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Abstract. We introduce a novel “prior classification” approach which
can be employed in order to enhance the accuracy of stego detectors as
well as to estimate it more subtly. The prior classification is intended for
selection a subset of a testing set with such a property that a detection
error, calculated over this subset, may be substantially lower than that
calculated over the whole set. Our experiments demonstrated that it is
possible to select about 30% of the BOSSbase images for which HUGO
0.4 bpp is detected with the error less than 0.003, while the error over
the whole set is 0.141. We also demonstrated that it is possible to find
about 5% of the BOSSbase images which provide the detection error for
HUGO 0.1 bpp less than 0.05, while the error, calculated over the whole
set, is about 0.37 which is not quite a reliable accuracy.

Keywords: Information hiding · Steganalysis · HUGO · Prior classifi-
cation · Feature-based steganalysis · SRM features · Ensemble classifier

1 Introduction

A commonly used way for measuring the accuracy of binary stego detectors is
to calculate a detection error

PE =
1
2
(PFA + PMD),

where PFA is the probability of false alarms, and PMD is the probability of
missed detections (see e.g. [4,5,11–14]). The strategic goal of steganalysis is to
make this error as low as possible, therefore those detector is better, whose error
is lower.

In practice, the statistical model of covers is unknown, that is why the detec-
tion error can not be calculated analytically and the solution of this problem
lies in calculating an average error over a given set. For this purpose, stegana-
lysts often utilize several “standardized” sets, like BOSSbase [1], BOWS2 [18]
or NRCS [20]. However, the accuracy of the detectors may be different when
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calculating over different image sets [14] because of various specific properties of
the images (like noisiness, compression rate etc.). Moreover, a certain image set
can be heterogenous and might be divided into subsets with different properties
and different detection error values.

In this paper we introduce a novel approach to steganalysis, which we call
a “prior classification”. The idea of this approach is to add a stage before final
classification in order to choose those images which will be reliably detected. The
size of the subset of these images can be considered as an additional characteristic
of the detector. The similar situation can be noticed in cryptography, where some
attacks are applicable only for a certain subset of weak keys, and the size of this
subset (or the ratio of this subset) is considered as an additional characteristic
of the attack [2,10].

We introduce three possible methods of how to implement the prior classifi-
cation approach: the naive splitting, the single classification, and a combination
of these two methods. Our experiments demonstrated that it is possible to select
about 30 % of the BOSSbase v1.01 images for which HUGO 0.4 bpp is detected
with the error less than 0.003, while the error over the whole set is 0.141. We
also demonstrated that it is possible to select about 5 % of the BOSSbase images
which provide the detection error for HUGO 0.1 bpp less than 0.05, while the
error, calculated over the whole set, is about 0.37 which is not quite a reliable
accuracy. In our opinion, the prior classification has several potential practical
applications which we discuss at the end of the paper.

2 Binary Classification

2.1 The Problem

In this paper we consider the binary classification problem, which is intended for
building the detector which will distinguish between the two classes: empty (H0)
and stego (H1) containers (see e.g. [11]). There are three assumptions behind
binary steganalyzers:

1. The steganalyst has a set of covers which have statistical properties, similar
to that of used by the steganographer.

2. The steganalyst knows the embedding algorithm and the payload size.
3. The steganalyst knows which object she must examine.

We do not touch quantitative steganalysis [15] when there is no knowledge about
the payload.

The contemporary approaches to solving the binary classification problem
are essentially based on image features and machine learning tools. There are
two high-level components in binary classifiers: a feature extraction method and
a classification algorithm. At first, we need to obtain some amount of empty
containers as well as containers with a certain payload and extract features from
all of them. Then, the classifier is trained in order to be able to distinguish
between the empty containers features and features extracted from the stego
containers.
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The general scheme of the binary classification is as follows.

1. Extract the features from images in the training set which contains empty
and stego images.

2. Train the classifier on this set to distinguish between features of empty and
stego images.

3. Extract the features from the testing containers and classify them via the
trained classifier.

2.2 Ensemble Classifier and Base Learners

The methods, which we introduce in this paper, are based on the idea of applying
ensemble classifiers to steganalysis [12]. J. Fridrich et al. call them “a great
alternative to support vector machines” because of their good performance and
competitive accuracy [6]. The ensemble classifiers has been already applied for
breaking HUGO during the public BOSS competition [6] by the winners. The
ensemble classifier, as it was introduced in [12], works as follows.

1. Take d features (like SPAM [14], SRM [4], PSRM [9] etc.).
2. Obtain L random subsets of all the features, each of which of dsub < d fea-

tures.
3. Train L base-leaners on the training set.

Let Nvotes(z) be the number of the base learners which voted in favor of the
fact that z contains information:

Nvotes(z) =
L∑

l=1

Bl(z).

Each base learned works as follows:

Bl(z) =

{
0 the base learner l votes that z is empty;
1 the base learner l votes that z contains information;

The final decision is made by the majority of voters according to the
Algorithm 1.

Ensemble-Rule(L,Nvotes)
L — the number of the base learners,
Nvotes — the number of voices in favor of H1.
Estimate

B =

⎧
⎪⎨

⎪⎩

0 if Nvotes < L/2;

1 if Nvotes > L/2;

random(0, 1) otherwise.

Result: B — the class number.

Algorithm 1. Ensemble classifier decision rule
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3 Common Background and Designations

3.1 Images

We utilized the well-known standardized image database BOSSbase v1.01 [1,19]
which contains 10000 images captured by seven different cameras in RAW format
(CR2 or DNG). These images had been converted into 8-bit grayscale format,
resized and cropped to the size 512 x 512 pixels.

In order to prepare the training set X p and the testing set Yp, where p
identifies the embedding rate in bpp, the whole BOSSbase set was divided into
two subsets X0 and Y0, where |X0| = 8000 and |Y0| = 2000. Then by random
embedding p bpp into all the images from X0 and Y0 we obtained X p

1 and
Yp
1 correspondingly. The training set was X p = X0 ∪ X p

1 and the testing set
Yp = Y0 ∪ Yp

1 . Thus, |X p| = 16000 and |Yp| = 4000. Both sets contain a half of
empty images and a half of stego images.

Further in the paper we omit the payload index p (it will not confuse the
reader) and designate the training set as X and the testing set as Y.

3.2 Features

We utilize Spatial Rich Model (SRM) features [4] as one of the state-of-the-art
instruments for steganalysis. The newer Projection Spatial Rich Model features
(PSRM) [9] provide only slight improvement but require substantially greater
complexity. SRM features have a total dimension of 34,671 and we took the
extractor provided by [17].

3.3 Base Learners

There are several variants for choosing the base learners, but in our experiments
we follow the recommendations of Kodovsky et al. [12] and exploit the Fisher
Linear Discriminant [3] due to its low training complexity. There will be two
types of the base learners in our paper, which we designate as Bl, l = 1, . . . , L
and B′

m, m = 1, . . . ,M correspondingly. Thus, the number of base learners is
L or M . Each base learner is always assigned with 800 randomly chosen SRM
features.

3.4 Embedding Algorithm

We used Highly Undetectable Steganography (HUGO) as an embedding algo-
rithm [16]. This method is one of the hardest steganography to detect (see e.g.
results in [9] where HUGO is compared to WOW [7] and UNIWARD [8] —
the other content adaptive embedding algorithms). HUGO is based on the LSB
matching but chooses the places for embedding probabilistically according to the
SPAM-features [16] rather than randomly as LSB matching. This modification
allows to lengthen the hidden message by 7 times comparing to LSB matching
preserving the security level (the error).
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3.5 State-of-the-Art

In our experiments we needed our own implementation of the ensemble classifier.
There are many possible parameters of this classifier that is why we implemented
it ourselves with some certain parameters and in the Table 1 we compare the
original implementations of state-of-the-art classifiers from [9] with our imple-
mentation. We see that the detection errors of our implementation is rather close
to original ones. These errors values will be used for comparison with our prior
classification results.

Let Ygood be the set of “good” images, which were selected after the prior
classification stage, and PE(Ygood) be the detection error calculated over this
set. In our experiments we compare PE(Ygood) and PE(Y) and try to make
|Ygood|/|Y| as large as possible.

Table 1. State-of-the-art results on HUGO detection (ensemble classifier).

Detection error PE(Y) over the whole BOSSbase 1.01

Payload Results from [9], Our implementation,

various features and parameters SRM features, L = 500

0.05 bpp - 0.44

0.10 bpp 0.3564–0.3757 0.37

0.20 bpp 0.2397–0.2701 -

0.40 bpp 0.1172–0.1383 0.141

4 Prior Classification

4.1 Basic Idea

The basic idea behind all our methods consists in quite a natural assumption
that if for an image z we have Nvotes(z) rather close to 0 or to L than we can
be more sure in the decision. This idea is directly implemented in our first naive
splitting method, which selects “good” images as images, for which

Nvotes(z) ≤ T left or Nvotes(z) ≥ T right

for some fixed thresholds T left and T right.
The next, single classification method, consists in training an additional clas-

sifier to recognize the “good” images and use this classifier as the prior classifica-
tion stage. At last, we give an algorithm of how to combine these two methods.
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4.2 Method 1: Naive Splitting

Our first idea was to define some thresholds T left and T right, such that T left is
close to 0 and Tright is close to L (the number of the base learners), and split
the testing set Y into “good” and “bad” subsets, according to the thresholds as
follows

Y = Ygood ∪ Ybad,where

Ygood = {y ∈ Y |Nvotes(y) ≤ T left or Nvotes(y) ≥ T right},
Ybad = Y \ Ygood.

This idea is implemented in the Algorithm 2.

Naive-Splitting(Z, tleft, tright)
Z — the set to be splitted,
tleft — the left threshold,
tright — the right threshold.

1. Train the base learners Bl, . . . , BL on the sets X0 and X1 to distinguish
between the empty/stego containers.

2. For each z ∈ Z calculate the number of base learners votes

Nvotes(z) =
L∑

l=1

Bl(z).

3. Obtain the set Zgood = {z ∈ Z |Nvotes(z) ≤ tleft or Nvotes(z) ≥ tright}.

Result: Zgood ⊆ Z — the subset of the “good” containers.

Algorithm 2. Naive Splitting

Our hypothesis was that the detection error, calculated over Ygood, would be
smaller than that calculated over the whole Y. The results were as we expected,
but for 0.40 bpp they were really impressing. Prior classification allowed to select
about one third of images with very low error — less than 0.003 (see Table 2).
This error is approximately by 50 times lower than over the whole set (see
Table 1). For the other two payloads the error lowered, but not so dramatically.
Moreover, the sizes of the filtered subsets were rather small.

4.3 Method 2: Single Classification

In order to make Ygood bigger we built one more classifier (this method we call
the simple classification) for distinguishing between the “good” and the “bad”
images (see Algorithm 3). This classification gave a drastic increase in the size
of Ygood, but the detection error PE(Ygood) was rather high comparing to the
simple splitting (see Table 3). However, it was lower than that calculated over
the whole set (see Table 1).
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Table 2. Naive splitting (% = 100 · |Ygood|/|Y| — the percent of the “good” images,
T left = 1, T right = L − 1).

HUGO 0.05 bpp HUGO 0.10 bpp HUGO 0.40 bpp

L |Ygood| % PE(Ygood) |Ygood| % PE(Ygood) |Ygood| % PE(Ygood)

100 50 1.25 0.260 271 6.76 0.140 1651 41.28 0.0042

200 31 0.76 0.258 176 4.40 0.125 1462 36.55 0.0041

300 23 0.56 0.304 137 3.43 0.124 1384 34.60 0.0022

400 16 0.40 0.313 117 2.93 0.120 1323 33.08 0.0023

500 14 0.35 0.286 106 2.65 0.123 1285 32.13 0.0016

Table 3. Single classification (% = 100 · |Ygood|/|Y| — the percent of the “good”
images).

HUGO 0.05 bpp HUGO 0.1 bpp HUGO 0.4 bpp

T left T right |Ygood| % PE(Ygood) |Ygood| % PE(Ygood) |Ygood| % PE(Ygood)

1 499 292 7 0.353 1198 30 0.244 1903 48 0.0189

2 499 280 7 0.346 1139 28 0.227 2022 51 0.0218

3 499 455 11 0.365 1158 29 0.225 2061 52 0.0213

1 498 232 6 0.332 1510 38 0.273 1911 48 0.0167

2 498 337 8 0.359 1189 30 0.230 2132 53 0.0225

3 498 528 13 0.371 1302 33 0.247 2009 50 0.0184

1 497 284 7 0.357 1171 29 0.243 2045 51 0.0220

2 497 340 9 0.362 1204 30 0.236 2091 52 0.0210

3 497 347 9 0.378 1182 30 0.228 2048 51 0.0215

Single-Classification(Z, tleft, tright)

1. Obtain the set of “good” containers
X good := Naive-Splitting(X , tleft, tright).

2. Obtain the set of “bad” containers
X bad := X\X good.

3. Train the base learners B′
1, . . . , B

′
M on the sets X good and X bad

to distinguish between the “good”/“bad” containers.
4. Apply the ensemble classifier for each z ∈ Z in order to classify it

as a “good” or a “bad” container.

(a) Calculate the number of voices N ′
votes(z) =

M∑

m=1

B′
k(m).

(b) Obtain the set
Zgood = {z ∈ Z |Ensemble-Rule(M,N ′

votes(z)) = 1}.

Result: Zgood ⊆ Z — the subset of the “good” containers.

Algorithm 3. Single classification
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Combined-Classification(Y, tleft1 , tright1 , tleft2 , tright2 )
Zgood

1 = Naive-Splitting(Y, tleft1 , tright1 );
Zgood

2 = Single-Classification(Y, tleft2 , tright2 );
Ygood = Zgood

1 ∩ Zgood
2 ;

Result: Ygood ⊆ Y — the subset of the “good” containers.

Algorithm 4. Combined classification

4.4 Method 3: Combined Classification

In our aspiration to build a better prior classifier, we decided to combine the two
introduced methods: the naive splitting and the single classification. According
to our hypothesis, using appropriate thresholds T left

1 and T right
1 — for the naive

splitting, and T left
2 and T right

2 — for the single classification, would allow to
distinguish a reasonably large set Ygood such that the detection error PE(Ygood)
would be noticeable smaller. The formal description of the combined classifica-
tion is shown in the Algorithm 4.

Due to the big amount of parameters, there are several possible schemes can
be used for testing this method. We tried the following. The goal was to search
for the combination of the thresholds for getting the largest subset with a fixed
detection error P ∗

E .
In our experiments, we fixed the detection error P ∗

E and searched for those
thresholds (T left

2 , T right
2 ) which provide the largest set

Ygood(T left
1 , T right

1 , T left
2 , T right

2 )

such that the detection error calculated over this set does not exceed P ∗
E . More

formally,

(T left
2 (P ∗

E), T right
2 (P ∗

E)) = argmax
tleft,tright

|Ygood(T left
l , T right

l , tleft, tright)|,

under the limitation that

PE(Ygood(T left
l , T right

l , tleft, tright)) ≤ P ∗
E .

Table 4. Combined prior classification (HUGO 0.1 bpp, L=500, M=1).

T left
1 = 1, T right

1 = 499 T left
1 = 2, T right

1 = 498

P ∗
E |Ygood| % T left

2 T right
2 |Ygood| % T left

2 T right
2

0.04 187 5 1 489 202 12 2 490

0.05 230 6 2 485 251 12 2 481

0.06 252 6 4 485 303 12 17 490

0.07 346 8 19 483 391 12 27 481

0.08 401 10 33 489 463 12 30 464
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Table 5. Combined prior classification (HUGO 0.05 bpp, L=500, M=11, T left
1 =

10, T right
1 = 490).

P ∗
E |Ygood| % T left

2 T right
2

0.15 21 0.5 0 487

0.18 28 0.7 3 487

0.21 58 1.5 20 486

0.24 92 2.3 42 470

Table 6. Combined prior classification (HUGO 0.4 bpp, L=500, M=11, T left
1 =

20, T right
1 = 480).

P ∗
E |Ygood| % T left

2 T right
2

0.00000 1481 37 1 492

0.00125 1655 41 9 492

0.00225 1680 42 9 490

0.00325 1853 46 99 492

In Tables 4, 5, 6 and 7 there are the results. In the Table 7 it is demonstrated
that it is possible to find about 5 % of the BOSSbase images which provide the
detection error for HUGO 0.1 bpp less than 0.05, while the error, calculated over
the whole set, is about 0.37 (see Table 1) which is not quite a reliable accuracy.
Thus, here we see that not a very reliable detector turns into a more reliable
one.

Table 7. Combined prior classification (HUGO 0.1 bpp, L=500, M=11)

T left
1 = 1, T right

1 = 499 T left
1 = 2, T right

1 = 498 T left
1 = 10, T right

1 = 490

P ∗
E |Ygood| % T left

2 T right
2 |Ygood| % T left

2 T right
2 |Ygood| % T left

2 T right
2

0.01 0 0 - - 0 0 - - 0 0 - -

0.02 157 3.9 1 471 0 0 - - 0 0 - -

0.03 181 4.5 2 464 175 4.4 1 485 0 0 - -

0.04 191 4.8 2 455 227 5.7 1 464 203 5.1 2 490

0.05 209 5.2 3 438 255 6.4 2 455 284 7.1 2 470

0.06 267 6.7 27 455 336 8.4 28 464 334 8.4 27 490

0.07 293 7.3 45 464 388 9.7 45 455 460 11.5 27 455

0.08 354 8.9 90 438 456 11.4 93 442 518 13.0 33 434

0.09 378 9.5 90 403 482 12.1 96 418 567 14.2 33 403

0.10 386 9.7 98 403 499 12.5 98 401 626 15.7 93 453

0.11 388 9.7 98 401 499 12.5 98 401 710 17.6 95 403
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4.5 Prior Classification On-The-Fly

Above, the prior classification algorithms were described in the terms of the
sets, nevertheless, all of them can be easily applied to single images. Instead of
creating the set Zgood we can test the next image via the classifiers, and, in such
a way, the prior classifiers will work on-the-fly.

5 Possible Applications and Future Work

5.1 Increasing the Practical Significance of Weak Detectors

The prior classification can be used for making weak detectors more practically
significant. If some detector is not reliable, i.e. when its detection error over the
whole set is close to 0.5, maybe the prior classification will select some set of
images such that the error over this subset will be lower. For instance, in our
results with HUGO 0.05 bpp, the error over the whole BOSSbase was 0.37 (see
Table 1) while the prior classification turned it into a lower one albeit over a
small subset (see Table 5).

5.2 Spreading Images Between Different Detectors

The prior classification might be used in order to select the most accurate detec-
tor for a given image or an image subset. For instance, if there are several differ-
ent detectors available to the steganographer, she can use the prior classification
for the given image, then select those detectors which will classify this image
as “good”, and test the image only via them. The accuracy of such a testing
scheme might be higher comparing to single detectors.

5.3 Splitting Image Sets into Subsets with Different Properties

There are at least two factors which may impact the detector’s accuracy: image
properties and the detector itself. Therefore, if one detector has a lower detection
error than another on a certain set of images, it is not necessary that it will be
always the case. There are no guarantee, that the second detector will not be
more accurate on some other image set with specific properties. Thus, when
comparing several detectors, it might be reasonable to estimate the detection
error on such sets which are obtained by collecting images with common (in
some sense) properties.

The introduced method for splitting an image set into subsets of “good”
and “bad” images is suitable for obtaining such sets with common properties,
and, moreover, it can be used for splitting the set into more that two parts,
thereby creating layers of, for example, “very good”, “good”, “bad” and “very
bad” images. Moreover, the prior classification can be used in order to provide
a ceratin size of the “good” subset via adjusting detector’s parameters. It will
allow to pick out a certain (prescribed) percent of images where it will be possible
to detect (the absence) of steganography reliably.
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5.4 Potential Enhancement of Steganalytic Detectors

If portion of “good” images is significant (certainly, it depends on the image
set), then adding the prior classification phase may be used for increasing the
effectiveness (accuracy or throughput) of traditional classifiers. For instance,
if there is some slow but highly accurate detector (like SVM), then it can be
preceded by a quicker classifier (like ensemble) which will filter out “bad” images
leaving only “good” ones for the slow detector.

5.5 Extended Definition of the Accuracy

Estimating the detectors accuracy over only a certain subset of the testing set
is similar to that is used in cryptography when cryptanalysts develop attacks
under the assumption of the weak keys [2,10]. Such attacks are characterized
not only by their complexity or success probability, but by the cardinality of the
weak keys class. Similarly, stego detectors can be characterized by the detection
error and the size of the subset over which this error is estimated.

6 Conclusion

In this paper we introduced a new approach to steganalysis which we call the
“prior classification”. This approach assumes that there is an additional prior
classification stage before the final classification, which allows to select those
images which would be detected with the smaller detection error comparing to
the error calculated over the whole containers set. There can be various ways of
how to implement the prior classification in a given particular case. In such a
way we presented the three possible methods of the prior classification: the naive
splitting, the simple classification, and the combination of these two methods
which we call the combined classification.

According to our experiments, the prior classifiers are sensitive to the choice
of the parameters (the thresholds), therefore we presented our results via the
tables, where the parameters varied. But, in our opinion, the most impressing
results are as follows. We demonstrated that it is possible to select about 30 % of
the BOSSbase images for which HUGO 0.4 bpp steganography is detected with
the error less than 0.003, while the error over the whole set is 0.141. So the error
decreased by almost 50 times for the rather large subset.

We also demonstrated that it is possible to select about 5 % of the BOSSbase
images which provide the detection error for HUGO 0.1 bpp less than 0.05, while
the error, calculated over the whole set, is about 0.37 which is not quite a reliable
accuracy. Here we see an other application of the prior classification — it allowed
to turn the unreliable detector into the reliable one, albeit for the small subset.

At the end of the paper several additional potential applications of the prior
classification has been discussed, among them, the extended definition of the
accuracy, ability to choose the size of the “good” subset by adjusting the para-
meters, splitting containers sets into several subsets with different properties.
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1. Bas, P., Filler, T., Pevný, T.: Break our steganographic system: the ins and outs
of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011.
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