Skip to main content

Inferring Activities and Optimal Trips: Lessons From Singapore’s National Science Experiment

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 426))

Abstract

The following paper presents three novel and efficient algorithms to tackle pressing questions asked by city planners as well as policy makers: Where are people starting and ending their trips? Which activities are people traveling to/from? Are they taking the most efficient route? In order to capture large-scale travel data, a novel sensor was developed by the Singapore University of Technology and Design together with industrial partners. Using computationally simple and scalable algorithms, we are able to understand the large amounts of data collected by the sensors and shed light on the three questions above.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Caceres, N., Wideberg, J.P., Benitez, F.G.: Deriving origin destination data from a mobile phone network. Intell. Transp. Syst. IET 1(1), 15–26 (2007)

    Article  Google Scholar 

  2. Choudhury, T., Consolvo, S., Harrison, B., Hightower, J., Lamarca, A., LeGrand, L., Rahimi, A., Adam Rea, G., Bordello, B.H., et al.: The mobile sensing platform: an embedded activity recognition system. IEEE Pervasive Comput. 7(2), 32–41 (2008)

    Article  Google Scholar 

  3. Cottrill, C., Pereira, F., Zhao, F., Dias, I., Lim, H., Ben-Akiva, M., Zegras, P.: Future mobility survey: experience in developing a smartphone-based travel survey in Singapore. Transp. Res. Rec.: J. Transp. Res. Board 2354, 59–67 (2013)

    Google Scholar 

  4. Du, J., Aultman-Hall, L.: Increasing the accuracy of trip rate information from passive multi-day gps travel datasets: automatic trip end identification issues. Transp. Res. Part A: Policy Pract. 41(3), 220–232 (2007)

    Google Scholar 

  5. Axhausen, K.W., Schönfelder, S., Wolf, J., Oliveira, M., Samaga, U.: 80 weeks of gps-traces: approaches to enriching the trip information (2003)

    Google Scholar 

  6. Schüssler, N., Axhausen, K.W.: Identifying trips and activities and their characteristics from gps raw data without further information (2008)

    Google Scholar 

  7. Jun, J., Guensler, R., Ogle, J.: Smoothing methods to minimize impact of global positioning system random error on travel distance, speed, and acceleration profile estimates. Transp. Res. Rec.: J. Transp. Res. Board 1972, 141–150 (2006)

    Article  Google Scholar 

  8. Jariyasunant, J., Sengupta, R., Walker, J.: Overcoming battery life problems of smartphones when creating automated travel diaries. In: Proceedings of the 13th International Conference on Travel Behavior Research (2012)

    Google Scholar 

  9. Kumar, S., Paefgen, J., Wilhelm, E., Sarma, S.E.: Integrating on-board diagnostics speed data with sparse gps measurements for vehicle trajectory estimation. In: 2013 Proceedings of SICE Annual Conference (SICE), pp. 2302–2308. IEEE (2013)

    Google Scholar 

  10. Tsui, A.W., Lin, W.-C., Chen, W.-J., Huang, P., Chu, H.-H.: Accuracy performance analysis between war driving and war walking in metropolitan wi-fi localization. IEEE Trans. Mobile Comput. 9(11), 1551–1562 (2010)

    Google Scholar 

  11. Stopher, P.R., FitzGerald, C.: Processing gps data from travel surveys

    Google Scholar 

  12. Bohte, W., Maat, K.: Deriving and validating trip purposes and travel modes for multi-day gps-based travel surveys: a large-scale application in the Netherlands. Transp. Res. Part C: Emerg. Technol. 17(3), 285–297 (2009)

    Article  Google Scholar 

  13. Schönfelder, S., Axhausen, K.W.: Urban Rhythms and Travel Behaviour: Spatial and Temporal Phenomena of Daily Travel. Ashgate Publishing Ltd. (2010)

    Google Scholar 

  14. Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., B, V., Damiani, M.L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., et al.: Semantic trajectories modeling and analysis. ACM Comput. Surv. (CSUR) 45(4), 42 (2013)

    Article  Google Scholar 

  15. Zhang, N., Kee, J., Loh, G., Tippenhauer, N., Wilhelm, E., Zhou, Y.: Sensg: large-scale deployment of wearable sensors for trip and transport mode logging. Submitted to Transportation Research Board Annual Meeting 2016 (2016)

    Google Scholar 

  16. Chang, R., Lee, A., Ghoniem, M., Kosara, R., Ribarsky, W., Yang, J., Suma, E., Ziemkiewicz, C., Kern, D., Sudjianto, A.: Scalable and interactive visual analysis of financial wire transactions for fraud detection. Inf. Vis. 7(1), 63–76 (2008)

    Article  Google Scholar 

  17. Cox, K.C., Eick, S.G., Wills, G.J., Brachman, R.J.: Brief application description; visual data mining: recognizing telephone calling fraud. Data Mining Knowl. Discov. 1(2), 225–231 (1997)

    Google Scholar 

  18. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)

    Article  Google Scholar 

  19. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory, vol. 1. Cambridge University Press, Cambridge

    Google Scholar 

  20. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ‘96, pp. 20–29. ACM, New York (1996)

    Google Scholar 

  21. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ‘02, pp. 1–16. ACM, New York (2002)

    Google Scholar 

  22. Rubinfeld, R., Shapira, A.: Sublinear time algorithms. SIAM J. Discret. Math. 25(4), 1562–1588 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Singaporean National Research Foundation (NRF) and the SUTD International Design Center (IDC). Production of the sensors was possible due to strong support from Delta Electronics DRC, IABG, and Taoyuan Factory 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barnabé Monnot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Monnot, B. et al. (2016). Inferring Activities and Optimal Trips: Lessons From Singapore’s National Science Experiment. In: Cardin, MA., Fong, S., Krob, D., Lui, P., Tan, Y. (eds) Complex Systems Design & Management Asia. Advances in Intelligent Systems and Computing, vol 426. Springer, Cham. https://doi.org/10.1007/978-3-319-29643-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29643-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29642-5

  • Online ISBN: 978-3-319-29643-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics