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Abstract. In 2009, Blömer and Naewe proposed the Generalized Short-
est Vector Problem (GSVP). We initiate the study of the promise prob-
lem (GAPSAM) for GSVP. It is a promise problem associated with
estimating the subspace avoiding minimum. We show GAPSAMc·n lies
in coNP , where c is a constant. Furthermore, we study relationships
between GAPSAM of a lattice and the nth successive minimum, the
shortest basis, and the shortest vector in the dual of the saturated sub-
lattice, and obtain new transference theorems for GAPSAM. Then, using
the new transference theorems, we give various deterministic polynomial
time reductions among the promise problems for some lattice problems.
We also show GAPSAMγ can be reduced to the promise problem associ-
ated to the Closest Vector Problem (GAPCVPγ) under a deterministic
polynomial time rank-preserving reduction.

Keywords: The generalized shortest vector problem · The saturated
sublattice · Transference theorems · Polynomial time reduction

1 Introduction

A lattice is the set of all integer combinations of n linearly independent vectors in
R

m, where n is the rank of the lattice, m is the dimension of the lattice, and the
n linearly independent vectors are called a lattice basis. Let B = [b1, b2, . . . , bn]
be a basis of the lattice L. The ith successive minimum λi(L) of the lattice L
is the least number r such that the sphere centered at the origin with radius r
contains i linearly independent lattice vectors. The length of a basis B is g(B),
that is, g(B) = max

i
‖bi‖, and g(L) is the minimum value of g(B) over all bases

B of L. Some important lattice problems are defined below, where γ ≥ 1 is a
function of rank:

SVP (Shortest Vector Problem): Given a lattice L, find approximate nonzero
lattice vector v such that ‖v‖ ≤ γ · λ1(L).
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CVP (Closest Vector Problem): Given a lattice L and a target vector t, find
a lattice point v such that dist(v, t) ≤ γ · dist(L, t).

SIVP (Shortest Independent Vector Problem): Given a lattice L of rank
n, find n linearly independent lattice vector s1, s2, . . . , sn such that ‖si‖ ≤
γ · λn(L), i = 1, 2, . . . , n.

SBP (Shortest Basis Problem): Given a lattice L, L is generated by basis B,
find an equivalent basis B′ such that g(L(B′)) ≤ γ · g(L).

These lattice problems have been widely studied, and it is known that all
of these problems are NP -hard [1,7,13,14]. Aharonov and Regev [3] showed
that approximating SVP and CVP lie in NP ∩ coNP within a factor of

√
n.

Goldreich and Goldwasser [11] showed that approximating SVP and CVP lie
in NP ∩ coAM within a factor of

√
n/O(log n). Boppana et al. [8] found that

approximating SVP and CVP within a factor of
√

n/O(log n) is not NP -hard
unless the polynomial hierarchy collapses. Ajtai, Kumar and Sivakumar [2]
proposed a sieve method for computing SVP under a randomized 2O(n) time
algorithm. Blömer and Seifert [7] proved that approximating SIVP and SBP
within any constant factor are NP -hard and within a factor of O(n/

√
log n)

are NP ∩ coAM . Guruswami et al. [12] proved that SIVP lies in coAM within
an improved approximation factor of O(

√
n/ log n) and is in coNP within an

approximation factor of O(
√

n). Blömer and Naewe [5] proposed the Gener-
alized Shortest Vector Problem (GSVP) and gave polynomial-time reductions
from SVP, CVP, SIVP, and SMP (Successive Minima Problem) to GSVP. They
also proved that there exists a randomized algorithm in single-exponential time
which approximates the GSVP within a factor of 1 + ε, where 0 < ε ≤ 2,
with success probability 1 − 2−Ω(n) for all �p norms. This result implies that in
single-exponential time there exists an approximation algorithm for all above-
mentioned lattice problems for all �p norms for 1 ≤ p ≤ ∞. Micciancio [16]
gave efficient reductions among approximation problems and showed that sev-
eral lattice problems that are equivalent under polynomial-time rank-preserving
reductions.

