

COMPUTING
SCIENCE

High Level Model Checker Based Testing of Electronic Contracts

Ellis Solaiman. Ioannis Sfyrakis, and Carlos Molina-Jimenez

TECHNICAL REPORT SERIES

No. CS-TR-1490 January 2016

TECHNICAL REPORT SERIES

No. CS-TR-1490 January, 2016

High Level Model Checker Based Testing Of Electronic
Contracts

Ellis Solaiman1, Ioannis Sfyrakis1, and Carlos Molina-Jimenez2
1 School of Computing Science, Newcastle University, United Kingdom,
fellis.solaiman, i.sfyrakisg@ncl.ac.uk
2 Computer Laboratory, University of Cambridge, United Kingdom,
carlos.molina@cl.cam.ac.uk

Abstract.

Within cloud and Internet-based collaborative settings, a business contract
(service agreement) is a specification that describes permissible interactions
between partners. Specifically, a business contract stipulates what operations the
business partners have the rights, obligations or prohibitions to execute; it also
specifies when the operations are to be executed and in which order. The main
purpose of an electronic contract is to regulate (monitor and/or enforce) electronic
service exchanges between the contracted parties, making sure that participants
adhere to the service agreement in place. Because of the dynamic nature of Internet
and cloud-based relationships, the rapidity at which electronic contracts are
constructed, verified for correctness, tested, and deployed is an extremely important
factor. This paper describes a model checker based framework for supporting
automated testing and deployment of electronic contracts. The central components
of the framework are a contract monitoring service called the Contract
Compliance Checker (CCC), the SPIN model checker coupled with EPROMELA,
a high-level language developed specifically for modeling electronic contracts,
and the LTL Manager; a graphical tool developed in order to aid with the specification
of correctness properties in Linear Temporal Logic (LTL). We describe
how the LTL Manager can used to create a repository of common contract related
LTL templates, which then can be easily selected and parameterized by the contract
designer. We also describe how SPIN can be used to automatically generate
execution sequences from an EPROMELA model of a contract, and how such sequences
can then be used to test the correctness of the model equivalent electronic
contract deployed to the CCC.

© 2015 Newcastle University
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

High Level Model Checker Based Testing Of Electronic
Contracts

Ellis Solaiman1, Ioannis Sfyrakis1, and Carlos Molina-Jimenez2
1 School of Computing Science, Newcastle University, United Kingdom,
fellis.solaiman, i.sfyrakisg@ncl.ac.uk
2 Computer Laboratory, University of Cambridge, United

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1490

Abstract.

Within cloud and Internet-based collaborative settings, a business contract
(service agreement) is a specification that describes permissible interactions
between partners. Specifically, a business contract stipulates what operations the
business partners have the rights, obligations or prohibitions to execute; it also
specifies when the operations are to be executed and in which order. The main
purpose of an electronic contract is to regulate (monitor and/or enforce) electronic
service exchanges between the contracted parties, making sure that participants
adhere to the service agreement in place. Because of the dynamic nature of Internet
and cloud-based relationships, the rapidity at which electronic contracts are
constructed, verified for correctness, tested, and deployed is an extremely important
factor. This paper describes a model checker based framework for supporting
automated testing and deployment of electronic contracts. The central components
of the framework are a contract monitoring service called the Contract
Compliance Checker (CCC), the SPIN model checker coupled with EPROMELA,
a high-level language developed specifically for modeling electronic contracts,
and the LTL Manager; a graphical tool developed in order to aid with the specification
of correctness properties in Linear Temporal Logic (LTL). We describe
how the LTL Manager can used to create a repository of common contract related
LTL templates, which then can be easily selected and parameterized by the contract
designer. We also describe how SPIN can be used to automatically generate
execution sequences from an EPROMELA model of a contract, and how such sequences
can then be used to test the correctness of the model equivalent electronic
contract deployed to the CCC.

About the authors

Ellis Solaiman is currently a Teaching Fellow at the school of Computing Science at
Newcastle University. He joined Newcastle University as a PhD student in 2000. After
graduating in 2004, he worked as a Research Associate at the Schools of Computing Science
and Chemical Engineering on a number of projects, including the Gold project at the North
East eScience Centre. From 2008 he worked as an online business consultant until 2011 when
he returned to the School as a Teaching Fellow.

Suggested keywords

High Level Model Checker Based Testing Of Electronic
Contracts

Ellis Solaiman1, Ioannis Sfyrakis1, and Carlos Molina-Jimenez2

1 School of Computing Science, Newcastle University, United Kingdom,
{ellis.solaiman, i.sfyrakis}@ncl.ac.uk

2 Computer Laboratory, University of Cambridge, United Kingdom,
carlos.molina@cl.cam.ac.uk

Abstract. Within cloud and Internet-based collaborative settings, a business con-
tract (service agreement) is a specification that describes permissible interactions
between partners. Specifically, a business contract stipulates what operations the
business partners have the rights, obligations or prohibitions to execute; it also
specifies when the operations are to be executed and in which order. The main
purpose of an electronic contract is to regulate (monitor and/or enforce) electronic
service exchanges between the contracted parties, making sure that participants
adhere to the service agreement in place. Because of the dynamic nature of Inter-
net and cloud-based relationships, the rapidity at which electronic contracts are
constructed, verified for correctness, tested, and deployed is an extremely impor-
tant factor. This paper describes a model checker based framework for support-
ing automated testing and deployment of electronic contracts. The central com-
ponents of the framework are a contract monitoring service called the Contract
Compliance Checker (CCC), the SPIN model checker coupled with EPROMELA,
a high-level language developed specifically for modeling electronic contracts,
and the LTL Manager; a graphical tool developed in order to aid with the spec-
ification of correctness properties in Linear Temporal Logic (LTL). We describe
how the LTL Manager can used to create a repository of common contract related
LTL templates, which then can be easily selected and parameterized by the con-
tract designer. We also describe how SPIN can be used to automatically generate
execution sequences from an EPROMELA model of a contract, and how such se-
quences can then be used to test the correctness of the model equivalent electronic
contract deployed to the CCC.

Keywords: service agreement, electronic contract, service monitoring, model
checking, automated testing, service oriented computing, cloud computing

1 Introduction

The context of this paper is Internet and cloud-based interactions conducted between
two or more business partners. Such relationships are normally preceded by the nego-
tiation and signing of business contracts also known as legal service agreements (SA).
Legal agreements, explicitly define the permissible actions of the interacting parties,
thus providing a legal basis for the resolution of any disputes. A Legal agreement can
also be used as a guide for developing an electronic contract [1].

An electronic contract is an executable version of the service agreement, and its
main purpose is to regulate (monitor and/or enforce) electronic service exchanges be-
tween the contracted parties, checking that business participants adhere to the SA in
place, and that performed actions comply with various message timing and sequencing
constraints. Electronic contracts are not confined to the business domain, and can also
be used for example to monitor/enforce SAs between the components of distributed
systems in the cloud and/or the ”Internet of Things”.

buyer seller

CCC

communication channel

monitoring channel

 biz events (S,TF,BF)

trusted third party
response:
CC | NCCelectronic

contract

Synchronizer outcomeoutcome

Fig. 1. The CCC deployed as a contract monitor

Constructing an electronic contract that is correct (free from conflicts, and which
correctly represents the requirements of the original legal document), is a challenging
and time-consuming task. Cloud-based business relationships can be both complex and
of a highly dynamic nature [2]. Therefore, it is important that the process of convert-
ing a legal document into an electronic contract that is correct is automated. Previous
work towards this goal has been extensive and has covered problems such as electronic
contract representation and modeling [3], and contract verification [4] [5]. Naturally,
ensuring that a model of an electronic contract is correct, does not guarantee that the
electronic contract itself is also correct. In this paper, we focus on the challenge of test-
ing that an electronic contract acts correctly at run-time, and that modifications and/or
corrections that need to be made to the rule base of the electronic contract can be ap-
plied quickly. To this end, we develop a high-level model checker based framework to
support automatic electronic contract deployment and testing.

The central component of our framework is the contract compliance checker (CCC)
(Fig. 1) [6] [7], which together with the deployed electronic contract is our System
Under Test (SUT). The CCC is an independent contract monitoring service that when
provided with an executable specification of a contract, can be deployed by the con-
tracted parties or by a third party. The CCC is able to observe and log relevant interac-
tion events, which it processes to determine whether the actions of the business partners
are consistent with respect to the rights, obligations, and prohibitions declared in the
original legal contract. Namely, the CCC declares interaction events as either contract
compliant (CC) or non contract compliant (NCC). As can be seen in Fig 1, business

partners use a communication channel for exchanging their business messages. In addi-
tion, they use a monitoring channel for notifying events of interest to the CCC. Notably,
the figure shows that the CCC can cope with exceptions and failures, observing events
that have been declared by the interacting parties as either S (successful), TF (technical
failure), or BF (business failure).

The ability of the CCC to correctly declare interaction events as (CC) or (NCC)
relies on an executable contract that has been specified correctly. Our goal is to provide
a framework that enables; rapid testing of a deployed executable contract, and rapid
update of the contract rules when testing detects errors. To do so, one must be able
to exhaustively supply the CCC with execution sequences that it would be expected
to observe during runtime. Our approach is to resort to model checker based testing.
Previous research [8] describes the basic idea: construct a behavioral model of the SUT
and validate the behavior using a model checker. Such a validated model can then be
used for generating executable test cases for the SUT.

The model checking tool we use is SPIN [9], a tool originally designed for the ver-
ification of communication protocols. SPIN’s input language, Promela, provides con-
structs for modeling communication concepts such as messages, channels, and basic
data types that include bit, bye, arrays. etc. Using these basic constructs alone for model-
ing electronic contracts, at a sufficiently high level of abstraction and in any consistently
standard fashion, is almost impossible. This in turn makes the process of generating ac-
curate execution sequences required for testing the CCC difficult. Another difficulty is
that specifying the contract correctness requirements is not easy. The contract designer
needs to master both Promela, the input language of SPIN, and LTL (Linear Temporal
Logic), the language for expressing correctness properties [10]. It is widely acknowl-
edged that LTL is a powerful language for expressing correctness properties. Yet it has
proven to be hard to master for non–experts in temporal logic. For instance, the LTL
syntax traditionally accepted by SPIN is low level and based on the basic temporal
logic operators (!, [], <>, etc.), which results in LTL formula that are not easy to read
or write. In addition, the semantics of LTL formula are very subtle; thus writing an LTL
formula that captures the intended correctness requirement within a Promela model is
particularly challenging and error prone.

To address these challenges, we explore the development of a high level model-
ing and deployment framework. A fundamental component of our testing framework is
EPROMELA, a high level language developed specifically for modeling electronic con-
tracts [5]. EPROMELA extends Promela with constructs for expressing core electronic
contract concepts contained in the CCC, thus enabling the construction of a contract
model at a level of abstraction that is equivalent to the actual electronic contract. In
addition, we have developed the LTL Manager [11], a graphical tool and a repository
that can be populated by LTL experts with LTL templates (LTL formula with abstract
variables) of typical correctness properties required for electronic contracts, together
with their English language descriptions. These LTL templates can then be selected and
parameterized by contract designers in order to produce LTLs that are specific to their
requirements. The LTL properties are then mechanically included in the EPROMELA
models and presented to SPIN for verification.

The overall contribution of this paper is to describe how SPIN, EPROMELA, and
the LTL Manager can be instrumented with the aid of appropriate automation and mes-
sage parsing tools, to automatically produce business events that can accurately test the
executable electronic contract deployed within the CCC service.

The remainder of the paper is structured as follows: In Section 2 we describe key
electronic contracting concepts with the aid of a simple example. Section 3 is dedicated
to presenting our model checker based testing framework and its constituent tools. In
Section 4 we present research work that is related to ours. Conclusions and future di-
rections are discussed in Section 5.

2 Background

In order to elaborate key electronic contracting concepts, we present a simple scenario.
Let us assume that Fig. 1 describes a relationship where two organisations, a Buyer and
a Seller (a store), agree to a business contract. Below are some of its clauses:

1. The buyer can place a buy request with the store to buy an item.
2. The store is obliged to respond with either buy confirmation or buy rejection within

3 days of receiving the buy request.
(a) No response from the store within 3 days will be treated as a buy rejection.

3. The buyer can either pay or cancel the buy request within 7 days of receiving a
confirmation.
(a) No response from the buyer within 7 days will be treated as a cancellation.

The clauses of such a legal agreement should take into consideration all relevant busi-
ness operations (shown in bold in the contract text). A business contract specifies a well
defined list of business operations. A business operation is a business activity which the
participants are able to perform under certain conditions. In the CCC, business opera-
tions are used to formally define the vocabulary (alphabet) of the interaction. We use B
= {bo1, ..., bon} to represent all the valid business operations in the contract. The buyer
and seller are regarded as role players interested in executing the operations is a shared
fashion. The set of valid role players is represented by RP = {rp1, ...,rpn}.

The execution of each business process generates an individual outcome event which
is passed to the synchronizer shown in Fig. 1 through the monitor channel. The synchro-
nizer integrates the pair of individual outcomes from each side into a single business
event. This business event is sent to the CCC. As a monitor, the responsibility of the
CCC is to determine whether a given event presented to it represents the notification
of a contract compliant operation CC, or a none contract compliant operation NCC. To
be able to make this determination, the CCC keeps track of the state of interaction as a
Finite State Machine (FSM) with states being determined by enabling and disabling the
current rights, obligations and prohibitions of the role players in force.

2.1 ROP Ontology

A contract distinguishes operations as Rights, Obligations, and Prohibitions (the ROP
set). A Right is an operation that a party is allowed to perform under certain conditions,

Store

Buyer

Store
 rej

BuyRej

Buyer

Buyer
 req

Store

BuyReq

Buyer

Store

Buyer
 pay

BuyPay

Buyer

Store

Buyer
 canc

Store

Buyer

Store
 conf

startEv
G1 endEvG2

G3
BuyCanc

BuyConf

Fig. 2. Correct choreography of contract example

an Obligation is an operation that a party is expected to do under certain conditions, and
a Prohibition is an operation that a party is not allowed to do under certain conditions.

We define an individual right ri, obligation oi or prohibition pi as a set of operations
where: ri ⊆ B, oi ⊆ B, and pi ⊆ B. For a particular role player RP; Rrp = {r1,...,rn};
Orp = {o1,...,on}; and Prp = {p1,...,pn}, represent the sets of rights, obligations, and
prohibitions currently assigned to the role player RP respectively. The sets of rights,
obligations, and prohibitions of an RP are represented as ROPrp.

2.2 Choreography of Interaction

To support our discussion, we will use a graphical representation of the contract written
in BPMN (Business Process Management Notation) choreography language [12] (see
Fig. 2). The figure involves five activities, each resulting in a message (BuyReq, BuyRej,
BuyConf, BuyPay, BuyCanc) being sent from a sender (shown as a white label in each
activity), to a receiver (shown as a shaded label). These messages correspond to the
five business operations (buy request, buy reject, buy confirmation, buy payment, buy
cancellation) shown in bold in the English text of the contract. The diamonds in the
figure are gateways. The figure includes two exclusive fork gateways (G1 and G2) and
a single exclusive merge gateway (G3).

The choreography specification describes, from a global perspective, all permissible
message sequences that can be exchanged between the partners, and is used by the
interacting parties for two purposes: i) designing and implementing their individual
parts of the business process; and ii) it is also very useful as a guide for developing the
electronic contract.

2.3 Electronic Contracts

The electronic contract designer is able to use the legal contract and choreography in or-
der to accurately identify and extract the ROP set attributed to the business partners, and
to specify the rules which operate on the ROP set [13]. Rule implementation requires
an appropriate specification language; contract rules written for the CCC monitoring
service are currently realized using the Drools Rule Language [14].

An example of a rule that deals with receipt of a buy request event by the CCC,
written using Drools can be seen below. Line 5 checks that the buyRequest operation is
a right that the buyer is currently allowed to perform. If so then buyRequest is declared
by the CCC as contract compliant (line 13). This operation is also removed from the
buyer’s ROP set (line 8), meaning that the buyer no longer has a right to perform this
operation. At lines 10 and 11, the seller is given an obligation to perform one of 2
operations: buyConfirm, or buyReject.

1 rule "Buy Request Received"
2 //Verify type of event, originator, and responder
3 when
4 $e: Event(type=="BUYREQ", originator=="buyer", responder=="store",

status=="success")
5 eval(ropBuyer.matchesRights(buyRequest))
6 then
7 //Remove buyer’s right to place other Buy Requests
8 ropBuyer.removeRight(buyRequest, seller);
9 //Add seller’s obligation to either accept or reject order
10 BusinessOperation[] bos = {buyConfirm, buyReject};
11 ropSeller.addObligation("React To Buy Request", bos, buyer, 60,2);
12 System.out.println("* Buy Request Received rule triggered");
13 responder.setContractCompliant(true)
14 end

Each of the activities declared in the choreography of Fig. 2 has a rule such as the one
shown above. Typically, for each activity in a choreography, each business partner can
have several rights, obligations, and prohibitions in force.

Once an electronic contract specification has been completed, it can be loaded into
the CCC for deployment. As operations are executed, and events are received by the
CCC; rights, obligations, and prohibitions are granted to and revoked as specified by
the rules. Therefore within the CCC, a right, obligation or prohibition can be in one of
two states only: inactive or active.

Drools as a language for specifying electronic contracts is verbose, and not as
declarative and readable as would be ideal. A much more suitable tool is EROP a lan-
guage that we developed precisely for the specification of electronic contracts. EROP
(for Events, Rights, Obligations, and Prohibitions) was first introduced in [6], and we
have just completed a tool for automatically translating EROP to Drools. The EROP
to Drools Translator has been developed using Java, and ANTLR [15]. The translator
takes as input an EROP file and outputs a Drools file containing the contract rules. An
example of an EROP to Drools conversion is shown in Fig. 3. A detailed description of
the EROP language can be found in [6].

rule "BuyRequestReceived"
when e matches (botype == BUYREQ,
originator == buyer,
responder == store,outcome == success)
BuyRequest in buyer.rights
then
 buyer.rights -= BuyRequest(seller)
 seller.obligs += ReactToBuyRequest(buyer)
end

rule "BuyRequestReceived"
when $e: Event(type == "BUYREQ",
originator == "buyer",
responder == "store",status == "success")
eval(ropBuyer.matchesRights(buyRequest))
then
ropBuyer.removeRight(buyRequest, seller);
BusinessOperation[] bos = {buyConfirm,
buyReject};
ropSeller.addObligation(reactToBuyRequest,
bos,buyer);
end

Fig. 3. EROP to Drools conversion

2.4 Contract Compliance within the CCC Monitor

The overall architecture of the CCC is described in detail in [11]. The CCC processes
each event to determine if it is contract compliant (CC) or none contract compliant
(NCC). A business event is received by the CCC as an XML document that includes
the names of the participants, the business operation, and its outcome from the set:
(Success, BizFail, TecFail):
<event>
<originator>buyer</originator>
<responder>seller</responder>
<type>BuyReq</type>
<status>success</status>

</event>

The event shown here is produced as a result of the implementation of a conversation
synchronization protocol between the interacting parties. The protocol guarantees mu-
tually agreed conversation outcomes. It is the responsibility of the interacting partners
to apply the protocol. A detailed discussed can be found in [16]. The CCC inserts the
response into an outcome queue, which can be accessed by the contracted parties. The
response is of the format:
<result>
<contractcompliant>true|false</contractcompliant>

</result>

The execution of a business operation (observed from the outcome event) is said to be
CC if it satisfies the following three conditions and is said to be NCC if it does not:

1) boi ∈ BO; the business operation matches an operation within the set of business
operations expected by the CCC,

2) boi ` ROPrp; the business operation matches the ROP set of its role player (mean-
ing, the role player that performed the operation has a right/obligation/prohibition to
perform that particular operation). By ”match”, we mean that for a valid business oper-
ation boi, and a particular role player’s ROP set; ROPrp where: Rrp = {r1,...,rm}, Orp =
{o1,...,om}, Prp = {p1,...,pm}, and m ≥ 1, their relationship should be that: boi ∈ r j or
boi ∈ o j or boi ∈ p j, where 1 ≤ j ≤ m.

3) the business operation must also satisfy the constraints stipulated in the contrac-
tual clauses. An example of a constraint is the seven day deadline in clause 3 of the
contract discussed earlier.

We also consider that the execution of a given sequence of operations is NCC if it
includes one or more operations that are flagged by the CCC as NCC. A sequence of
operations is also known as an execution sequence or execution trace and drives the
choreography from its initial state to a final state.

2.5 Exception Handling

The legal contract example and corresponding choreography of Fig. 2, deal with suc-
cessful outcome events only. However, a contract monitoring service such as the CCC
should also be able to observe outcome events that include exceptional circumstances
[17]. Therefore, following the ebXML standard [18], we assume that at the end of a
business conversation, each party independently declares an execution outcome event
from the set {Success(S), BizFail(BF), TecFail(TF)} as shown in Fig. 1. Success events
model successful execution outcomes. TecFail models protocol related failures detected
at the middleware level, such as a late, or a syntactically incorrect message. BizFail
models semantic errors in a message detected at the business level, e.g., the credit card
details extracted from the received payment document are incorrect.

Adding exceptional outcome events to the CCC’s set of observable events, naturally
means that the CCC has to monitor a much larger number of execution sequences. The
task of generating these in order to test the CCC effectively is extremely challenging,
and strengthens the case for needing to automate the testing process.

3 Model checker Based Testing Framework

To be able to claim that an electronic contract within the CCC is correct and conflict
free, we need to test that it can correctly identify contract compliant and non-contract
compliant executions of sequences and their constituent business operations. To this
end, one needs to be able produce sequences of operations that are known to be contract
compliant, and also produce sequences that include both contract compliant and non
contract compliant operations.The challenge here is the production of such sequences.

Fig. 4 shows the main elements of our testing framework. Squares with smooth
corners represent humans involved in the design process. Tools are represented by solid
squares with sharp corners, and dashed squares represent data. The framework has been
updated with 2 new tools since our work in [19] with the addition of the LTL Manager,
and the EROP to Drools Translator.

Electronic contract models are constructed using EPROMELA, a modeling lan-
guage we developed specifically for modeling electronic contracts [5]. EPROMELA
is essentially a high-level tool that extends SPIN’s modeling language Promela with
constructs for expressing core electronic contract concepts contained in the CCC. Cor-
rectness properties that an EPROMELA model is expected to satisfy, can be expressed
by the model designer using Linear Temporal Logic (LTL), which is not an easy task.
The LTL Manager is a tool we have developed in order to help the contract designer
with expressing correctness properties using LTL. When provided with a model of the
contract and appropriate LTL properties, SPIN is able to verify the correctness of the
model with respect to those properties. With the aid of tools for message parsing and

automation, SPIN also can be instrumented to generate message sequences that can be
used to test the ability of the CCC to detect contract compliant and non contract com-
pliant message sequences, a process that we will describe next. Model checker based
sequence generation follows these steps:

natural
contract text

contract
designer

negated (trap)
properties in

LTL

model of
contractual
operations

contract
designer

SPIN model
checker

message
sequences

message
parsing tool

CCC

electronic
contract in

EROP

LTL
Manager

EROP to
Drools

Translator

Fig. 4. Model Checker based testing framework

1. The designer constructs an abstract model of the System Under Test (SUT) using
EPROMELA, and verifies that the model is correct in that it satisfies the correctness
properties of interest.

2. The verified abstract model is used for generating execution sequences. This is done
by presenting the verification tool with the verified abstract model, together with a
negated correctness requirement in LTL (a trap property), and then challenging the
verification tool to find and produce counter examples that violate the LTL.

3. Each counter example contains an execution sequence that can be extracted with
the aid of a message parsing tool.

3.1 EPROMELA Interaction Model

An abstract view of EPROMELA components is shown in Fig. 5, which essentially
models the system depicted in Fig. 1. The Business Event Generator (BEG) generates
events that are simulations of events generated by the interacting parties; for example a
payment event placed by the buyer. The Contract Rules Manager (CRM) together with
the ROP sets and the ECA rules (rule base) represent the CCC. The CRM is responsible
for including rules as needed. The BEG and CMR communicate by two uni-directional
channels (BEG2R and R2BEG). The contract rules are composed in a separate file. The

Fig. 5. EPROMELA interaction model

ROP sets contain information about the rights, obligations, and prohibitions currently in
force. For a full description, see [5]. The rule base contains a rule for each business event
representing the outcome of an operation execution. So for a business operation such as
”submit purchase order” there will be a rule for the operation terminating successfully
(S), and optionally (depending on whether the contact has clauses dealing with failure
outcomes) a rule for the operation terminating in a technical failure (TF) and one for
the operation terminating in a business failure (BF).

The execution behavior of the interaction model shown in Fig 5 is as follows: 1)
BEG generates event bei and sends it through the BEG2R channel; 2) CRM reads bei
from the BEG2R channel; 3) CMR includes the contract rule Ri corresponding to bei;
4) Ri checks bei against the ROP sets, and executes the coded action if the associated
conditions are satisfied; 5) Ri sends its decision about bei (either contract compliant
or non–contract–compliant) through the R2BEG channel; 6) BEG extracts the decision
from the R2BEG channel and resumes its event generation process.

3.2 Model Construction and Verification

Below is an example of a rule within of our EPROMELA contract model. The rule
deals with the BUYRREQ operation of Fig. 2. Each of the operations for the chore-
ography in Fig. 2 has a rule which updates the status of the ROP set belonging the
participants as they transition from state to state. Notice that we include within the rule,
print statements that produce XML events. These are XML events that will eventually
be extracted and used to automatically test the electronic contract deployed in the CCC.
The end of each execution sequence is marked using a reset message.

1 RULE(BUYREQ)

2 {
3 WHEN::EVENT(BUYREQ,

IS_R(BUYREQ,BUYER),SC(BUYREQ))->{
4 SET_X(BUYREQ,BUYER);
5 atomic{
6 printf("<originator>buyer</originator>");
7 printf("<responder>store</responder>");
8 printf("<type>BUYREQ</type>");
9 printf("<status>success</status>");
10 }
11 SET_R(BUYREQ,0);
12 SET_O(BUYREJ,1);
13 SET_O(BUYCONF,1);
14 RD(BUYREQ,BUYER,CCR,CO);
15 }
16 END(BUYREQ);

Line 3 of the model deals with receiving a successful buy request event SC(BUYREQ).
IS_R(BUYREQ,BUYER) is a guard that checks if the BUYER has a right to perform the
BUYREQ operation. If so, then SET_X(BUYREQ,BUYER) declares that this operation
has been executed, and the buyer’s right to execute BUYREQ is removed at line 11.
The rule then sets an obligation to the Store to execute either BUYREJ or BUYCONF
(lines 12 - 13). At line 6 we introduce the print statements required for parsing the
generated execution sequences. The print statements produce XML events in the format
expected by the CCC. Each of the operations BUYREQ, BUYREJ, BUYCONF, BUYPAR,
BUYCANC, has a rule such as the one above.

When the entire EPROMELA model has been constructed, SPIN can be used to
verify that the model is free from any inconsistencies. Common correctness proper-
ties such as absence of deadlocks and reachability of states, can easily be checked
using SPIN’s configuration options. Checking for contract specific correctness prop-
erties however, requires the application of Linear Temporal Logic (LTL) formula. Typ-
ical correctness properties of the electronic contracting domain are those that express
mutual exclusion of rights, obligations, and prohibitions; for example the requirement
that the execution of a given operation (such as making a purchase order) is never
simultaneously obliged and prohibited. Thanks to the contract constructs offered by
EPROMELA, this correctness requirement can be elegantly and intuitively expressed
in LTL as follows: []!(IS_O(BUYREQ, BUYER) && IS_P(BUYREQ, BUYER)) where
[] is the LTL always operator. ! is the universal not, IS_O(BUYREQ, BUYER) returns
true if the BUYREQ operation is currently obliged and IS_P(BUYREQ, BUYER) returns
true if the BUYREQ operation is currently prohibited. Instructing SPIN to run through the
EPROMELA model using this LTL, will drive SPIN to find any examples that violate
this property. If such an example is found, then it is presented as a counter example to
the designer, who must then correct the model.

3.3 The LTL Manager

As discussed earlier, Linear Temporal Logic (LTL), which we use for specifying con-
tract correctness requirements, is not easy to master. In order to deal with this challenge,
we have developed the LTL manager, a graphical interface that can be used by contract

designers to include correctness properties within their EPROMELA models. The LTL
manager offers the capability of editing LTL templates (LTL formula with abstract vari-
ables), and stores them in a database. The database is a repository of typical contract
LTL formula that can be populated by LTL experts. Once the LTL repository has been
populated, a contract designer can retrieve an LTL template of interest, parameterize,
and include it in an EPROMELA model. The SPIN model checker is invoked from the
LTL manager by the designer. It takes EPROMELA models augmented with LTL cor-
rectness properties and verifies whether the LTLs are satisfied or violated. Details of
how to download the LTL Manager can be found in [19].

Fig. 6. Using the LTL Manager to a) create LTL templates and b) parametrize them

Using the tool (see Fig. 6): a) the LTL expert specifies and adds to the template
repository, common LTL templates that are of interest to contract designers. This needs
to be done in natural language (Description box), and in LTL syntax (Formula box).
b) the contract designer can then load the LTLs from the database, select, and parame-
terize those templates of interest. As can be seen in Fig. 6, the @V1@ @V2@ @V3@ @V4@
variables are LTL propositional symbols that can be parameterized. The tool offers a
drop–down list that has all six operations (BuyReq, BuyRej, BuyConf, BuyPay, BuyCan)

included in the choreography of Fig. 2 . The designer selects the desired parameters as
shown in Fig. 6, and the LTL Manager automatically creates the correct LTLs. After the
LTL pattern has been parameterized in the previous step, the designer can now simply
validate the model by pressing the Add button, and then the Validate button on the next
screen (not shown here). The results of the validation are then displayed to the designer.
In this case, both LTLs are satisfied by the validation model; consequently, SPIN dis-
plays errors: 0. If on the other hand, the designer adds an LTL property that cannot be
satisfied by the model; for example (<> BuyPay) (all execution paths must eventually
result in BuyPay to be executed), SPIN signals that the formula is violated, and displays
errors: 1. In addition, SPIN creates a trail file in the working folder that can be used by
the designer to trace the source of the error within the model.

3.4 Generating the Test Sequences

Once the contract model has been verified for required correctness properties, it can be
used as an oracle for producing sequences that can test the electronic contract. Test se-
quence generation is very similar to verification in that we make use of LTL properties.
We can instruct SPIN to find undesirable examples of sequences that violate a desirable
property. But we also need to be able to instruct SPIN to find desirable sequences that
violate a non-desirable property. The latter is done by negating a desirable LTL property
converting it into a trap property.

As a very simple example, let us instruct SPIN to generate all sequences of messages
that end with a BUYREJECT operation. The LTL formula required for this task is:
!<>IS_X(BUYREJ,STORE) where < > is the LTL eventually operator. The formula
states that the model will not eventually reach a state where BUYREJ is executed.
SPIN can now be instrumented to show all sequences that do end with BUYREJ. From
the command line, we apply the following steps (CorrectChore is the name if the file
that contains the EPROMELA model):

1. % spin -a CorrectChore is used for generating the verifier source code in C.
2. % cc -o pan pan.c is used for compiling the verifier.
3. % ./pan -a -e -c100 instructs SPIN to produce all the counter examples (trail

files) that it can find, which violate the trap property. By default, SPIN produces the
first one it finds and stops. The -c100 parameter instructs SPIN to generate the first
100 counter examples it finds. The number of counter examples requested needs
to be above the actual number of counter examples that SPIN could possibly find.
This number can be determine by the designer using trial and error.

4. spin -tN -s -r -B CorrectChore converts the Nth trail file into a text file that
includes the XML messages involved in the execution sequence.

Given the potentially large number of trail files that can be produced by SPIN, it is
advisable to mechanize the process. We use a simple shell script for this purpose. The
following text represents the contents of one of the trail files produced by the Linux
shell script. To ease readability, we have removed some irrelevant lines.

2: proc 0 (Buyer) line 35 "CorrectChore" Sent BuyReq,1
3: proc 1 (Store) line 71 "CorrectChore" Recv BuyReq,1

<originator>buyer</originator>
<responder>store</responder>
<type>BUYREQ</type>
<status>success</status>

5: proc 1 (Store) line 114 "CorrectChore" Sent BuyRej,1
6: proc 0 (Buyer) line 049 "CorrectChore" Recv BuyRej,1

<originator>store</originator>
<responder>buyer</responder>
<type>BUYREJ</type>
<status>success</status>

<originator>reset</originator>
<responder>reset</responder>
<type>reset</type>
<status>reset</status>

The execution sequence shown above includes a BUYREQ message sent from the buyer
to the store, followed by BUYREJ sent by the store to the buyer. The status element
indicates the outcome of the execution of the operation. The status in this example
accounts only for successful execution outcomes (No exceptional circumstances such
as technical failures are assumed), consequently, the content of this element is always
success. The last message is the reset message, which we artificially include to mark
the end of the sequence. As can be appreciated from this example, the files produced by
SPIN and the shell script need parsing to extract the XML tagged messages.

3.5 Sequence Parsing

Our parser is built using Python. It extracts all the XML tagged messages from a given
sequence and stores each message as an individual XML file. The parser achieves this
by creating a recursive grammar that describes the precise structure of the business
events inside a sequence. As seen in the code segment below in lines 2 - 5, we first
define the XML tags we want to find.

1 #define grammar for sequence file
2 tagOriginator = pyp.Literal("<originator>") + pyp.Word(pyp.alphas) +

pyp.Literal("</originator>")
3 tagResponder = pyp.Literal("<responder>") + pyp.Word(pyp.alphas) +

pyp.Literal("</responder>")
4 tagType = pyp.Literal("<type>") + pyp.Word(pyp.alphas) +

pyp.Literal("</type>")
5 tagStatus = pyp.Literal("<status>") + pyp.Word(pyp.alphas) +

pyp.Literal("</status>")
6 lineString = tagOriginator | tagResponder | tagType | tagStatus

The parser reads a file containing a message sequence, and searches for matches against
each line according to the following rule in line 6: If there is a line that includes a tag
definition of either the originator, responder, type, or status, then the match is success-
ful. If the parser finds a match, then it performs the following actions: i) the parser

creates a new folder with the name of the sequence, ii) it extracts the XML part that is
matched according to the above rule, iii) a new XML file is created that includes the
extracted business event. Thus, the folder ExeSeq1–xml for the sequence shown above
will contain three XML files because the sequences contain three messages, namely
BUY REQ→ BUY REJ→ reset.

3.6 Testing the Electronic Contract

After loading and initializing the CCC with the rules that encode the electronic contract,
we can proceed with sending each of the execution sequences to the BEvent queue.
Responses are collected from the outcome queue (see Fig. 1). The following lines show
the results of testing the execution sequence BUY REQ→ BUY REJ→ reset:
1 filename: event1.xml
2 -Begin Request to CCC service-
3 BusinessEvent [originator=buyer, responder=store, type=BUYREQ,

status=success]
4 -End Request to CCC service-
5
6 -Begin Response from CCC service-
7 <result>
8 <contractCompliant>true</contractCompliant>
9 </result>
10-End Response from CCC service-
11
12 filename: event2.xml
13 -Begin Request to CCC service-
14 BusinessEvent [originator=store, responder=buyer, type=BUYREJ,

status=success]
15 -End Request to CCC service-
16
17 -Begin Response from CCC service-
18 <result>
19 <contractCompliant>true</contractCompliant>
20 </result>
21 -End Response from CCC service-
22
23 filename: event3.xml
24 -Begin Request to CCC service-
25 BusinessEvent [originator=reset, responder=reset, type=reset,

status=reset]
26 -End Request to CCC service-
27 -Begin Response from CCC service-
28 <result>
29 <contractCompliant>true</contractCompliant>
30 </result>
31 -End Response from CCC service-

The operations (BUYREQ and BUYREJ) included in the sequence, are declared contract
compliant by the CCC indicating that the contract rules have been coded correctly with
respect to the LTL property in Section 3.4. The first operation is sent to the CCC in line
3, and its response <contractCompliant>true is shown at line 8. Similarly, BUYREJ
operation is sent to the CCC at line 14, and its response <contractCompliant>true
can be seen at line 19.

Buyer

Buyer
 req

Store

BuyReq

Store

Buyer

Store
 rej

BuyRej

Buyer

Store

Buyer
 pay

BuyPay

endEv

Buyer

StoreStore

Buyer

Store
 conf

startEv G3G2
G1

BuyCanc

BuyConf

Buyer
 canc

Fig. 7. Incorrect choreography of contract example

3.7 Testing None Compliant Events

A model that has been verified will by default generate test sequences with events corre-
sponding to the execution of contract compliant (CC) operations only. An EPROMELA
model can be tuned to generate sequences which include unknown and none contract
compliant (NCC) business events using the EPROMELA Event Generator module
mentioned under Section 3.1. Thus, we can alter the EPROMELA model to follow any
variation of the choreography shown in Fig. 2. For example, the modified choreography
of figure Fig. 7 does not correctly reflect the original text contract.

The particularity of this diagram is that it produces CC sequences such as BuyReq→
BuyRe j. In addition, it produces NCC sequences, for instance it allows for cancellation
after payment which is not stipulated in the original contract. Consequently, the exe-
cution of BuyCanc within the sequence BuyReq→ BuyCon f → BuyPay→ BuyCanc
should be declared NCC by the CCC. The following text shows the results of the exe-
cution of the NCC sequence discussed above. The first 2 events BUYREQ, BUYCONF,
were declared CC by the CCC as expected. To save space we only show the outcome of
the 2 events of relevance in this example (BUYPAY followed by BUYCANC):

1 filename: event3.xml
2 -Begin Request to CCC service-
3 BusinessEvent [originator=buyer, responder=store, type=BUYPAY,

status=success]
4 -End Request to CCC service-
5
6 -Begin Response from CCC service-
7 <result>
8 <contractCompliant> true </contractCompliant>
9 </result>
10 -End Response from CCC service-
11
12 filename: event4.xml
13 -Begin Request to CCC service-
14 BusinessEvent [originator=buyer, responder=store, type=BUYCANC,

status=success]

Store

Buyer

Store
 conf

BuyConf

Buyer

Store

Buyer
 pay

BuyPay

G1

Success

G2

Technical Failure

Business Failure

Success

Technical Failure

Business Failure

Fig. 8. Execution model with success and failures

15 -End Request to CCC service-
16
17 -Begin Response from CCC service-
18 <result>
19 <contractCompliant> false </contractCompliant>
20 </result>
21 -End Response from CCC service-

The process BUYPAY is CC (lines 3 and 8). The execution of BUYCANC at line 14
and the corresponding response received at line 19 indicates that the CCC has declared
BUYCANC NCC. This is the desired behavior from the CCC, as it has detected that this
sequence of events is not consistent with the contract.

3.8 Accounting For Exceptional Outcome Events

The contract example we have used so far assumes that the execution of operations al-
ways succeeds; it does not account for potential failures. More realistic examples would
include the execution of activities as shown in Fig. 8, which account for successful and
failed outcomes. As discussed in Section 2, and following the ebXML standard [18],
we would like to be able to detect two types of failures; business failures, and technical
failures. To this end, the EPROMELA modeling language has been designed with the
ability to deal with these 2 types of failures. As an example of an electronic contract
that can handle exceptional outcomes, we add the following clause to our original con-
tract to account for potential semantic errors (business failures) in the execution of any
operation:

4. Failure handling: if after 2 attempts, an operation is not performed correctly, then
the contractual interaction shall be declared terminated.

Below we show how an exception such as a business failure of the BUYREQ opera-
tion can be intuitively and naturally modeled using EPROMELA. The rule for BUYREQ
described in Section 3.2 can be easily enhanced as follows:

1 /*handle failure outcome event*/
2::EVENT(BUYREQ,IS_R(BUYREQ,BUYER),BF(BUYREQ))->{

3 atomic{
4 printf("<originator>buyer</originator>");
5 printf("<responder>store</responder>");
6 printf("<type>BUYREQ</type>");
7 printf("<status>bizfail</status>");
8 }
9 if /*1st notification of BF*/
10 ::(ReqFailBefore==NO)->ReqFailBefore=YES;
11 printf("First BUYREQ-BF");
12 RD(BUYREQ,BUYER,CCR,CO);
13 /*2nd notification of BF*/
14 ::(ReqFailBefore==YES)->abncoend=TRUE;
15 printf("Last BUYREQ-BF");
16 SET_R(BUYREQ,0);
17 atomic{
19 printf("<originator>reset</originator>");
20 printf("<responder>reset</responder>");
21 printf("<type>reset</type>");
22 printf("<status>reset</status>");
23 RD(BUYREQ,BUYER,NCCR,CND); /*abnormal contract end*/

The model can now also handle BUYREQ events that result in BF outcomes (line 2).
If a failed event is received, then the rule checks if a failure of this kind has happened
before. If not (line 10), then this first failure is registered, and contract execution is
allowed to continue (line 12). On the other hand, if this is the second time BUYREQ has
been received with a BF outcome then the rule terminates contract interaction at line
23. The EPROMELA model includes rules like the one described above for dealing
with each of the 5 business events shown in bold in our contract example. After the
model has been verified using SPIN, the electronic contract deployed to the CCC can
be tested, in combination with the testing framework described previously, using much
more realistic execution sequences that include exceptions. A detailed description of
how exceptions are handled in the CCC can be found in [17].

4 Related Work

Research work on the monitoring of cross-organizational interactions between parties
was pioneered by Minsky [20] with work on Law Governed Interaction (LGI). The
notion of rights, obligations, and prohibitions was introduced in [21]. A useful summary
of various issues involved in contract management is provided in [22].

Linear Temporal Logic (LTL) is a powerful tool for specifying correctness prop-
erties in a model whether it is for verifying the correctness of the model, or for the
generation of test sequences. However, not all correctness properties can be expressed
using LTL; for example it is not possible to specify that a particular property will hold
for every 3rd or 4th state of the system. Such limitations are discussed in [23], where
extensions to LTL are suggested.

Naturally, building a model of the SUT and describing the required LTL properties
relies heavily on the skills of the technical person who must also be intimately familiar
with the SUT. Also, it is difficult to ensure complete coverage of all possible system be-
haviors during testing with manually specified LTL properties. Therefore, it is desirable

to be able to systematically create complete test suites according to some test objective
[24]. Research work in [25] proposes to automate the task of specifying LTL properties
by means of a graphical language (DecSerFlow) that is then mapped into LTL formulas.
Using this language, the designer can specify a set of common or frequent correctness
requirements, as can be done using our LTL Manager.

The advantages and disadvantages of model checker based testing are discussed in
[26] where the author provides a practical guide. Although model checker based testing
techniques have been studied widely in the software engineering community [27] [28]
[29], their use in the testing of a contract monitoring service has received little attention.
The principles of model checker based testing of electronic contracts are investigated
previously by us in [8], however contract models in this work are built using Promela,
the basic input language of SPIN. Attempting to predict how a designer would use basic
Promela to model a contract in any standard manner is almost an impossible task, which
makes developing tools for automating the testing process extremely difficult. An im-
portant contribution of this paper is that we highlight the benefits of developing a tool
based framework that can leverage the capabilities of a domain specific modeling lan-
guage such as EPROMELA, which was developed specifically for modeling electronic
contracts.

5 Conclusion and Future Work

Cloud and Internet based interactions between business partners can be extremely com-
plex, and this is especially true when exceptional outcome events from these interac-
tions are taken into consideration. Reproducing such complex exchanges in order to test
the correct functionality of a service such as the Contract Compliance Checker (CCC)
is difficult and cannot be achieved manually. We have presented a model checker based
framework that includes tools to automate the testing process. By using the SPIN model
checker in combination with EPROMELA, a high level modeling language designed
specifically for modeling electronic contracts, we can build verified models that accu-
rately resemble the System Under Test (SUT) with relative ease. By using appropriate
LTL formula within an EPROMELA model, we can instrument SPIN to automatically
produce contract compliant, and none contract compliant execution sequences that are
capable of exhaustively testing the correct operation of the CCC.

The LTL Manager presented in Section 3.3, enables the creation and description of
common contract related correctness requirements as LTL templates, which are stored
in an LTL repository. The choreography designer can use the LTL manager to augment
an EPROMELA model with LTL correctness properties that result from the parame-
terization of the LTL templates. The EPROMELA model can then be presented to the
SPIN model checker for verification and for generating test sequences.

There are a number of future research directions which we are currently exploring.
We would like to enhance the CCC, which currently acts as a passive monitor, with the
capability to act as a contract enforcer. The aim of a contract enforcement service would
be to ensure that an operation is executed only if it is contract compliant. Also an im-
portant item for future work is to conduct experiments to determine how the presented
testing framework performs as the number of possible events increases.

An issue that requires further exploration, is the development of mechanisms to aid
with establishing conformance between electronic contracts and business choreogra-
phies [13]. Additional research work is required to extend such mechanisms to business
functions involving more than two parties [30].

In addition to the EROP to Drools translator presented in In Section 2.3, we would
also like to create a translation tool that can produce an EPROMELA model from an
electronic contract specification written in EROP automatically. This would reduce
the risk of introducing unwanted errors into the contract model during construction.
We believe that this goal is achievable because of the semantic similarities between
EPROMELA and the electronic contracting concepts within the CCC.

References

1. Molina-Jimenez, C., Shrivastava, S., Solaiman, E., Warne, J.: Contract representation for run-
time monitoring and enforcement. In: 2003 IEEE International Conference on E-Commerce
(CEC 2003), IEEE (2003)

2. Molina-Jimenez, C., Shrivastava, S., Wheater, S.: An architecture for negotiation and en-
forcement of resource usage policies. In: IEEE International Conference on Service Oriented
Computing & Applications (SOCA), IEEE (2011)

3. Strano, M., Molina-Jimenez, C., Shrivastava, S.: A rule-based notation to specify executable
electronic contracts. In: Rule Representation, Interchange and Reasoning on the Web: Inter-
national Symposium (RuleML), Springer-Verlag (2008)

4. Solaiman, E., Molina-Jimenez, C., Shrivastava, S.: Model checking correctness properties
of electronic contracts. In: International Conference on Service Oriented Computing (IC-
SOC03), Springer (2003)

5. Abdelsadiq, A., Molina-Jimenez, C., Shrivastava, S.: A high level model checking tool
for verifying service agreements. In: The 6th IEEE International Symposium on Service-
Oriented System Engineering (SOSE 2011), IEEE (2011)

6. Strano, M., Molina-Jimenez, C., Shrivastava, S.: Implementing a rule-based contract com-
pliance checker. In: Software Services for e-Business and e-Society: 9th IFIP WG 6.1 Con-
ference on e-Business, e-Services and e-Society (I3E), Springer (2009)

7. Molina-Jimenez, C., Shrivastava, S., Strano, M.: A model for checking contractual compli-
ance of business interactions. IEEE TRANSACTIONS ON SERVICES COMPUTING 5(2)
(2012) 276–289

8. Abdelsadiq, A., Molina-Jimenez, C., Shrivastava, S.: On model checker based testing of
electronic contracting systems. In: IEEE International Conference on Commerce and Enter-
prise Computing (CEC 2010), IEEE (2010)

9. Holzmann, G.J.: The Spin model checker: primer and reference manual. Addison–Wesley
Professional (2003)

10. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual Symposium on Founda-
tions of Computer Science (FOCS 1977). (1977) 46–57

11. Solaiman, E., Sun, W., Molina-Jimenez, C.: A tool for the automatic verification of bpmn
choreographies. In: IEEE 12th International Conference on Services Computing (SCC),
IEEE (2015)

12. OMG: Documents associated with business process model and notation (bpmn) version 2.0,
http://www.omg.org/spec/BPMN/2.0/ (2011)

13. Molina-Jimenez, C., Shrivastava, S.: Establishing conformance between contracts and chore-
ographies. In: 15th IEEE Conference on Business Informatics (CBI). 2013, Vienna, Austria:
IEEE Computer Society, IEEE (2013)

14. RedHat: ”Drools”, http://www.drools.org/ (2013)
15. Parr, T.: The Definitive ANTLR 4 Reference. (January 2013)
16. Molina-Jimenez, C., Shrivastava, S., Cook, N.: Implementing business conversations with

consistency guarantees using message-oriented middleware. In: IEEE 11th Int’l Enterprise
Computing Conf. (EDOC ’07). (2007) 51–62

17. Molina-Jimenez, C., Shrivastava, S., Strano, M.: Exception handling in electronic contract-
ing. In: IEEE Conference on Commerce and Enterprise Computing (CEC). 2009, Vienna,
Austria, IEEE (2009)

18. OASIS: ebXML Business Process Specification Schema Technical Specification
v2.0.4, Available: http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-
os-en.pdf (2006)

19. Solaiman, E., Sfyrakis, I., Molina-Jimenez, C.: Dynamic testing and deployment of a con-
tract monitoring service. In: 5th International Conference on Cloud Computing and Services
Science, SCITEPRESS (2015)

20. Ungureanu, V., Minsky, N.H.: Establishing business rules for inter–enterprise electronic
commerce. In: 14th International Symposium on Distributed Computing (DISC’00). (2000)
179–193

21. Ludwig, H., Stolze, M.: Simple obligation and right model (sorm)-for the runtime manage-
ment of electronic service contracts. In: 2nd Int’l Workshop on Web Services, e–Business,
and the Semantic Web (WES’03) LNCS. Volume 3095. (2003) 62––76

22. Hvitved, T.: A survey of formal languages for contracts. In: n Fourth Workshop on Formal
Languages and Analysis of Contract–Oriented Software (FLACOS’10). (2010)

23. Galton, A.: Temporal logics and computer science: An overview. Academic Press (1987)
ch. 1, pp. 27–48

24. Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: A survey. Software
Testing, Verification and Reliability (2009) 215––261

25. Van der Aalst, W., Pesic, M.: Decserflow: Towards a truly declarative service flow lan-
guage. In: Bravetti M, Nunez M, Zavattaro G (eds) International Conference on Web Ser-
vices and Formal Methods (WS-FM 2006). Volume 4184., Lecture Notes in Computer Sci-
ence Springer-Verlag (2006) 1–23

26. El-Far, I.K.: Enjoying the perks of model-based testing. In: Proc. of the Software Testing,
Analysis, and Review Conference (STARWEST 2001). (2001)

27. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan–Kaufmann (2006)

28. Pezze, M., Young, M.: Software Testing and Analysis: Process, Principles and Techniques.
Wiley (2008)

29. Torsel, A.M.: A testing tool for web applications using a domain-specific modelling language
and the nusmv model checker. In: IEEE Sixth International Conference on Software Testing,
Verification and Validation. (2013)

30. Shrivastava, S., Little, M.: Designing atomic business functions with distributed control. In:
17th IEEE Conference on Business Informatics (CBI 2015), IEEE (2015)

	TRCover - 1490
	TRAbstract - 1490
	TRBibliography - 1490
	TR1490 Without Covers

