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Abstract. The problem of Distance Edge Labeling is a variant of
Distance Vertex Labeling (also known as L2,1 labeling) that has been
studied for more than twenty years and has many applications, such as
frequency assignment.
The Distance Edge Labeling problem asks whether the edges of a
given graph can be labeled such that the labels of adjacent edges differ
by at least two and the labels of edges at distance two differ by at least
one. Labels are chosen from the set {0, 1, . . . , λ} for λ fixed.
We present a full classification of its computational complexity—a di-
chotomy between the polynomially solvable cases and the remaining cases
which are NP-complete. We characterise graphs with λ ≤ 4 which leads
to a polynomial-time algorithm recognizing the class and we show NP-
completeness for λ ≥ 5 by several reductions from Monotone Not All

Equal 3-SAT.

Keywords: Computational complexity, distance labeling, line graphs

1 Introduction

We study the computational complexity of the distance edge-labeling problem.
This problem belongs to a wider class of problems that generalize the graph
coloring problem. The task is to assign a set of colors to each vertex, such that
whenever two vertices are adjacent, their colors differ from each other. For a
survey about this famous graph problem and related algorithms, see [1].

We are interested in the so-called distance labeling. In this generalization of
the former problem the condition enforcing different colors is extended and takes
into account also the second neighborhood of a vertex (or an edge). The second
neighborhood is the set of vertices (or edges) at distance at most 2. For a survey
about distance labelings, we refer to the article by Tiziana Calamoneri [2], as
well as her online survey [3].

Graph distance labeling has been first studied by Griggs and Yeh [4,5] in 1992.
The problem has many applications, the most important one being frequency
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assignment [6]. The complexity of L2,1 labeling for a fixed parameter λ has been
established in [7]. They show a dichotomy between polynomial cases for λ ≤ 3
and NP-complete cases for λ ≥ 4.

Moreover, for the usual graph coloring problem there is a theorem of Viz-
ing [8], which states that for the edge-coloring number χ′(G) it holds that
∆ ≤ χ′ ≤ ∆+1, where ∆ is the maximum degree of the graph. For L2,1 labeling
there is a general bound due to Havet et al. [9], namely λ ≤ ∆2, for ∆ ≥ 79.

Before we proceed to the formal definition of the corresponding decision
problem, we give several definitions of a labeling function of a graph and of the
minimal distance edge-labeling number. Note that the distance edge-labeling is
equivalent to the distance vertex labeling of the associated line-graphs. A line-
graph L(G) is a graph derived from another graph G such that vertices of L(G)
are edges of G and two vertices a, b of L(G) are connected by an edge whenever
a, b (as edges of G) are adjacent. We define the distance between edges of a
graph as their distance in the corresponding line-graph.

Definition 1 (Edge-labeling function). Let G(V,E) be a graph. A function
f ′

2,1 : E → N is an edge-labeling, if it satisfies:

• |f ′

2,1(e)− f ′

2,1(e
′)| ≥ 2 for neighboring edges (i.e. those in the distance one),

• |f ′

2,1(e)− f ′

2,1(e
′)| ≥ 1 for edges at distance two.

As usual, we are interested in a labeling that minimizes the number of labels
used by a feasible labeling.

Definition 2 (Minimum distance edge-labeling). Let G be a graph and
f ′

2,1 an edge-labeling function, we define the graph parameter λ′

2,1 as:

λ′

2,1(G) := min
f ′

2,1

max
e∈E

f ′

2,1(e).

The size of the range of a (not necessarily optimal) edge-labeling function
f ′

2,1 is called the span.

Definition 3 (Distance Edge Labeling problem (also known as L′

2,1) ).

Input: a graph G
Parameter: λ ∈ N

Question: Is λ′

2,1(G) ≤ λ?

1.1 Our results

Our main result is the following theorem about the dichotomy of the Distance

Edge Labeling problem.

Theorem 1 (Dichotomy of distance edge-labeling). The problem L′

2,1 is
polynomial-time solvable if and only if λ ≤ 4. Otherwise it is NP-complete.
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We derive Theorem 1 as a combination of Theorem 4 that describes all graphs
with λ′

2,1 ≤ 4 and Theorem 6 presenting the NP-completeness result. Note that
our Theorem 6 also extends to the following inapproximability result:

Corollary 1. The Distance Edge Labeling problem cannot be approximated
within a factor of 6/5− ε, unless P= NP.

Moreover, according to [10], the proof implies that the Distance Edge

Labeling is paraNP-hard while parameterized by its span.

1.2 Preliminaries

We state several basic and well-known observations with the connection to Def-
inition 3, as well as some notation used in this paper.

For further standard notation in graph theory, we refer to the monograph [11].
The first observation gives a trivial lower-bound on λ′

2,1(G).

Observation 2 (Max-degree lower-bound) Let G be a graph and let ∆ be
its maximum degree. Then λ′

2,1(G) ≥ 2 · (∆− 1).

Note that this observation gives also an upper bound on the max-degree of
a graph G with λ′

2,1(G) ≤ λ for a given λ ∈ N.

Observation 3 (The symmetry of distance labeling) Let G be a graph, f :
E → N be a (not necessarily optimal) labeling function and λ be the span of f .
Then also the function f ′(e) = λ− f(e) is a valid labeling function of span λ.

We call such a derived labeling of the edges of a graph a λ-inversion.

2 Polynomial cases

In this section we give a full description of graphs admitting a labeling with
small number of labels, in particular graphs G with λ′

2,1(G) ≤ 4. Moreover,
these graphs can be recognized in polynomial time. This leads to Theorem 4,
which is the main result of this section.

For the ease of presentation we split the proof and statement of the Theorem 4
into several lemmas, each for a particular value of λ′

2,1(G).

Theorem 4 (Polynomial cases of distance edge-labeling.). For any graph
G and for λ = 0, 1, 2, 3, 4 the Distance Edge Labeling problem λ′

2,1(G) = λ
(or λ′

2,1(G) ≤ λ) can be solved in polynomial time. Moreover, it is possible to
compute such a labeling in polynomial time.

Without loss of generality we deal with connected simple undirected graphs.
First observe, that for λ < 4 the graph cannot contain a vertex of degree 3.

We use Pi as a symbol for the path on i vertices.
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Lemma 1 (Graphs with λ′

2,1(G) ≤ 3).

• The only graphs with λ′

2,1(G) = 0 are P1 or P2.
• There is no graph with λ′

2,1(G) = 1.
• The only graph with λ′

2,1(G) = 2 is P3.
• Finally, graphs with λ′

2,1(G) = 3 are P4 and P5.

When λ = 4, the graph may contain vertices with degree 3. We call a vertex
hairy if it is of degree 3 and at least one of its neighbors is of degree 1. We call
this degree one vertex, together with the connecting edge, pendant. Note that
any vertex of degree 3 in a graph G satisfying λ(G) = 4 cannot have all its
neighbors of degree 2 or greater. It is easy to see that there is no labeling of span
4 of such a graph. We say that two hairy vertices are consecutive, if there is no
other hairy vertex on a path between them or if there is the only hairy vertex
on a cycle. In this particular case the vertex is consecutive to itself.

For the purpose of the following lemmas, we say that a graph is a generalized
cycle if it is a cycle with several (possibly 0) pendant edges. We say that a graph
is a generalized path if it is a path with several (possibly 0)pendant edges. All
observations made in the last paragraphs imply the following lemma:

Lemma 2. Let G be a graph satisfying λ′

2,1(G) ≤ 4, then G is either a general-
ized path or a generalized cycle.

On the contrary not every generalized cycle or path has λ′

2,1 ≤ 4. The fol-
lowing lemmas state all the conditions for a generalized cycle or path to satisfy
λ′

2,1 ≤ 4.

Notation in the proofs Both proofs are done by a case analysis. For generalized
cycles and paths the idea is to label path or cycle while there is the possibility to
label all the pendant edges. To do so, we use sequences of numbers representing
labels on edges. Note that it follows from Observation 2 that only numbers 0, 2, 4
can occur around a hairy vertex and any pendant vertex must get label 2. For
labelings we use sequences of numbers describing labels of consecutive edges and
a symbol ”|” for a hairy vertex—so there is a pendant edge on a vertex with
label 2. This gives us immediately the following observation.

v

4

2

0

There could not be

any other

consecutive edge

31

The only way how to label these edges

3 1 40

This is the

first time we

can make a

choice. Use

4 or 2.

This is the

first time we

can make a

choice. Use

0 or 2.

e

Observation 5 (The labeling of a hairy vertex and its neighborhood)
The neighborhood of a hairy vertex can be labeled only by a sequence 0314|0314
or its λ-inversion 4130|4130.
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Lemma 3. Let G = (V,E) be a generalized path. Let W be the set of all hairy
vertices. Then λ′

2,1(G) ≤ 4 if and only if for every consecutive pair u, v ∈ W
their distance d = dG(u, v) is either 4, or at least 8.

Proof. We need to show that each sequence can be correctly labeled or that it
is impossible to label it at all.

The easier fact is the existence of correct labelings. Sequences |0314|(d =
4), |031420314|(d = 9), |0314204130|(d = 10), |03140240314|(d = 11) can be ex-
tended by a sequence 0314 at the beginning to get sequences of length at least
8.

Now we have to show that there are no valid sequences of length 1, 2, 3, 5, 6, 7.
Observation 5 banns immediately sequences of length 1, 2, 3. Furthermore, the
same observation also implies that there is no chance to overlap two sequences
which is necessary to get lengths 5, 6 or 7. ⊓⊔

Lemma 4. Let G = (V,E) be a generalized cycle. Let W be the set of all hairy
vertices. Then λ′

2,1(G) ≤ 4 if and only if for every consecutive pair u, v ∈ W
their distance d = dG(u, v) fulfills one of the following:

• d = 4, 8, 9 or d ≥ 11,
• if there exists a consecutive pair with d = 10, then there is even number of
such consecutive pairs, or there exists a consecutive pair with d = 13, 14, 16
or greater.

Firstly it is easy to observe that cycles of any length without a hairy vertex
can be labeled correctly.

The proof of the first part is similar to Lemma 3, except for the sequences
of length 10. Because such a sequence cannot be connected via hairy vertex to
any sequence presented in the proof of Lemma 3, unless we use a λ-inversion of
some of them. So in the proof of the second part we need to show two things:

• The only labeling of a sequence of length 10 is the one already presented.
• The sequences of length less than or equal to 12 and 15 do not have a
labeling that starts and ends by the label 0, while sequences of all other
possible lengths admit such a labeling.

These arguments are proved by a case analysis that is postponed to the
appendix.

3 NP-complete cases

Theorem 6. The problem Distance Edge Labeling is NP-complete for every
fixed λ ≥ 5.

The proof of the hardness result is done for every λ ≥ 5. However as there is
a natural difference between odd and even λ, the proof is divided according to
the parity of λ to two basic general cases. The proof of the even (odd) part is
contained in Subsection 3.2 and 3.3 respectively.
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Furthermore, as the gadgets developed to carry the labeling does not work
for small cases, we have to exclude the borderline values λ = 5, 6, 7 from the
general proof. Due to space limitations, we move these proofs to the appendix.

Our basic reduction tool is the Monotone Not All Equal 3-SAT prob-
lem which all cases are reduced from. We say a formula ϕ is a 3-MCNF (mono-
tone conjunctive normal form) if it is a conjunction of clauses with exactly 3
logical variables without negations.

Definition 4 (Monotone Not All Equal 3-SAT problem (also known
as MNAE-3-SAT)).

Input: A 3-MCNF formula ϕ.
Question: Is it possible to find an assignment such that each clause has at

least one literal set to true and at least one literal set to false?

This problem is a specialized version of NAE-3-SAT, which was shown to
be NP-complete by Schaefer [12] by a more general argument about CSP’s. We
can find MNAE-3-SAT in the list of NP-complete problems in the monograph
of Garey and Johnson [13].

The reduction procedure For a 3-MCNF formula ϕ and positive integer λ ≥ 5 we
show how to build a graph Gλ

ϕ. We will ensure that λ′

2,1(G
λ
ϕ) ≤ λ if and only if

the answer to the question of MNAE-3-SAT problem is ”YES”. In our proofs
the main focus is to prove the correspondence between a satisfying assignment to
the variables of ϕ and the λ-labeling of the graph Gλ

ϕ. We call this the correctness
of a gadget.

Definition 5 (Odd and Even sets). For any λ ∈ N we define two subsets of
the set {0, . . . , λ}. The odd subset O = {l ∈ N: l ≤ λ, l odd} and the even subset
E = {l ∈ N: l ≤ λ, l even}.

Example 1. Take λ = 10 (even). Now according to Observation 2, the maximum
possible degree of a vertex in a graph admitting a distance labeling with λ labels
is 6. Moreover, only labels from the set E can appear on edges incident with such
a vertex.

3.1 Basic lemmas

We state here some auxiliary lemmas that are used in our reductions.

Lemma 5 (Labeling of edges incident to a maximum degree vertex).
Let λ ∈ N, let G be a graph with λ′

2,1(G) ≤ λ and its maximum degree vertex v.
Then:

even λ: If deg(v) = λ
2
+ 1 then vertex v has its incident edges labeled by labels

from the set E.
odd λ: If deg(v) = λ+1

2
then a vertex v has its incident edges labeled by labels

from the one of the sets: O, O \ {1} ∪ {0}, E or E \ {λ− 1} ∪ {λ}.
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Lemma 6 (Adjacent vertices with maximum degree, even span). Let
λ ∈ N, λ even and let G = (V,E) be a graph with λ′

2,1(G) ≤ λ. Take two

neighboring vertices u, v ∈ V such that deg(u) = λ
2
+1, deg(v) = λ

2
and {u, v} ∈

E.

Then there are only two possibilities:

• The edge {u, v} is labeled by 0, all the edges incident to u are labeled by the
elements from the set E\{0} and finally all the edges incident to v are labeled
by the elements from the set O \ {1}.

• The edge {u, v} is labeled by λ, all the edges incident to u are labeled by
the elements from the set E \ {λ} and finally all the edges incident to v are
labeled by the elements from the set O \ {λ− 1}.

0 or λ

max max-1

max =
λ

2
+ 1

E \ {0} or E \ {λ} O \ {1} or O \ {λ− 1}

Even λ

0 or λ

max max

max =
λ+1

2

E \ {0} or E \ {λ− 1} O \ {1} or O \ {λ}

Odd λ max =
λ+1

2

u v uu

Lemma 7 (Adjacent vertices with maximum degree, odd span). Let λ ∈
N, λ odd and let G = (V,E) be a graph with λ′

2,1(G) ≤ λ. Take two neighboring

vertices u, v ∈ V such that deg(u) = deg(v) = λ+1

2
.

Then there are only two possibilities:

• The edge {u, v} is labeled by 0, all the edges incident to u are labeled by the
elements from the set E\{0} and finally all the edges incident to v are labeled
by the elements from the set O \ {1}.

• The edge {u, v} is labeled by λ, all the edges incident to u are labeled by the
elements from the set E \ {λ− 1} and finally all the edges incident to v are
labeled by the elements from the set O \ {λ}.

Proof of both lemmas above is an easy application of Lemma 5.

Notation in gadgets We further use max as the number for the maximum degree
in graph G with λ′

2,1(G) ≤ λ. We also use directed edges in gadget graphs. An
outgoing edge represents an output, while an ingoing edge represents an input to
the gadget. We build all the gadgets so that the labels on output edges can take
only several values.



VIII

u v

Rest of G
Rest of G

Subgraph H

If this edge exist it gets la-

bel 1.

In one case this edge gets

some even label 6= 0

⊆ O ⊆ E

w

0, 2, 4

e1 e2

0, 3, 5

Lemma 8 (A correct labeling of joint even and odd part). Let λ ∈ N,
let G be a graph with λ′

2,1(G) ≤ λ and H be its subgraph represented by complete
bipartite graph K2,max−1 such that:

• The only two edges connecting G \H to H are e1 and e2, where u ∈ e1 and
v ∈ e2.

• The graph H contains vertices u 6= v, degG(u) = degG(v) ≥ 4 and their com-
mon neighbors, call them N . Vertices from N are not adjacent, but exactly
one of them w may have zero, one or two other neighbors outside H.

• Moreover, each edge {u, z}, z ∈ N can be labeled only by odd labels (O) and
each edge {v, z}, z ∈ N can be labeled only by even labels (E) and has no
other condition on them from the rest of G. (It’s essential that they can be
labeled by arbitrary label of appropriate set except the labels of edges e1 and
e2.)

We have four cases which depends on labels of e1 and e2, on the degree of u and
v and on the number of neighbors of w. If one of the following cases happen:

I. Both e1, e2 have label 0, degG(u) = degG(v) = max and the vertex w has
one output edge. (for λ odd)

II. Both e1, e2 have label 0, degG(u) = degG(v) = max−1 and vertex w has
two output edges. (for λ even)

III. The edge e1 has label 2 and edge e2 has label 3 and degG(v) = degG(u) =
max−1. (for λ odd)

IV. The edge e1 has label 4 and edge e2 has label 5 and degG(v) = degG(u) =
max−1. (for λ odd)

Then all edges incident to vertices of N can be labeled correctly.

