crs, r)
:

Verify(crs, η, π̂) = 1
∧ (η, x̂) /∈ Rlegit

]
= negl(λ) ,
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which together with (10) yields:

Pr

[
crs← {0, 1}poly(λ); r ← {0, 1}poly(λ)
(η, π̂) := Asnrk(crs; r); x̂← EAsnrk

(crs, r)
: (η, x̂) ∈ Rlegit

]
≥ 1

`(λ)
− negl(λ) . (11)

We now construct an adversary Acll-fnd against H that on input λ and coins rH , used to sample a
function H, outputs a collision for H: Given rH , Acll-fnd generates a CRS for SNARKs, then runs
Asnrk(crs), but using the randomness rH from its input, and then runs EAsnrk

to extract a collision:

Acll-fnd(1
λ, r∗H)

– crs← {0, 1}poly(λ).
– Sample randomness rA, rH , rk, rc, ry, r1, . . . , ri−1
– Set r := rA‖r∗H‖crs‖rk‖rc‖ry‖r1‖ . . . ‖ri−1.

– (ĥ, π̂)← E(i)(r).
– Set r′ := rA‖r∗H‖rk‖rc‖ry‖r1‖ . . . ‖ri−1 // Asnrk’s coins

– x̂← EAsnrk
(crs, r′).

– Output (x̂, x∗) as a collision pair for H.

By (11), with non-negligible probability, the values Mi, ĥ, π̂ computed during the execution of
Acll-fnd satisfy ((H,Mi, ĥ), x̂) ∈ Rlegit, that is, Mi(x̂) = 1 and ĥ = H(x̂). By condition(3), Mi(x

∗) =

0, and hence x̂ 6= x∗. By condition(2), ĥ = H(x∗), and hence (x, x∗) is a collision. In particular,
the following is non-negligible:

Pr

[
rH ← {0, 1}poly(λ);H := HSmp(1λ, rH);
(x1, x2)←Acll-fnd(1λ, rH)

:
H(x1) = H(x2) ∧
x1 6= x2

]
.

Therefore we have reached a contradiction to collision resistance of H, and it must be that
Expb,(0) and Expb,(1) are computationally indistinguishable, i.e.,∣∣Pr[Exp

b,(0)
F,A (λ) = 1]− Pr[Exp

b,(1)
F,A (λ) = 1]

∣∣ = negl(λ) .

A.2 Proof of Proposition 2

Let b ∈ {0, 1} be arbitrarily fixed. The only difference between games Expb,(1) and Expb,(2) is
when A queries Eval(·) on x such that H(x) = H(x∗). Then Expb,(2) aborts, while on any other
query the oracle Eval behaves equivalently in both games since H(x) 6= H(x∗) implies PF.Eval(kh∗ ,
H(x)) = PF.Eval(k,H(x)).

We can therefore build an adversary Acll-fnd against the hash-function family H that on input
(1λ, rH) simulates Expb,(2) (except that instead of sampling H, it uses H := H.Smp(1λ; rH)) until
in an oracle query Eval(x) the game would abort. Acll-fnd then outputs (x∗, x), which is a collision
precisely when the game would have aborted.

A.3 Proof of Proposition 3

Assume towards contradiction that there exists a PPT adversary A = (A1,A2) and a polynomial
p(·) such that for infinitely many λ∣∣Pr[Exp

0,(2)
F,A (λ) = 1]− Pr[Exp

1,(2)
F,A (λ) = 1]

∣∣ ≥ 1

p(λ)
.

Then we construct a PPT adversary B = (B1,B2) running in game ExpPCT-b
PF ,B (λ), the selective-

security game of PF (cf. Fig. 2) as follows. (Note that B2 does not use its Eval(·) oracle.)
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B1(1λ)

– (x∗, stA)← A1(1λ).

– H ← H.Smp(1λ) and h∗ := H(x∗).

– Return (h∗, T := {h∗}, st := (H,x∗, stA)).

B Eval(·)
2 (st, kh∗ , y∗) // y∗ is either PF.Eval(k,H(x∗)) or random.

– crs← {0, 1}poly(λ).
– pp := (H, crs).

– b′ ← AConstr(·),Eval(·)
2 (stA, y

∗).

– simulate Constr(M):
if M /∈Mλ ∨M(x∗) = 1, reply ⊥;

else P := PM,H,crs,kh∗ as defined in (5); P̃ ← diO(1λ, PM,H,crs,kh∗ ).

Return kM := (M, P̃ , (H, crs)).

– simulate Eval(x):
if x = x∗, reply ⊥; if H(x) = H(x∗) then abort;
else reply y := PF.Eval(kh∗ , H(x)).

– Output b′.

By construction Pr[ExpPCT-b
PF ,B (λ) = 1] = Pr[Exp

b,(2)
F,A (λ) = 1], and therefore for infinitely many λ,

it holds that ∣∣Pr[ExpPCT-0
PF ,B (λ) = 1]− Pr[ExpPCT-1

PF ,B (λ) = 1]
∣∣ ≥ 1

p(λ)
.

This contradicts the selective security of PF, and we conclude that∣∣Pr[Exp
0,(2)
F,A (λ) = 1]− Pr[Exp

1,(2)
F,A (λ) = 1]

∣∣ = negl(λ) .
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