Skip to main content

Holistic Integrated Decisions Trade-Off Baseline for an Optimal Virtual IP Multimedia Subsystem (IMS) Architecture

  • Conference paper
  • First Online:
  • 1210 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 426))

Abstract

Network Functions Virtualization (NFV) reveals the challenge of transformation from traditional monolithic to optimal virtual architectures, while meeting the standards-driven and diverse stakeholders functional, performance constraints and conflicting objectives: i.e. maximizing flexibility (scaling, growth), minimizing expense in terms of financial and human effort and intervention (CapEx, OpEx), etc. We case study the IP Multimedia Subsystem, as being the most complex and important NFV instance. Our approach, specifying a customizable baseline to arbitrate and to subsequently optimize between the NFV strategic objectives and enablers, defines an optimal functional architecture adapted to the context at any level and scope: from a specific virtual network function resources (virtual machines) till infrastructural (multiple virtual IMS systems) requirements. To trade-off for the optimal functional options, we explore the multi-objective optimization method, incorporated with the data gathered from an adapted Model-Based Architectural Framework, PESTEL and FURPSE analyses. We further discuss our vision: self-regulating system and the related constraints.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gevorgyan, A., Spencer, P.: Operational Analysis of Virtual IP Multimedia Subsystem Through a Model-Based Architectural Framework accepted for publication in CSDM 2015

    Google Scholar 

  2. Bartolomei, J.E., Hastings, D.E., de Neufville, R., Rhodes, D.H.: Engineering Systems Multiple-Domain Matrix: an organizing framework for modeling large-scale complex systems, MIT, Accepted 24 February 2011, Published online 10 October 2011 in Wiley Online Library (wileyonlinelibrary.com)

    Google Scholar 

  3. Krob, D.: Eléments d’architecture des systèmes complexes. In: Gestion de la complexité et de l’information dans les grands systèmes critiques, pp. 179–207. CNRS Editions (2009)

    Google Scholar 

  4. Krob, D.: Enterprise Architecture, Modules 1–10, Ecole Polytechnique, 2009–2010 (personal communication)

    Google Scholar 

  5. Estefan, J.A.: Survey of Model-Based Systems Engineering (MBSE) Methodologies, Report of INCOSE MBSE Focus Group, Rev. A, 25 May 2007

    Google Scholar 

  6. ETSI GS NFV: Network Functions Virtualization (NFV), Use Cases Specification 004 V1.1.1”

    Google Scholar 

  7. INCOSE: Systems Engineering Vision 2020 (2007)

    Google Scholar 

  8. Chalé Góngora, H.G., Gaudré, T., Tucci-Piergiovanni, S.: Towards an Architectural Design Framework for Automotive Systems Development, CSD&M 2013

    Google Scholar 

  9. Chalé Góngora, H.G., Dauron, A., Gaudré, T.: A Commonsense-Driven Architecture Framework. A Car Manufacturer’s (naïve) Take on MBSE. INCOSE (2012)

    Google Scholar 

  10. Berrebi, J., Krob, D.: How to use systems architecture to specify the operational perimeter of an innovative product line. INCOSE 22(1), 84–99 (2012)

    Article  Google Scholar 

  11. Doufene, A., Krob, D., Chalé Góngora, H.G., Dauron, A.: Model-Based operational analysis for complex systems—a case study for electric vehicles. INCOSE 24(1) (2014)

    Google Scholar 

  12. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J. 26(3), 276–292 (1987)

    Google Scholar 

  13. Friedenthal, S., Moore, A., Steiner, R.: A practical guide to SysML—The Systems Modeling Language, Morgan Kaufmann (2008)

    Google Scholar 

  14. Honour, E.C.: Understanding the value of systems engineering. INCOSE (2004)

    Google Scholar 

  15. INCOSE: Systems Engineering Handbook. A guide for system lifecycle processes and activities. International Council on Systems Engineering (INCOSE), San Diego, CA (2010)

    Google Scholar 

  16. PESTEL: PESTEL analysis of the macro-environment. Oxford University Press (2007)

    Google Scholar 

  17. Penalva, J.M.: La modélisation par les systèmes en situations complexes, PhD Thesis, Université de Paris 11, Orsay, France (1997)

    Google Scholar 

  18. http://www.3gpp.org/

  19. http://dodcio.defense.gov/Portals/0/Documents/DODAF/DoDAF_v2-02_web.pdf

  20. https://www.gov.uk/mod-architecture-framework

  21. Björnander, S., Grunske, L.: Architecture Description Languages for Automotive Systems—A Literature Review. Technical Report: C4-01 TR M49, 30 July 2008

    Google Scholar 

  22. Weilkiens, T.: Systems Engineering with SysML/UML—Modeling, Analysis, Design. Morgan Kaufmann Publishers (2008)

    Google Scholar 

  23. Saaty, T.L., Vargas, L.G.: Models, Methods, Concepts and Applications of the Analytic Hierarchy Process, International Series in Operations Submitted for publication in the Journal of Systems Engineering (April 2011) Research and Management Science. Springer (2000)

    Google Scholar 

  24. Cisco: Evolution of the Mobile Network White Paper (2010) http://www.cisco.com/c/en/us/solutions/collateral/service-provider/mobile-internet/white_paper_c11-624446.html

  25. 4G Americas: Bringing Network Function Virtualization to LTE, White Paper (2014)

    Google Scholar 

  26. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report, DTIC Document (1990)

    Google Scholar 

  27. Pohl, K., Bockle, G., Van der Linden, F.J.: Software Product Line Engineering: Foundations, Principles, Techniques. Springer (2005)

    Google Scholar 

  28. Roos-Frantz, F., Benavides, D., Ruiz Cirts, A., Heuer, A., Lauenroth, K.: Quality—Aware Analysis in Product Line Engineering with Orthogonal Variability Model. Softw. Qual. J. (2011)

    Google Scholar 

  29. Becker, M.: Towards general model of variability in product families. Workshop on Variability Management, Groningen, The Netherlands, pp. 19–27 (2003)

    Google Scholar 

  30. Possomps, T., Dony, C., Huchard, M., Rey, H.: Tibermacine, C., Vasques, X.: A UML profile for feature diagrams: initiating a model driven engineering approach for software product lines. Journe Lignes de Produits. pp. 59–70 (2010)

    Google Scholar 

  31. Von der Masen, T., Lichter, H.: RequiLine. A Requirements Engineering Tool for Software Product Lines. Springer (2004)

    Google Scholar 

  32. Halmans, G., Pohl, K.: Communicating the variability of a software-product family to customers. Softw. Syst. Model. 2(1), 15–36 (2003)

    Article  Google Scholar 

  33. Tessier, P., Servat, D., Gerard, S.: Variability management on behavioral models. VaMoS Workshop, pp. 121–130 (2008)

    Google Scholar 

  34. Gmez, A., Ramos, I.: Automatic Tool Support for Cardinality-Based Feature Modeling With Model Constraints for Information Systems Development. Information Systems Development, pp. 271–284. Springer (2011)

    Google Scholar 

  35. Salinesi, C., Mazo, R., Diaz, D., Djebbi, O., Lora-Michels, A.: Constraints: The Core of Product Line Engineering. Research Challenges in Information Science (RCIS), pp. 1–10 (2011)

    Google Scholar 

  36. Streitferdt, D., Riebisch, M., Philippow, K.: Details of formalized relations in Feature Models Using OCL. In: Proceedings of the 10th International Conference and Workshop on Engineering of Computer-Based Systems, pp. 297–304 (2003)

    Google Scholar 

  37. Burns, E.V., Duggal, D., Kraft, F.M., Matthias, J.T., McCauley, D., Palmer, N., Pucher, M.J., Silver, B., Swenson, K.D.: Taming the Unpredictable. Real World Adaptive Case Management: Case studies and Practical Guidance (2011)

    Google Scholar 

  38. Near Optimal Placement of Virtual Network Functions, INFOCOM 2015

    Google Scholar 

  39. Online allocation of virtual machines in a distributed cloud, INFOCOM 2014

    Google Scholar 

  40. Joint static and dynamic traffic scheduling in data center networks, INFOCOM 2014

    Google Scholar 

  41. Network aware resource allocation in distributed clouds, INFOCOM 2012

    Google Scholar 

  42. Optimizing data access latencies in cloud systems by intelligent virtual machine placement, INFOCOM 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arevik Gevorgyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gevorgyan, A., Krob, D., Spencer, P. (2016). Holistic Integrated Decisions Trade-Off Baseline for an Optimal Virtual IP Multimedia Subsystem (IMS) Architecture. In: Cardin, MA., Fong, S., Krob, D., Lui, P., Tan, Y. (eds) Complex Systems Design & Management Asia. Advances in Intelligent Systems and Computing, vol 426. Springer, Cham. https://doi.org/10.1007/978-3-319-29643-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29643-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29642-5

  • Online ISBN: 978-3-319-29643-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics