Skip to main content

Construction of Fully CCA-Secure Predicate Encryptions from Pair Encoding Schemes

  • Conference paper
  • First Online:
Topics in Cryptology - CT-RSA 2016 (CT-RSA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9610))

Included in the following conference series:

Abstract

This paper presents a new framework for constructing fully CCA-secure predicate encryption schemes from pair encoding schemes. Our construction is the first in the context of predicate encryption which uses the technique of well-formedness proofs known from public key encryption. The resulting constructions are simpler and more efficient compared to the schemes achieved using known generic transformations from CPA-secure to CCA-secure schemes. The reduction costs of our framework are comparable to the reduction costs of the underlying CPA-secure framework. We achieve this last result by applying the dual system encryption methodology in a novel way.

The authors were partially supported by the German Research Foundation (DFG) within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For schemes, where \(\mathrm {cInd}\) is not efficiently computable from \(\mathrm {CT}\), the decapsulation oracle requires the ciphertext index as additional input.

References

  1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9563, pp. 259–288. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0_10

    Chapter  Google Scholar 

  2. Attrapadung, N.: Dual system encryption framework in prime-order groups. Cryptology ePrint Archive, Report 2015/390

    Google Scholar 

  3. Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  4. Attrapadung, N., Libert, B.: Functional encryption for public-attribute inner products: achieving constant-size ciphertexts with adaptive security or support for negation. J. Math. Cryptology 5(2), 115–158 (2012)

    Article  MathSciNet  Google Scholar 

  5. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryption for dual predicate and dual policy via computational encodings. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Heidelberg (2015)

    Google Scholar 

  6. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

    Article  MathSciNet  Google Scholar 

  7. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015)

    Google Scholar 

  9. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamburg, M.: Spatial encryption. Cryptology ePrint Archive, Report 2011/389

    Google Scholar 

  12. Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encapsulation without random oracles. Theor. Comput. Sci. 410(47–49), 5093–5111 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kiltz, E., Vahlis, Y.: CCA2 secure IBE: standard model efficiency through authenticated symmetric encryption. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 221–238. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (Hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Phan, D.H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive CCA broadcast encryption with constant-size secret keys and ciphertexts. Int. J. Inf. Secur. 12(4), 251–265 (2013)

    Article  Google Scholar 

  19. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  21. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic constructions for chosen-ciphertext secure attribute based encryption. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 71–89. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro, N.: Verifiable predicate encryption and applications to CCA security and anonymous predicate authentication. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 243–261. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadij Liske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Blömer, J., Liske, G. (2016). Construction of Fully CCA-Secure Predicate Encryptions from Pair Encoding Schemes. In: Sako, K. (eds) Topics in Cryptology - CT-RSA 2016. CT-RSA 2016. Lecture Notes in Computer Science(), vol 9610. Springer, Cham. https://doi.org/10.1007/978-3-319-29485-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29485-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29484-1

  • Online ISBN: 978-3-319-29485-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics