VRIJE
UNIVERSITEIT

Vrije Universiteit Brussel BRUSSEL

An Interactive Source Code Visualisation Plug-in for the MindXpres Presentation Platform
Roels, Reinout Franciscus; Mestereaga, Paul; Signer, Beat

Published in:
Communications in Computer and Information Science

DOI:
10.1007/978-3-319-29585-5_10

Publication date:
2016

License:
Other

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):

Roels, R. F., Mestereaga, P., & Signer, B. (2016). An Interactive Source Code Visualisation Plug-in for the
MindXpres Presentation Platform. Communications in Computer and Information Science, 583, 169-188.
https://doi.org/10.1007/978-3-319-29585-5_10

Copyright

No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 29. Mar. 2024

https://doi.org/10.1007/978-3-319-29585-5_10
https://cris.vub.be/en/publications/an-interactive-source-code-visualisation-plugin-for-the-mindxpres-presentation-platform(52cd78d3-16b7-4d55-96a4-fa32cb9ee0a1).html
https://doi.org/10.1007/978-3-319-29585-5_10

Communications

The final

publication

iIn Computer and Information Science (CCIS)583,

is available at Springer via

http://dx.doi.org/10.1007/978-3-319-29585-5_10

An Interactive Source Code Visualisation

Pp.

Plug-in for the MindXpres Presentation Platform

Reinout Roels, Paul Megtereaga and Beat Signer

Web & Information Systems Engineering Lab
Vrije Universiteit Brussel, Pleinlaan 2
1050 Brussels, Belgium
{rroels,bsigner}@vub.ac.be

Abstract. Nowadays, the teaching of programming concepts and algo-
rithms is often conducted via slideware such as PowerPoint or Keynote,
with the instructor going through a sequential series of slides showing
static pieces of program code. As outlined in this paper, such a slideware-
based approach has its limitations in terms of the authoring as well as
the delivery of content for a programming course. Nevertheless, there is
a rich body of research on how to best teach programming concepts and
algorithms where it has been shown that this process very much depends
on the mental models developed by scholars when learning how to pro-
gram. Based on this existing body of research, we derived a number of
requirements for an improved source code visualisation and presentation
in slideware tools. We present an interactive source code visualisation
plug-in for the MindXpres presentation platform, which addresses these
requirements and introduces a number of innovative concepts for an in-
teractive visualisation of source code. Based on two concrete examples
showing how our solution can be used for the teaching of recursion by
means of a recursion tree or to explain sorting algorithms by using an-
imation, we illustrate the extensibility and flexibility of the presented
interactive source code visualisation approach. Ultimately, the presented
solution should help in reinforcing a student’s mental model about a pre-
sented algorithm and improve the knowledge transfer of presentations
delivered in programming courses.

Keywords: slideware, presentation-based teaching, programming

1 Introduction

The teaching of programming concepts and algorithms forms a fundamental
part of any Computer Science and Engineering degree. However, grasping the
concepts taught in programming courses is far from trivial and has been proven
to be a challenge for both students as well as teachers [16,2,11,17,20,23]. Research
from the early 1980s highlights the importance of mental models when learning
how to program [22]. As defined by Mayer [22], a mental model is “a mental
representation of the components and the operating rules of the system” and
the completeness of this representation may vary. An incomplete representation

169-188,

2016

signer
Typewritten Text
Communications in Computer and Information Science (CCIS)583, pp. 169–188, 2016
The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-29585-5_10

that differs from the actual characteristics of the system results in an incomplete
understanding of how the computer works and will cause the novice programmer
to have difficulties in writing correct programs [21]. This is further confirmed by
Milne and Rowe [24] who state that students who are not able to create a mental
model of the program execution do not have the ability to comprehend what is
happening to the program in memory. Hence the importance of students being
able to retell the learned concepts in their own words was also first brought up
by Mayer [22]. It is widely accepted that by having access to a more complete
mental model of the system, the learning and practising of programming can be
achieved in a more effective way [5].

Given the importance of such a mental model, it is not surprising that re-
searchers aim to develop tools and methods in the form of visual aids for reinforc-
ing the mental model of students [21,32]. In a procedural programming language,
the program becomes a sequential process. This process is represented by various
changes of states after an expression has been executed. Therefore, Mayer [22]
states that a possible solution for providing an effective mental model is to use vi-
suals and to show the user the changes in state—such as variable changes—while
the program is executed. In terms of teaching methods, Jenkins [15] argues that
the main role of a teacher in programming courses should be the one of a moti-
vator. In many other areas of computing the teacher is mainly a communicator
of information. However, the teaching of programming based on only presenting
information such as syntax and structure in a lecture is not sufficient as it is
not immediately clear how states change and there is a lack of contribution to a
student’s mental model.

Nevertheless, the majority of programming courses are at least partially
taught via lectures accompanied by slide decks which is not in line with the
research in the domain of teaching how to program that has been mentioned
earlier. In fact, these slide decks often form a major part of the study mate-
rial. To make matters worse, slides that have been created by slideware such
as PowerPoint or Keynote are a particularly unsuitable medium for presenting
source code. As argued by Tufte [35], slide decks have evolved from their phys-
ical counterparts including photographic slides or transparencies for overhead
projectors and therefore also share the limitations of these physical media types.
Content is presented in a strictly linear way, it is fairly static and spatially re-
stricted by the boundaries of the physical slides. In addition to the consequences
on knowledge transfer during a lecture, these tools also impose a number of is-
sues during the authoring phase by a presenter who would like to show some
source code. In programming environments, source code is usually indented and
colour coded via syntax highlighting in order to improve the readability. How-
ever, when source code is copy and pasted into a presentation, this formatting is
often lost and presenters are required to manually format the code. Furthermore,
even simple examples of algorithms result in lengthy blocks of source code and
spatial restrictions make code less understandable. Due to these spatial restric-
tions, the presenter is forced to spread their code examples over multiple slides.
In addition, they have to jump back and forth since programming concepts such

as methods, conditional statements or loops cause the program to be executed
in an order that differs from how it is written down.

We introduce an approach to present source code in a way that reinforces
a user’s mental model and thereby helps to increase the knowledge transfer of
presentations delivered in programming courses. In addition, our solution allows
presenters to include source code in their presentations without the hassle usu-
ally associated with existing slideware tools. We start by discussing some related
work in Sect. 2. Based on the existing body of work and some of the shortcom-
ings of current solutions, we derive and formulate a number of requirements for
a more efficient source code visualisation in presentation tools in Sect. 3. We
then detail our proposed solution in Sect. 4 and present the technical details
of our prototype which has been implemented as a plug-in for the MindXpres
presentation platform [28,30] in Sect. 5. In Sect. 6, we describe two different use
cases of the plug-in. Finally, some concluding remarks are provided in Sect. 7.

2 Related Work

In the context of presentation tools, there exists little to no academic work trying
to improve upon the issues associated with the presentation and visualisation
of source code. At authoring time, one can see that state-of-the-art presenta-
tion tools do not make any effort to support the authoring and integration of
source code. As mentioned before, the indentation and syntax highlighting of
source code is lost when copy and pasting from the programming environment
to a presentation tool like PowerPoint. Common workarounds include the use of
command line tools such as pygmentize' or web-based tools like TOHTML? in
order to convert source code to a representation that preserves the formatting
when copy and pasting (e.g. HTML or RTF). Another popular workaround is to
simply take a screenshot of the source code in the development environment and
to include it in the presentation. However, the inclusion of a screenshot often
results in blurry or pixelated text. While these approaches address the issue of
manual formatting, they remain tedious and often suboptimal workarounds.
When broadening our view beyond the domain of presentations, we can find
research that builds on the principles outlined in the previous section. In all cases
these are stand-alone desktop applications that use visualisations to help users
build a mental model of a program. One of the earliest tools is the Bradman
tool [32] for the C programming language. It mainly relies on showing state
changes after the execution of each line of code and an evaluation of the tool
revealed an improved understanding of the code by its users [33]. Another solu-
tion is the VIP tool [37] for a subset of the object-oriented C++ programming
language. While the VIP tool also focusses on visualising state changes, it dis-
tinguishes itself by making the concept of pointers and references—which is
considered to be a difficult concept to grasp for students—more understandable.
Jeliot 3 [26] is a tool for visualising the object-oriented Java language. Given the

! http://pygments.org/docs/cmdline/
2 http://tohtml.com

nature of Java, the tool also visualises the objects and their relationships in an
UML-like notation in addition to state changes while the program is executed.
However, an evaluation of Jeliot highlighted that the animations were hard to
interpret and apply for students, making the evaluation inconclusive [25]. An-
other notable feature of Jeliot is the extensible visualisation mechanism, allowing
potential new third-party visualisations to be added at a later stage.

The notional machine [3] is another recent tool for visualising Java programs
which bases itself on the work of Boulay [4]. While being similar to Jeliot, the no-
tional machine intentionally limits the stepping granularity for state changes to
the level of method invocations and method returns rather than to single state-
ments. Additionally, the notional machine also allows methods to be invoked
interactively (on demand) in contrast to the other tools where the execution is
only possible in the order of the logical execution flow. Similarly, UUhistle [34]
also offers an interactive coding mode for the Python programming language,
adapting the visualisations in real-time as the user makes changes to the source
code. Also JGRASP [6] defines itself as an application for understanding a pro-
gram through visualisation while the user is writing the code. Finally, there is
a category of tools that focusses on a specific aspect of program execution. For
instance, RGraph [31] is a solution that generates a static visualisation of recur-
sion graphs for Java programs in order to help students with the understanding
of recursion. Note that we intentionally limited ourselves to the tools built for
supporting students during the learning process. There are plenty of commer-
cial products that visualise code characteristics such as the amount of lines or
dependencies, performance metrics or editing history, but these solutions serve
an entirely different purpose than the aforementioned tools.

In conclusion, projects such as CodeWitz [19] show that there is a clear need
for better teaching tools in computer science. However, in the context of pre-
sentations, presenters are often limited to two choices. Either they have to work
around the limitations of existing slideware tools or they have to use one of the
standalone applications mentioned above, switching between their presentation
and the external application on demand. Besides not being beneficial for the flow
of the presentation, most of the standalone tools only focus on a very specific
aspect of programming (e.g. recursion or memory management) and are made
for a specific programming language. This implies that a programming course
may require more than one of these tools to illustrate all relevant concepts or
that a tool for the programming language used in the course might not even
exist.

3 Requirements

Based on a detailed analysis of the related work presented in the previous section,
we derived a number of requirements for more efficient source code visualisation
in presentation tools. While these requirements overlap with the requirements
for stand-alone desktop tools, the use in the context of a lecture requires some
further thought. For instance, the typical traditional lecture mainly consists of

a unidirectional flow of information since students are not as involved as, for
example, in lab sessions.

R1: Automatic indentation and syntax highlighting A first step towards
making source code understandable is to make it more readable. Indentation and
syntax highlighting are well-established methods to improve the readability of
source code as they help to interpret scope and syntactic structures. Additionally,
the indentation and syntax highlighting of source code in a presentation makes
the code similar to what students are used to in their programming environments.
However, in contrast to existing practices in presentation tools, the formatting of
code should not be a burden to the presenter and should be done automatically
by the presentation tool.

R2: Efficient navigation of source code When explaining the working of a
piece of source code, it is necessary to display the code as part of a presentation.
However, even simple programs consist of more lines of code than would fit on
a single slide. Additionally, programs rarely execute sequentially and may jump
back and forth between different pieces of code, not necessarily in the order in
which they were written. This forces presenters to jump back and forth between
slides making it difficult for both the audience as well as the presenter to follow
the program flow.

R3: Visualise the working of the code From related work we learn that the
mental model of a program can be built much easier when accompanied by visual
aids. In addition to showing the code of the program, the tool might for instance
display state changes or illustrate concepts such as pointers or recursion in order
to make it clearer what is actually happening when the program executes. The
idea of visualising source code in a dynamic way is supported by recent stud-
ies showing that the use of dynamic media brings measurable improvements in
knowledge transfer over the use of static media [13].

RA4: Integration in presentation tools As slide decks are often used during
lectures, it makes sense to integrate the interactive visualisations directly into
our presentation rather than relying on a stand-alone application. If the inter-
active source code visualisation is not integrated into the presentation tool, the
presenter is forced to switch between applications which takes time and breaks
the flow of the presentation.

R5: Extensible support for multiple languages Even though there are
a few more commonly used programming languages in the list of all existing
languages, there is no consensus on what language to teach in introductory
programming courses [12,8]. While each of the stand-alone tools presented in
Sect. 2 only focusses on a single language, we believe that a tool for use in
presentations should be able to deal with more than one language. By supporting
only a single language, the tool would automatically be excluded from being used
in the larger share of lectures that use other languages. Additionally, we claim
that the set of supported programming languages should be extensible by third
parties instead of limiting ourselves to a fixed set of languages.

R6: Extensible visualisation choices It has been shown that graphical rep-
resentations of programming concepts have an important role in the construction
of a mental model [10,36]. However, different visualisations are needed for differ-
ent scenarios. Not only do programming languages have different characteristics
(e.g. object-oriented versus procedural) but also the topic may influence the type
of visualisations required for the program. Related work shows that customised
visualisations help with the teaching of specific concepts such as memory pointers
or recursion [7]. It therefore makes sense to allow the presenter to select the de-
sired visualisation apart from just showing some source code. Additionally, it
should be possible that the pool of visualisations can be extended, especially
when considering the previous requirement R5.

R7: Interactive program execution Next to visualising a program, the
execution might also be made more interactive and controllable by the presenter.
For instance, the presenter might want to show how the same program reacts
to different kinds of input, or they may wish to execute different parts of the
program based on different scenarios or feedback from the students.

4 Towards Interactive Source Code Visualisation

Based on the requirements presented in the previous section, we now introduce
our approach towards presenting source code in a more accessible and efficient
way. In order to fulfil requirement R4, it is obvious that our solution should inte-
grate into an existing presentation tool. As the most basic feature, the presenter
should be able to include any piece of source code in a presentation and the tool
should present it in a readable manner. From a technological standpoint there
is no reason why a presentation tool could not automatically handle formatting
issues such as indentation and syntax highlighting. A user can either explicitly
specify the language or simple techniques such as Bayesian filters can be applied
to automatically detect the programming language of a piece of source code.
Since a programming language’s syntax is formally defined, the parsing and syn-
tax highlighting is hardly a challenge. Nevertheless, to the frustration of many
presenters this simple feature is not present in current presentation tools and
should therefore be provided by our tool as demanded by requirement R1. In
order to break free of spatial restrictions, we suggest that source code should
be scrollable if it does not fit on a single slide rather than presenting isolated
chunks of code spread across slides. This allows the presenter to illustrate source
code more coherently as it is easier for audience members to grasp the bigger
picture. Making the code scrollable contributes to the navigation of the source
code and therefore also addresses requirement R2.

While these aesthetic improvements enhance knowledge transfer, related work
indicates that the visualisation of program execution may be one of the most
important techniques to help students in building a mental model of a program.
Therefore, our solution should not only display the static source code but one
should also be able to step through the execution of the program in forward or
backward order. This does not only help in illustrating the program flow, but

also state changes can be shown simultaneously to highlight how each line of
code influences the state of the program as described in requirement R3. Since
the presenter does not always want to step through the program execution from
the very beginning to the end, it also makes sense to provide a means of manually
jumping to the relevant parts of the source code.

In order to fulfil requirement R5, an interactive source code visualisation so-
lution should not limit itself to a single programming language. The tool should
be able to handle different programming languages and the resulting code visu-
alisation and execution should work in the same way, regardless of the language.
However, the execution and interpretation of programs is language dependant
and therefore it is impossible to offer a generic implementation that is guar-
anteed to work for all programming languages. We address this challenge by
offering modular language support. Language-specific functionality should be
bundled together as a module with a predefined interface so that the tool can
select the corresponding module based on the detected language. The language-
specific module is then responsible for interpreting the execution of the program
and translating it to a generic representation that is understood by the visu-
aliser. This way, the tool can support a wide variety of programming languages
regardless of technical differences and even allows the set of supported languages
to be extended by third parties.

Finally, in addition to the visualisation of the source code and state changes,
we deem it meaningful to provide some further optional graphical visualisation.
As discussed in Sect. 2, different visualisations have been developed to provide
a better understanding of concepts such as memory pointers or recursion. These
extra visualisations should also be implemented as interchangeable modules in
order that they can be extended. They can make use of the generic execution
representation provided by the language-specific modules and are thus language
independent. The visualisation module gets the execution data such as state
changes and method invocations in a common format and does not have to
deal with language-specific details. Note that this also means that visualisation
modules can be reused for different languages since, for example, recursion is a
concept available in many languages.

A mock-up of our proposed solution is shown in Fig. 1. Based on the real
estate available on a slide, the left half of the slide is dedicated to the visu-
alisation of the source code. Note that the source code is properly indented,
syntax highlighted and scrollable if necessary. The slider below the code allows
the presenter to quickly move to a particular point in the execution and the but-
tons underneath allow them to go through the code one step at a time, either
forwards or backwards. The right-hand side is dedicated to visualisations that
adapt as the presenter steps through the code. The upper right part shows the
state of relevant variables whereas the lower right part can optionally be used
for context-specific visualisations.

While the goal is that our tool should do as much as possible automatically,
there are also cases where a presenter might want to configure the tool before-
hand. For instance, in larger programs it makes no sense to visualise the changes

)®)

EXECUTION STATE

CODE U

o

| EXTRA VISUALISATION |

@

0 |

)
<< Step 3/10 >>

- 4

Fig. 1. Source code visualisation mock-up

of every single variable. In these cases, the presenter may choose to select those
variables that contribute to the understanding of a program and the rest will not
be displayed. The presenter might also want the execution to start at a specific
point instead of having to manually find the right spot they want to discuss.
Furthermore, the presenter may choose which additional visualisation to use or
decide to not show any additional visualisation at all and use the full width of
the slide for displaying the source code.

5 Implementation

We now present our implementation of the concepts discussed in the previous
section. Before describing the technical details of our prototype implementation,
we outline the overall architecture of our interactive source code visualisation
solution for the MindXpres presentation platform.

5.1 Architecture

As briefly mentioned in Sect. 4, special measures need to be taken to support
multiple programming languages. The main reason is that in order to fulfil re-
quirement R3, we need to execute or interpret the provided source code to extract
events, such as state changes or method invocations. Unfortunately, this process
is different for each programming language which makes it impossible to provide
an all-in-one solution. As detailed earlier, we bundle language-specific function-
ality in interchangeable modules making it possible to add new languages.

The architecture chosen to support this extensibility for new programming
languages is shown in Fig. 2. When source code is given to our tool by the pre-
senter, the language can automatically be detected. In our implementation we
used a Naive Bayes classifier to infer the language. This technique works partic-
ularly well for this purpose since each programming language’s syntax consists

Visualisation
Engine

Source Code fr--rrririiiiiiiieee

Generic
Execution Log

Language
Detection

Language Module

Debugger-specific
Debugger Execution Log Log Parser

Fig. 2. Architecture for extensible language support

of some reserved keywords (e.g. new or import) that are either unique to the
language or drastically reduce the amount of potential candidates. When the
code has been analysed the tool then searches its collection of language mod-
ules for the detected language. In the case that no matching module is found,
the tool limits itself to just displaying the source code without any additional
interactive features. However, if a matching module is found, it is passed the
source code. The language module is then responsible for extracting the relevant
information from the running program and for translating it to a generic rep-
resentation that is understood by the visualisation engine. One of the benefits
of isolating language-specific features is that the modules can make use of ex-
isting applications and libraries instead of having to implement everything from
scratch. For example, we found existing debuggers to be particularly useful. A
debugger is a tool that examines a running application and offers functionality
to provide insights about the program flow and for finding unwanted behaviour
in the form of bugs. Debuggers are hard to use and they make no real effort to
reinforce a mental model [32], but their output, a so-called execution trace, can
be turned into something more meaningful by our tool. Nevertheless, debuggers
are standalone applications dedicated to one specific language only and different
debuggers produce output in different formats. Therefore, when the language
module invokes the debugger and gets an execution trace, it also translates the
resulting trace into a generic format ensuring that the output of each language
module has the same format. This generic execution log is then transferred to
the visualisation engine together with the original source code in order that the
visualisation engine can display the source code and provide additional interac-
tive functionality such as the visualisation of state changes while the presenter
steps through a piece of source code. Since the visualisation engine works with

the generic execution log it does not need to have knowledge about the original
language which implies that visualisations can be reused for different languages.

5.2 Generic Execution Log

As explained before, the generic execution log is the key to supporting multi-
ple languages in an extensible manner. We have chosen the JavaScript Object
Notation (JSON), a lightweight data interchange format for representing the
execution log. For each programming language, a language module translates
the language-specific execution log into this JSON-based representation. This
means that the visualisation tool only needs to be able to process the generated
JSON format and does not need to be aware about the specifics of a particular
programming language.

1 | int sum = 0;

2 | for(int i = 0; i < 2; i++){
3 sum = add(sum, i);

41}

Listing 1.1. A small C program

From the language-specific execution logs, the language module needs to ex-
tract events such as variable definitions, variable state changes as well as function
invocations. For example, Listing 1.2 shows the JSON output resulting from the
execution of the small C program shown in Listing 1.1.

e N
1| [{"line": 1, "type": "VarDefinition",
2 "details": "name": "sum",
3 "value": ||0u}}’
4 {"line": 2, "type": "VarDefinition",
5 "details": "name": "i",
6 "value": ||0u}}’
7 {"line": 3, "type": "FunctionCall",
8 "details": {"name": "add"}},
9 {"line": 3, "type": "StateChange",
10 "details": {“name": "sum", "old": "O"
11) "new" : "0"}},
12 {"line": 2, "type": "StateChange",
13 "details": "name": "i", "old": "O"
14) "new" : ||1u}}’
15 {"line": 3, "type": "FunctionCall",
16 "details": {"name": "add"}},
17 oo

Listing 1.2. Generic execution log (in JSON) for Listing 1.1

The C programming language is a purely procedural programming language
but in order to support object-oriented languages the details specific to objects
can also be expressed in the generic log format. This includes, for instance,
method invocations and changes to object fields. While we could have used the
same representation as for function invocations and variable changes, there are
languages such as C++ that can have both functions and methods and therefore
a separate representation is needed. Listing 1.4 shows the JSON execution log
generated for the Java program illustrated in Listing 1.3.

1 | Person person = new Person("John");
2 | person.setAge (19);

Listing 1.3. A small Java program

Note that a specific line of code may need multiple entries in the execution
log. For instance, a line of code may define a new variable, invoke a method
and use the returned value to set its state. Even though they all occur on the
same line of code, the execution log should contain separate entries for each of
these events. The visualisation tool may combine them into a single step for
the visualisation, but at least it has access to the finer details in case certain
visualisation plug-ins should need them.

s M
1| [
2 {“line": 1, "type": "VarDefinition",
3 "details": "name": "person",
4 "initialValue": "null"}},
5 {“line": 1, "type": "Constructor",
6 "details": {"class": "Person"}},
7 {"line": 1, "type": "StateChange",
8 "details": "name": "person",
9 "0ld": "null", "new": "Person"}},
10 {"line": 2, "type": "MethodCall",
11 "details": "name": "setAge",
12 "object": "person"}},
13 {"line": 2, "type": "ObjStateChange",
14 "details": "name": "person.age",
15 "old": "O", "new" : "19"}}
16| 1;
- J

Listing 1.4. Generic execution log (in JSON) for Listing 1.3

5.3 MindXpres Source Code Plug-in

Our interactive source code visualisation prototype has been implemented as a
plug-in for the MindXpres presentation platform [30,27]. MindXpres has been de-
veloped to overcome the limited extensibility of well-known slideware tools such
as PowerPoint or Keynote and to offer a rapid prototyping platform for novel
presentation ideas. The motivation behind this is that although PowerPoint of-
fers an application programming interface (API) for creating extensions, it still
enforces the usage of linear sequences of slides with relatively static content.
Therefore it is often not possible to extend PowerPoint with radically new func-
tionality. The highly modular MindXpres architecture allows any component to
be replaced and new components and functionality can easily be added. For in-
stance, users may choose to use a plug-in that visualises content using a zoomable
user interface (ZUI) or they can use a plug-in that visualises the same content
in a classic linear fashion as known from existing slideware. The core MindXpres
engine provides various abstractions, which allows plug-in creators to focus on
their innovative ideas instead of having to reimplement the basic functional-
ity every time. For instance, the graphics engine provides functionality related

to the visualisation of content with features such as the ZUI and interactive
rich media visualisation plug-ins. The communication engine allows instances of
a MindXpres presentation to form networks which allows plug-ins to communi-
cate across devices and enables plug-ins for various audience-driven functionality
such as polls, quizzes or screen mirroring [29]. Furthermore, the communication
engine allows the easy integration of hardware such as clickers, digital pens or
gesture capturing devices (e.g. Leap Motion3) and is also able to direct the
stream of captured events to other relevant MindXpres instances.

MindXpres uses HTML5 and related technologies for enhanced portability
and plug-ins are written entirely in JavaScript. Although a graphical editor is
under development, MindXpres presentations are currently defined in a XML-
like declarative language similar to the IMTEX language used for text documents.
The reasoning behind this is also similar; let the user focus on content and let
the tool worry about the layout and styling. While MindXpres comes with a
default set of plug-ins for basic components such as images, bullet lists, videos
or slides, it is easily possible to add new plug-ins for new content types. Plug-
ins also extend the vocabulary used in the MindXpres document format. More
specifically, a plug-in can add new XML tags for usage in the document format.
A plug-in that introduces new tags then also takes responsibility for visualising
content placed within these tags.

1 | <presentation>

2 <slide title="Fibonacci Numbers">

3 <bulletlist>

4 <item>Fn = Fn-1 + Fn-2</item>

5

6 </bulletlist>

7 <image source="fib.jpg"/>

8 </slide>

9 <slide title="Fibonacci Implemented Recursively">
10 <code>

11 int fibonacci(int n)

12 {

13 if (n == 0)

14 return O;

15 else if (n == 1)

16 return 1;

17 else {

18 return fibonacci(n-1) + fibonacci(n-2);
19 }

20 }
21 </code>
22 </slide>
23 <slide title="Fibonacci - Iterative">
24 <code source="fib_it.c"></code>
25 </slide>
26 | </presentation>

Listing 1.5. MindXpres presentation in XML

We have realised our proposed interactive source code visualisation approach
by creating a code visualisation plug-in for MindXpres that introduces the code
tag to the vocabulary. The plug-in provides two ways to include source code
in a presentation document. Either the presenter uses an attribute of the code

3 https://www.leapmotion.com

tag to refer to an external file containing source code, or the presenter just
pastes the code between code tags. Listing 1.5 shows a shortened snippet of
a MindXpres presentation that uses both ways to include source code and the
resulting presentation can be seen in Fig. 3.

Fibonacci Numbers
* Fn=Fn-1+Fn-2

= withFO=0andFl=1
=1,1,2,3,5/8,13,21,34, 55 89,144, ..
= Used extensively in computer science

= pseudorandom number generators
13 5 :
5 3
21 I ’

- sorting algorithms

= compression algorithms
= data structures (e.g. Fibonacci heap)

/\ Fibonacei (n-1)

Flbonace (n-1) Flbonatél(v-0)

Fig. 3. A MindXpres presentation with the embedded source code plug-in

When the MindXpres document format is compiled into a portable presen-
tation, a MindXpres plug-in can be invoked if it contains compile-time triggers
for the content that it is responsible for. In this case, the code plug-in will use a
compile-time trigger to be notified when source code is encountered in the pre-
sentation. The plug-in will then detect the language and let the correct language
module generate the generic execution log. This means that the corresponding
language module is only invoked once, namely at compile time. The resulting log
is then bundled in the presentation together with the code plug-in that is going
to perform the run-time visualisation when the final presentation is opened for
viewing. Because MindXpres plug-ins are written in JavaScript, we are free to
use some of the powerful existing libraries offering relevant functionality. For
code formatting and syntax highlighting we use Google’s prettify* library. Fur-
thermore, the plug-in uses the D3® visualisation library for some of its optional
visualisations. For this prototype implementation we have implemented two lan-
guage modules, namely one for C and one for Java. For the creation of the
execution traces, the C module uses the GDB® debugger while the Java version
uses JDB, a debugger included with the Java Development Kit”.

Creating a language module requires some programming but the provided
abstractions make the process fairly straightforward. The language module itself
is implemented as a folder containing at least two files. A manifest file provides
some metadata and specifies the programming language the module can process.

* https://code.google.com/p/google-code-prettify/
® http://d3js.org

5 http://www.gnu.org/software/gdb/

7 https://www.oracle.com/java/

The second file contains JavaScript code that implements a single method which
accepts source code as input and returns a generic execution log. This code is
executed if the source code plug-in detects that the presentation contains source
code that was written in the programming language mentioned in the manifest
file. Because the MindXpres compiler is based on Node.js, the JavaScript code
can make use of existing libraries and even binaries placed alongside the two
required files. In most cases, it is sufficient for a language module to include an
existing debugger, have it create an execution log and translate this log into the
generic execution format. However, note that there are alternative ways how a
language module might obtain an execution log. For instance, a language module
could also directly implement a basic interpreter in JavaScript and generate the
generic execution log without the use of external tools.

6 Technical Evaluation

After describing the implementation in the previous section, we now detail two
different use cases of the source code visualisation plug-in. As part of the initial
prototype, we implemented two extra visualisations. A first visualisation is used
to display the recursion tree when executing a recursive algorithm. The other
visualisation uses animation to show how a list of numbers is processed during
the execution of a sorting algorithm. Note that both visualisations can be used
for any of the supported languages.

6.1 Teaching Recursion by Means of a Recursion Tree

Recursion is an important but far from trivial programming concept. However,
it has previously been shown that visualisations can be beneficial when teaching
recursion [7]. For this reason, we have chosen to develop a recursion visualisation
as part of our technical evaluation. A common application of recursion in pro-
gramming is to make a method or function call itself, possibly multiple times,
to compute a smaller part of the task that it was given. One of the standard
examples to illustrate this is the recursive implementation for calculating the
Fibonacci sequence. In the Fibonacci sequence each number is the sum of the
previous two numbers (Fib(n) = Fib(n— 1)+ Fib(n—2)). In other words, to cal-
culate the n*”* number in the sequence we need to know the numbers at position
n — 1 and n — 2, with the base case Fib(0) = 0 and F'ib(1) = 1. This translates
particularly well to most programming languages as it can be implemented as
a function that calls itself to calculate the previous two numbers, just like the
mathematical definition.

Figure 4 shows the MindXpres source code plug-in in action for an imple-
mentation of the Fibonacci function in the C programming language. The high-
lighted line indicates what line of code is being executed in the current step. As
mentioned before, the buttons can be used to go forwards or backwards in the
execution and the presenter may also use the slider to jump to a particular point
of interest. On the right-hand side the state changes for the variables n, i, j and

8 }
9 Var Name Before After
10 int fibonacci(int n)

11 { n 2
12 if (n==0) |1 [1
13 return 0;

14 else if (n ==1) ‘j ‘0
15 return 1

16 else { ‘sum ‘1
17 int i = fibonacci(n-1);

18 int j = fibonacci(n-2); Fibonacci (n=3)

19 int sum = i+j;

20 return sum;

21 }

22 }

23 . .

24 int fibonacci_it(int n) Fibonadci (n=2)

25 {

26 int i, fi;

27 int £1 = 0;

28 int £2 = 1;

29

30 if(n == 0)

31 return 0; Fibonacci (n=1) Fibonacci (n=0)

Fig. 4. MindXpres source code plug-in with recursion tree

sum are shown. This includes their old value (Before) and the new value (After)
that was assigned to them at that point of execution. The recursion tree shows
a history of recursive function calls up to that point making it clearer what has
happened in the previous steps. The blue dot indicates which Fibonacci number
we are currently calculating. In this case, the reader can see that the program
started with Fib(3), but to get the result it had to calculate Fib(2) and F'ib(1).
The blue dot shows that it is currently finishing the calculation of F'ib(2). The
tree also makes it clear that in order to calculate Fib(2) it first had to calculate
Fib(1) and Fib(0) and the results were stored in the variables i and j respec-
tively. Hence the variable sum, in this case the result of Fib(2), equals 1. As the
recursion is performed in depth-first order and is currently backtracking, a new
branch is about to be added under the top node for the calculation of Fib(1). Its
result will be added to the result of the left branch to form the third Fibonacci
number.

While the example in Fig. 4 shows purely procedural code, the same visual-
isation can be used for object-oriented code. For instance, the execution of the
code presented in Listing 1.3 would first show a state change in the variable
person, from null (not initialised) to a new instance of a Person. The second
line would then result in a state change in person.age from 0 to 19. Similarly,
a recursion tree could be built based on method calls instead of function calls.

6.2 Teaching Sorting Algorithms by Using Animation

In addition to recursion, the visualisation of sorting algorithms also has been
proven to be beneficial when teaching [1,9]. While changes in arrays can be
shown in the upper right section dedicated to state changes, we implemented a

second extra visualisation to show array manipulations more clearly by making
use of colours, arrows and animation.

1 public class InsertionSort {

2 Var Name Before After
3 public static void main(String[] args) ‘array (3,3,4,5,1] (2,3,4,5,1]
4 {

5 int[] array = {4, 3, 2, 5, 1}; i 2

6 insertionSort(array);

7 } ‘val 2

8 . o)) I3 0

9 static void insertionSort(int[] array)

10 {

11 for(int i = 1; i < array.length; i++)

12 { {

13 int val = array[i];

14 int j = i; 3 4 2 ‘5“1’
15 while(j > 0 && array[j-1] > val)

L < A

17 array[j] = array[j-1];

18 j--i

19 }

20 array[j] = val;

21 } 2 3 4 5 1
22 }

23 }

Fig. 5. MindXpres source code plug-in with array visualisation

In Fig. 5, an implementation of the well-known insertion sort [18] sorting
algorithm is shown. In short, the insertion sort works by maintaining a sorted
subarray on the left side and adds new elements one by one while keeping the
subarray sorted. As the presenter steps through the code, the manipulation of
the array is visualised. The visualisation shows both the current state of the
array as well as the changes that lead to that current state (shown above the
current state). The green elements represent the part of the array that is already
sorted. To give an example, Fig. 5 shows us the step where the number 2 has
been added to the sorted part. In order to have space to insert the number 2,
the numbers 3 and 4 had to be moved to the right as indicated by the arrows.
Note that the arrows visualise multiple steps leading up to the insertion of the
number 2. In this case, our extra visualisation was configured to accumulate
steps until the variable i changes its state.

7 Discussion and Conclusion

We have introduced an interactive source code visualisation plug-in for the
MindXpres presentation platform. Apart from the two discussed examples for the
teaching of recursion by means of a recursion tree and the explanation of sorting
algorithms by using animation, the presented solution serves as a framework for
additional future source code visualisations. It further enables the experimenta-
tion with alternative innovative forms for teaching programming concepts and

algorithms based on more interactive presentations. While we currently realised
two language modules for the C and Java programming languages, with minimal
effort it is possible to add support for additional programming languages. The
presented interactive source code visualisation plug-in currently focuses on some
major imperative and object-oriented programming languages. However, with
further investigation of new visualisations, also non-imperative programming
languages can be supported in a future version of the interactive MindXpres
source code visualisation plug-in. For example, most of the presented execution
state and extra visualisation would not be useful for functional programming
languages such as Haskell which avoid state changes and mutable data. The
presented approach for navigating source code is also not appropriate for source
code that has been written in a declarative programming language (e.g. Prolog),
since these programs consists of rules that are queried and triggered rather than
a number of sequentially executed instructions. While the presented interactive
source code visualisation does currently not support these alternative program-
ming paradigms, in the future we might investigate how alternative visualisations
can help students in enhancing their mental model for functional or declarative
programming languages.

The presented source code visualisation is already an improvement when
discussing larger pieces of source code since an instructor can scroll through
the source code and no longer has to spread source code over multiple slides.
Nevertheless, the navigation could be further improved by analysing the source
code in order to add some enhancements. When the presenter, for example, clicks
on a function or method call, an enhanced version of the interactive source code
visualisation plug-in might jump to the function or method definition as known
from most existing integrated development environments (IDEs). A limitation
of the presented solution is that a presenter can only step through the source
code as it has been included in the presentation with no possibility to modify the
source code while delivering a presentation. In the future, we would therefore like
to make the execution of programs more interactive and, for instance, allow the
presenter to execute the same algorithm multiple times but with different start
parameters in order to illustrate the effect of varying parameters. Furthermore,
the functionality of the presented solution could be further enhanced by offering
the presenter the possibility to modify values at any point during the execution
and visualisation of an algorithm.

While we presented our solution mainly from the perspective of the presen-
ter, the MindXpres presentation platform provides a number of abstractions for
implementing features that are commonly found in audience response and class-
room systems [29]. As discussed by Hundhausen et al. [14], the effectiveness of
the visualisation of algorithms can be further increased by involving the students
more closely through active learning. While a MindXpres presentation with our
source code visualisation can already be used as interactive study material af-
ter the lecture, the next step would be to also include the audience during the
lecture. Students might be given the chance to interactively navigate through
the source code and it would no longer be the sole responsibility of the teacher

to control the navigation. Of course such a collaborative source code navigation
tool might also be beneficial in exercise session where students would have to
reason over a presented program in some form of group work.

The technical side of the proposed extensible architecture has been evalu-
ated by implementing two different language modules for the C as well as Java
programming languages. While parts of the presented functionality of our in-
teractive source code visualisation solution is based on earlier research in the
domain of how to best teach programming concepts, in the future we also plan
to do a user evaluation of the discussed interactive source code visualisation
plug-in for MindXpres. When having a look at the teaching material from vari-
ous universities from all around the world, one can identify that many teachers
of programming courses still use traditional slideware solutions with source code
that is often spread over multiple slides. Our solution can be seen as a step to-
wards enhancing the omnipresent presentation-based teaching of programming
by providing better tools for the authoring of source code slides as well as for the
interactive presentation of code examples. Finally, we hope that our new way
of presenting source code in a more interactive manner might inspire other re-
searchers to also investigate new forms of presentation-based teaching solutions
for programming concepts and algorithms that go beyond simply showing a set
of slides with pieces of static source code.

References

1. Baecker, R.M.: Sorting Out Sorting: A Case Study of Software Visualization for
Teaching Computer Science, chap. 24, p. 369-381. MIT Press (1998)

2. Bennedsen, J., Caspersen, M.E.: Failure Rates in Introductory Programming. ACM
SIGCSE Bulletin 39(2), 32-36 (2007)

3. Berry, M., Kolling, M.: The Design and Implementation of a Notional Machine for
Teaching Introductory Programming. In: WiPSE 2013, 8th Workshop in Primary
and Secondary Computing Education. pp. 25-28. ACM (2013)

4. Boulay, B.D.: Some Difficulties of Learning to Program. Journal of Educational
Computing Research 2(1), 57-73 (1986)

5. Canas, J.J., Bajo, M.T., Gonzalvo, P.: Mental Models and Computer Program-
ming. International Journal of Human-Computer Studies 40(5), 795-811 (1994)

6. Cross, II, J.H., Hendrix, T.D.: JGRASP: An Integrated Development Environment
with Visualizations for Teaching Java in CS1, CS2, and Beyond. Journal of Com-
puting Sciences in Colleges 23(1), 5-7 (2007)

7. Dann, W., Cooper, S., Pausch, R.: Using Visualization to Teach Novices Recursion.
In: ACM SIGCSE Bulletin. vol. 33, pp. 109-112. ACM (2001)

8. Dewar, R.B., Schonberg, E.: Computer Science Education: Where Are the Software
Engineers of Tomorrow? Crosstalk: the Journal of Defense Software Engineering
21(1), 28-30 (2008)

9. Furcy, D., Naps, T., Wentworth, J.: Sorting out Sorting: The Sequel. In: ITiCSE
2008, 13th Annual Conference on Innovation and Technology in Computer Science
Education. pp. 174-178. ACM (2008)

10. George, C.E.: Experiences with Novices: The Importance of Graphical Represen-
tations in Supporting Mental Models. In: PPIG 2012, 12th Annual Workshop of
the Psychology of Programming Interest Group. pp. 33-44 (2000)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Gomes, A., Mendes, A.J.: Learning to Program - Difficulties and Solutions. In:
ICEE 2007, International Conference on Engineering Education. pp. 53-58 (2007)
Guo, P.: Python is Now the Most Popular Introductory Teaching Language
at Top U.S. Universities. BLOGQCACM, http://cacm.acm.org/blogs/blog-
cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-
top-us-universities/fulltext (July 7, 2014)

Holzinger, A., Kickmeier-Rust, M.D., Albert, D.: Dynamic Media in Computer
Science Education; Content Complexity and Learning Performance: Is Less More?
Educational Technology & Society 11(1), 279-290 (2008)

Hundhausen, C.D., Douglas, S.A., Stasko, J.T.: A Meta-Study of Algorithm Visu-
alization Effectiveness. Journal of Visual Languages & Computing 13(3), 259-290
(2002)

Jenkins, T.: Teaching Programming - A Journey From Teacher to Motivator. In:
LTSN-ICS 2001, 2nd Annual Conference of the LSTN Center for Information and
Computer Science (2001)

Jenkins, T.: The Motivation of Students of Programming. ACM SIGCSE Bulletin
33(3), 53-56 (2001)

Jenkins, T.: On the Difficulty of Learning to Program. In: LTSN-ICS 2002, 3rd
Annual Conference of the LTSN Centre for Information and Computer Sciences.
vol. 4, pp. 53-58 (2002)

Knuth, D.E.: The Art of Computer Programming, Volume 3: (2nd edition) Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA (1998)

Kujansuu, E., Tapio, T.: Codewitz - An International Project for Better Pro-
gramming Skills. In: EdMedia 2004, World Conference on Educational Media and
Technology. pp. 2237-2239. AACE (2004)

Lahtinen, E., Ala-Mutka, K., Jarvinen, H.M.: A Study of the Difficulties of Novice
Programmers. ACM SIGCSE Bulletin 37(3), 14-18 (2005)

Ma, L., Ferguson, J., Roper, M., Wood, M.: Improving the Viability of Mental
Models Held by Novice Programmers. In: ECOOP 2007, 11th Workshop on Ped-
agogies and Tools for the Teaching and Learning of Object Oriented Concepts.
Springer (2007)

Mayer, R.E.: The Psychology of How Novices Learn Computer Programming. ACM
Computing Surveys (CSUR) 13(1), 121-141 (1981)

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.D.,
Laxer, C., Thomas, L., Utting, I., Wilusz, T.: A Multi-national, Multi-institutional
Study of Assessment of Programming Skills of First-year CS Students. In: ITiCSE-
WGR 2001, Working Group Reports from ITiCSE on Innovation and Technology
in Computer Science Education. pp. 125-180. ACM (2001)

Milne, 1., Rowe, G.: Difficulties in Learning and Teaching Programming - Views of
Students and Tutors. Education and Information Technologies 7(1), 55-66 (2002)
Moreno, A., Joy, M.S.: Jeliot 3 in a Demanding Educational Setting. Electronic
Notes in Theoretical Computer Science 178, 51-59 (2007)

Moreno, A., Myller, N., Sutinen, E., Ben-Ari, M.: Visualizing Programs With Jeliot
3. In: AVI 2014, Working Conference on Advanced Visual Interfaces. pp. 373-376.
ACM (2004)

Roels, R., Mestereaga, P., Signer, B.: Towards Enhanced Presentation-based Teach-
ing of Programming: An Interactive Source Code Visualisation Approach. In:
CSEDU 2015, 7th International Conference on Computer Supported Education.
pp. 98-107. SCITEPRESS (2015)

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Roels, R., Signer, B.: An Extensible Presentation Tool for Flexible Human-
Information Interaction. In: Demo Proceedings of BCS HCI 2013, 27th BCS Con-
ference on Human Computer Interaction. p. 59. British Computer Society (2013)
Roels, R., Signer, B.: A Unified Communication Platform for Enriching and En-
hancing Presentations with Active Learning Components. In: ICALT 2014, 14th
IEEE International Conference on Advanced Learning Technologies. pp. 131-135.
IEEE (2014)

Roels, R., Signer, B.: MindXpres: An Extensible Content-driven Cross-Media Pre-
sentation Platform. In: WISE 2014, 15th International Conference on Web Infor-
mation System Engineering. pp. 215-230. Springer (2014)

Sa, L., Hsin, W.J.: Traceable Recursion with Graphical Illustration for Novice
Programmers. InSight: A Journal of Scholarly Teaching 5, 54-62 (2010)

Smith, P.A., Webb, G.I.: Reinforcing a Generic Computer Model for Novice Pro-
grammers. In: ASCILITE 1995, 7th Australian Society for Computer in Learning
in Tertiary Education (1995)

Smith, P.A., Webb, G.I.: The Efficacy of a Low-level Program Visualization Tool
for Teaching Programming Concepts to Novice C Programmers. Journal of Edu-
cational Computing Research 22(2), 187-216 (2000)

Sorva, J., Sirkia, T.: UUhistle: a Software Tool for Visual Program Simulation.
In: Koli Calling 2010, 10th Koli Calling International Conference on Computing
Education Research. pp. 49-54. ACM (2010)

Tufte, E.R.: The Cognitive Style of PowerPoint: Pitching Out Corrupts Within.
Graphics Press (July 2003)

Veldzquez-Iturbide, J A., Pérez-Carrasco, A.: InfoVis Interaction Techniques in
Animation of Recursive Programs. Algorithms 3(1), 76-91 (2010)

Virtanen, A.T., Lahtinen, E.; Jarvinen, H.M.: VIP, a Visual Interpreter for Learn-
ing Introductory Programming with C++. In: 5th Koli Calling Conference on
Computer Science Education. pp. 125-130 (2005)

	An Interactive Source Code Visualisation Plug-in for the MindXpres Presentation Platform