I. The output edge incident to w has to have a label 1.

II. The output edges incident to w has to have 1 and some s 6= 0 even.
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We omit the full proof of this technical lemma here but it is proved in the
appendix. The idea of the proof is to construct an auxiliary bipartite graph. Each
edge of H is labeled by some label from the correct set and it is represented by
a vertex. Two vertices are connected whenever they be incident in graph H
without breaking condition of a correct labeling. It can be shown that such
graph is almost k-regular for some k. Moreover we can delete some edges from
that graph and then it becomes k-regular. Then we can found perfect matching
using Hall marriage theorem.

The Labeling of the output edge is then easy to show because label 1 is the
only unused label and it cannot be placed anywhere else. The other edge incident
to the vertex w has an arbitrary nonzero even label and we have exactly one
left.

The main reductions proof idea We would like to give a reader the general idea
used in proofs of all cases. We will develop some gadgets to model the two parts
of the input of MNAE-3-SAT. Namely the logical variables and the formula
itself, which we model clause by clause. Moreover, in general-case reductions we
need some middle-pieces to glue them together.

To prove that the gadget for a variable works correctly we need to check
that there is no any other labeling of output edges in the variable gadget than
the one described in the image, or its λ-inversion. Note that the only possible
labels on an output edge are 0 (or 1) and λ (or λ− 1)—these will represent the
logical value of the variable. For now on, we omit the λ-inversion case in the
proof. Every variable gadget contains a part with an output edge such that it is
possible to repeat it arbitrarily—we call this part repeatable.

For a clause, we use a gadget for a given span with exactly 3 input edges.
This clause gadget has to admit a labeling whenever at most two input edges
represents the same logical value. On the other hand it does not admit a labeling
when all input edges represents the same logical value.

3.2 Even λ ≥ 8

We divide the variable gadget into three parts. The initial part and the ending
part are only technical support for starting and ending process correctly. The
main work is done in the repeatable part.

0 e1 0 e2λ l λ e3 0 e4

Initial part Ending part

E \ {0, λ}

E \ {0, λ}

O \ {(λ− 1), l}

O \ {1}

E \ {0, s}

O \ {1}

1s

Repeatable part

max
max-1

max-1

max-1

max
max-1

v

Variable gadget

w

ew2ew1
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By Lemma 6 the label of e1 is 0. Now we have two possibilities (sets) how
to label all the edges incident to the vertex v: E ∪ {1} \ {0, 2} and E \ {s ∈ E}.
If we label edges incident to v from the set E ∪ {1} \ {0, 2} it is impossible to
label both edges ew1

, ew2
incident to the vertex w, because we need to use both

0, 2 labels on them. But the label 0 is already used for the edge e1 which is at
distance two. While if we label these edges from the set E \ {s ∈ E}, in this case
it is possible to label the output edge by s or by 1.

Later the middle-piece gadget further restricts the output, so that the only
possible label is 1.

To prove that it is correct we use Lemma 8 part II.
Edges e3 and e4 need to have labels 0 or λ by Lemma 6. As e3 is in distance

two to e2 and e2 is labeled by 0 implies that e3 cannot have label 0.
The middle-piece gadget gives us only two possible outputs: 2 or 0. This is

because Lemma 5. Moreover, this implies that the only possible labeling of input
edges is by the label 1.

The output of the middle-piece gadget is plugged into the clause gadget.

Variable 2

0 e1 2 e27

3 5

λ

0
2

λ− 2

Variable 3

Variable 1

E \ {0, 2}

0 or 2

2 or 0

E \ {0, 2}

E \ {0, 2}

max

max

max

e3

E \ {0, 2}

0 or 22 or 0

max

1 1 1 1 1 1 1 1 1

Clause gadgetMiddle-piece gadget

conected by middle-piece

conected by middle-piece

conected by middle-piece

⊓⊔

3.3 Odd λ ≥ 9

This case is more complicated than the previous one. A reason for this is in
the difference between Lemma 7 and Lemma 6. In either case there are only two
possible labelings, but in Lemma 7 the degree of the vertex u equals to the degree
of the vertex v, while this is not true in Lemma 6 and so we can distinguish them
in the even case shown before.

We start with correctness of the variable gadget. We prove that neighboring
edges of vertex v are labeled by labels from O \ {1} ∪ {0}. We proceed by
contradiction. Suppose that these edges are labeled by E (according to Lemma 5
this is the only other option) then edges incident to the vertex u has labels
from O \ {1} ∪ {0}. Then exists the edge e = {v, z} that is labeled by some
odd l 6= λ. So the neighborhood of the vertex z can be labeled either by a set
E \ {0, 2, l − 1, l + 1} ∪ {1} or by a set E \ {0, l − 1, l + 1}. Neither of them is
sufficiently large to label all the edges.
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Repeatable part

0 λλ

max-1

max-1 max-1

max-1max-1 max-1 max-1 max-1 max-1 max-1 max-1

max-1max-1max-1max-1

max

max max

max max

max

O \ {1} E \ {λ− 1}E \ {λ− 1}

E \ {l1 − 1, l1 + 1}

l1 l2 l3

5 3

E \ {l2 − 1, l2 + 1}
E \ {l3 − 1, l3 + 1}O \ {s1 − 1, s1 + 1}

O \ {s2 − 1, s2 + 1}
O \ {s3 − 1, s3 + 1}

E \ {l1 − 1, l1 + 1}
E \ {l2 − 1, l2 + 1}

E \ {l3 − 1, l3 + 1}

2 4 5 3

E \ {4, 6}

E \ {2, 4} O \ {1, 3} O \ {3, 5} E \ {4, 6}

E \ {2, 4}

z

e

Variable gadget

v

u

The correctness of the other labeling is shown in the image.
Lemma 8 parts III. and IV. ensures that it is possible to repeat the repeatable

part of the gadget. Note that the repeatable part consists of two identical parts,
but it is possible to use only one of them as an output, because these parts are
labeled λ-symmetrically.

E \ {0, 2}

0 or 2

max-1

max max max max

1 1 1 1

0 0 0 0

O \ {1, li} O \ {1, lk} O \ {1, ll}O \ {1, lj}

li lj lk ll

On each of bottom inputs is label 1 coming

from variable through auxiliary gadget. Each

of left inputs is derectly from variable gadget.

All inputs must be from the same variable.

Auxiliary

Variable

v

max

max

0

0

1

O \ {1}

E \ {0}

Middle-piece

Variable

Auxiliary gadgetMiddle-piece gadget

of the same variable

The correctness of the auxiliary gadget is described in Lemma 8 part I. The
purpose of this gadget is to create an edge with label 1.

The middle-piece gadget has two kinds of inputs. Both kinds of inputs corre-
spond to the variable gadget, but one of them is connected to the middle-piece
through the auxiliary gadget.

The edges incident to the vertex v can by labeled only by labels from the
set {E}. This is ensured by the variable inputs, because they contains each label
from the set O \ {1} and also by auxiliary inputs containing label 1. Note, that
we can create as many such inputs as it is needed. Moreover, the label 1 forbids
labels 0 and 2 anywhere besides the output edge.

Each output from the middle-piece gadget is plugged into the clause gadget
in the following way, which completes the proof.
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Variable 2

0 2

λ

Variable 3

Variable 1

E \ {0, 2}

0 or 2

E \ {0, 2}

E \ {0, 2}

max-1

max-1

max-1

O \ {λ, λ− 2}

Clause gadget

connected by middle-piece connected by middle-piece

connected by middle-piece

⊓⊔
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Appendix

Proof of Lemma 4

Proof. For the proof we use all the facts already proved in the proof of Lemma 3.
The difference between a generalized path and a cycle is that the generalized
cycle is closed, and so we have to care about used labeling.

For all lengths of sequences presented so far, the sequence starts with the
label 0 and ends with the label 4. Recall that the sequence of length 10 was
|0314204130|. This sequence start and ends with the same label—and this cause
the incorrectness of labeling.

First we present a new sequence |03140240240314|(d = 14)—this sequence
proves, that the only sequence that has to start and end with the same label is
the one with length 10. Now it is clear that if there is even number of pairs with
d = 10 then the constructed labeling is correct, which finishes the proof of the
first part.

For the second part of the lemma, we have to show that for d = 13, 14
or d ≥ 16, there is also a sequence that starts and ends with the label 0
and the impossibility of such a labeling for all other d. As usually, we be-
gin with the desired sequences |4130240240314|(d = 13), |41302403140314|(d =
14), |413041302403140314|(d = 18). In all these sequences the subsequence 024
can be repeated arbitrarily.

For the rest we already know, that all the sequences that starts and ends
with 0 have to start with the subsequence |0314 and end with the subsequence
4130|. As these subsequences cannot be glued together, we have to glue them
through another subsequence, which we call a connector. Note that the connector
subsequence cannot be of length 1, because the starting and ending subsequences
starts and ends with the same label. This already forbids all d ≤ 10.

The connector can be the sequence 20 or 02. The resulting sequence is the
sequence 0314204130, which we are already familiar with. Again it is impossible
to prolong the sequence a subsequence of length one, two or five. It is easy to
see that the only possibilities are to put

(i) 0314 to the beginning,

(ii) 4130 to the end,

(iii) 420 right after the connector.

This forbids the sequences of length 11, 12 and 15 and finishes the proof. ⊓⊔

Proof of Lemma 8

More detailed proof of the lemma follows the idea that has been shown before.

For readers convenience, we repeat here the figure corresponding to the
Lemma 8:
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u v

Rest of G
Rest of G

Subgraph H

If this edge exist it gets la-

bel 1.

In one case this edge gets

some even label 6= 0

⊆ O ⊆ E

w

0, 2, 4

e1 e2

0, 3, 5

Proof. We start by a construction of an auxiliary 2-regular bipartite graph HA.
We use the graph HA to represent the incompatibility relation between the set
E and the set O. Recall that k = deg(u) = deg(v). The left partite represents
k − 1 odd labels, by which we can label the H-neighborhood of the vertex u.
While the right partite represents k − 1 even labels, by which we can label the
H-neighborhood of the vertex v. Of course by this we do not use the labels of
edges e1 and e2.

Vertices are connected by an edge, whenever corresponding edges in graph
H cannot be incident.

Note that every vertex in graph HA has degree at most 2, as we would like
HA to be 2-regular, we have to add several edges to HA, which we do as follows:

I. In this case the left partite represents labels in the set O\{1}, while the right
partite represents labels in the set E\{0}. The only vertices with degree one
are: λ and 2. It is possible to add an edge {2, λ}.

II. The left partite represents labels in the set O \ {1}, while the right partite
has represents labels in the set E \ {0, λ}. Only vertices with degree one are:
λ− 1 and 2. Then we can add edge {2, λ− 1}.

III. The left partite represents labels in the set O \ {1, 3}, while the right partite
represents labels in the set E \ {2, 4}. Vertices with degree less than two
represents the following labels: 0 (degree zero), 5 and λ (both degree one).
Then we can add two edges: {0, 5} and {0, λ}.

IV. The left partite represents labels in the set O \ {3, 5}, while the right partite
represents labels in the set E\{4, 6}. Vertices with degree one represents the
following labels: 0, 2, 7 and λ. Then we can add two edges: {2, 7} and {0, λ}.
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λ
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λ

λ− 5

λ− 3

λ− 1

O E

added edge

added edge

Case I. Case II.

Case III. Case IV.
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6

λ− 5

λ− 3

λ− 1

λ− 6

λ− 4

λ− 2

O E

added edge

Now we create the graph complement H̄A of the auxiliary graph HA. Now
H̄A is (k− 3)-regular bipartite graph and then it has perfect matching by Hall’s
marriage theorem and so this perfect matching describes a correct labeling of
the graph H .

Now it remains to show that in cases I. and II. it is possible to extend the
labeling to the output edges incident to the vertex w. For this by inner edges
incident to w we mean the edges {u,w}, {v, w}.

I. In this case the only label incompatible with the label 1 on the output edge
is the label 2, but there at least two edges in the matching do not containing
the label 2, to set labels to the inner edges incident to the vertex w.

II. In this case we have to label two outgoing edges incident to the vertex w.
Note that without loss of generality, we can use labels 1 and λ. As in the
previous case, we have to exclude those labelings that associate label λ − 1
or 2 with an inner edge incident to w. This is possible as there are at least
3 edges in the perfect matching. ⊓⊔

NP-hardness for λ = 5

Lemma 9. The Distance Edge Labeling problem is NP-hard for λ = 5.
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Proof. A variable of is represented by the following variable gadget :

0 e0

4 e1 1 e2 5 e3 0 e4

3 5

2 e′
1 3 e5

5 e6

4 0

2 0

1

3 e′
3

322 e′
4

5 e′
2

5 2 0 e′′′
3

3 e′′
3

Repeatable part

Repetitions

of the

Repetable

part.

The cycle

Variable gadget

Case analysis are in tables for now on. In the table is shown every possible
labeling of the edges highlighted in gadget starting with the edge e0. If the
labeling cannot be extended to all edges it is marked by the symbol ”—”.

e0

e′1 e′2
e′′3
e′′′3

e1 e2

e′3

e3
e′4
e4 e5 e6

I.

0

3 1
4, 5 only
4, 5 only

5 2
4

0
3
5 more options —

II.

0

5 2
4
0

3 1
4, 5 only

4, 5 only
—
— — —

III.

0

2 5
3

0 or 1.

4 1
5

3
only 0.
only 0. — —

IV.

0

2 5
3

0 or 1.

4 1
3

5
0
2 4 0 impossible
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e0

e′1 e′2
e′′3
e′′′3

e1 e2

e′3

e3
e′4
e4 e5 e6

V.

0

2 5
3

0 or 1.

4 1
3

5
2
0 4 0 impossible

VI.

0

2 5
3

0 or 1.

4 1
3

5
2
0 3 5

VII.

0

4 1
3 or 5.
5 or 3.

2 5
0 or 1

3
only 1 or 0.
only 1 or 0. — —

VIII.

0

4 1
3 or 5.
5 or 3.

2 5
3

1
only 4
only 4. — —

IX.

0

4 1
3 or 5.
5 or 3.

2 5
3

0
4
2 5 impossible

X.

0

4 1
3 or 5.
5 or 3.

2 5
3

0
2
4 1 5

The inputs of the variable gadgets are plugged into the following clause gad-
get :
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Third variable

0 e0

0

0

5 e1

5

5

3

3

no label possible

5

3 e5

5 0 3

2

0

Second variable

First variable

v

3 e′
1

2 e2 4 e3

0 e′
3

1 e4

3 e′
4 5 e′′

4

2 4

0

3 5

1

2 4

0

3 5

1

1

5

02
4

Clause gadget

e0

e′1

e1 e2
e′3

e′4
e′′4

e3 e4 e5

I.

0

5

3 1
3, 5 impossible

—
—

3, 5 impossible — —
II.

0

3

5 1
3, 5 impossible

—
—

3, 5 impossible — —
III.

0

3

5 2
4

0, 2 impossible
0, 2 impossible

0 — —
IV.

0

3

5 2
0

3 or 5
5 or 3

4 1 3 or 5

As the only input to the clause gadget can be either from a set {3, 5} or from
a set {0, 2}, which represent the truth assignment of the appropriate variable.
From the labels in the gadget, we can see (up to λ-symmetry) that it is impossible
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to label the clause if there are three inputs from the set {3, 5} and it is possible
to label the clause if there is at least one input from the other set as it is shown
in the image above. ⊓⊔

NP-hardness for λ = 6

Lemma 10. The Distance Edge Labeling problem is NP-hard for λ = 6.

A variable is represented by the following variable gadget :

3 e2

6 e1

1 e
′

2

4 e
′

1

0 e
′

0 2 e0

5

The unique labeling of the cycle

3

6

1

4

0 2

3

6

1

4

0 2 5 5

{2, 4, 6} {2, 4, 6} {2, 4, 6}

Repeatable part Initial partInitial part

0 e3 00

v w

Variable gadget

And the case analysis is in the following table.

e′0 e′1 e′2
e0 e1 e2 e3

I. 2 0 3
4 6 1 4, 6 impossible in the cycle

II. 2 6 3
4 0 5 0, 2 impossible in the cycle

III. 0 2 impossible
6 4 — —

IV. 0 2 impossible
4 6 — —

V. 0 6 1
2 4 impossible —

VI. 0 4 1
2 6 3 0
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And the clause is represented by the clause gadget :

First variable

0 e0

0

0

6 e1

6

6

3 e
′

2

1 e2

3

1

1

3

0

0

4 e3

6 0

5

3

6

Second variable

Third variable

4 e
′

1

2 e
′′

1

4

2

4

2

2

Clause gadget

e0

e′′1
e′1

e1
e′2
e2 e3

I.

0

4 or 6
6 or 4

2
does not have two neighbors with odd label
does not have two neighbors with odd label —

II.

0

2 or 6
6 or 2

4
does not have two neighbors with odd label
does not have two neighbors with odd label —

III.

0

4 or 2
2 or 4

6
1 or 3
3 or 1 (0, 5) or (4, 5)

⊓⊔

NP-hardness variable gadget for λ = 7

Lemma 11. The Distance Edge Labeling problem is NP-hard for λ = 7.
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For the case λ = 7, we show only the variable gadget because in this case it is
possible to reuse all the other gadgets from the general case where λ ≥ 9.

Repeatable part

0 00

2 4 7 2 4 7 2 47

5

3 1

1

7

5

3
7

5

3 7

5

3

5 6 1 5 6

3 1 3 1

1

7

6

Variable gadget

The correctness of the repeatable part is done by the same argument as it is
done in the proof of the general case for λ ≥ 9. Then it is easy to show that the
only possible labeling of connection of repeatable parts is the one shown in the
image above. ⊓⊔
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