Transference theorems reflect relationships between the successive minima
of a lattice and its dual lattice. As a consequence of transference theorems,
it was shown in [15] that, under Karp reduction, SVPO(n) can not be NP -
hard unless NP = coNP . Banaszczyk [4] proved that the following inequality:
for a lattice L of rank n with dual lattice L∗, 1 ≤ λ1(L) · λn(L∗) ≤ n. Cai
[9,10] generalized the transference theorems of Banaszcyk to obtain the following
bounds relating the successive minima of a lattice with the minimum length
of generating vectors of its dual: for a lattice L of rank n with dual lattice
L∗, 1 ≤ λn−i+1(L) · gi(L∗) ≤ C · n for all 1 ≤ i ≤ n and some universal
constant C. The lattice quantity gi(L) is defined as follows. First, g(L) is the
minimum value r such that the ball B(0, r) centered at 0 with radius r contains
a set of linearly independent lattice vectors that generate the lattice L. Define a
saturated sublattice L′ such that a sublattice L′ ⊂ L satisfies L′ = L∩span(L′)
[10]. Then, gi(L) is the minimum value r such that the sublattice generated by
L∩B(0, r) contains an i dimensional saturated sublattice L′ for 1 ≤ i ≤ dim(L).
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From [10], λi(L) · gn−i+1(L∗) ≤ C · n and gn(L) = g(L) for all 1 ≤ i ≤ n, the
proof used the discrete Fourier transform and discrete potential functions.

Our Contributions. The first contribution is to present the promise problem
GAPSAM associated with GSVP and construct new transference theorems for
GAPSAM using the algorithm from [16] and properties of subspace. We obtain
the following inequalities:

1 ≤ λM (L) · λn(L∗
1) ≤ c · n, (1)

1 ≤ λM (L) · g(L∗
1) ≤ d · n, (2)

where n is the rank L1 and L∗
1 is the dual of L1, c and d are constants. The

subspace avoiding minimum λM (L) of a lattice L with respect to some subspace
M ⊂ span(L) is the smallest real number r such that there exists a vector in
L\M of length at most r.

By Regev’s result [17], we also prove that for a lattice L of rank l and a
subspace M ⊂ span(L),

1 ≤ λM (L) · λ1(L∗
1) ≤ n, (3)

where L∗
1 is the dual of a saturated rank n sublattice L1 of L.

The inequality (2) is similar to Cai’s, but our proof is simper. In [9,10], Cai
presented the inequality 1 ≤ λ1(L) ·g(L∗) ≤ C ·n, which reflects the relationship
between the shortest lattice vector of L and the shortest basis of the dual lattice
L∗. Our result, 1 ≤ λM (L)·g(L∗

1) ≤ d·n, associates the minimum length of lattice
vectors in L\M to the shortest basis of dual saturated sublattice L1 generated
by intersecting L with a subspace V ⊂ span(L), where V ⊕ M = span(L).

By these results, we prove that GAPSAMcn is in coNP , where c is a
constant. We also give polynomial reductions between GAPSVP, GAPSIVP,
and GAPSBP and GAPSAM. We also obtain the following inequalities: 1 ≤
λ1(L) · λn(L∗

1) ≤ c · n; 1 ≤ λ1(L) · g(L∗
1) ≤ d · n; 1 ≤ λ1(L) · λ1(L∗

1) ≤ n, where
L∗

1 is the dual of a saturated rank n sublattice L1 of L. These inequalities show
the relationships between the lattice and the dual of the saturated sublattice.

The second contribution is that for any γ ≥ 1, we give a deterministic poly-
nomial time rank-preserving reduction from GAPSAMγ to GAPCVPγ .

Micciancio [16] considered SVP′ as a variant of SVP which is a new less
standard problem on lattices. The problem SVP′ is to minimize the norm ‖Bx‖
where x = (x1, . . . , xi, . . . , xn) and xi 
= 0 for some i. Here, we propose the
promise version GAPSVP′ for SVP′ and show that there exist rank and approx-
imation preserving reductions from GAPSAMγ to GAPSVP′

γ and GAPSVP′
γ to

GAPCVPγ . Hence, GAPSAMγ can be reduced to GAPCVPγ under determin-
istic polynomial time rank-preserving reduction.

Organization. The paper is organized as follows. In Sect. 2, we introduce basic
notations for lattices and some promise versions of lattice problems. In Sect. 3,
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we first study of the promise problem GAPSAM for GSVP. Then, we present
variants of transference theorems for GAPSAM. From these relationships, we
give polynomial time reductions from GAPSAM to other lattice problems. In
Sect. 4, we show that GAPSAMγ can be reduced to GAPCVPγ .

2 Preliminaries

Let R
m be an m-dimensional Euclidean space. For every vector x =

(x1, x2, . . . , xm) ∈ R
m, the �2-norm of x is defined as ‖x‖2 =

√∑m
i=1 x2

i . The
scalar product of two vectors x and y is 〈x,y〉 =

∑
i xiyi. dist(x,L) is the min-

imum Euclidean distance from x ∈ R
m to any vector in L. All definitions and

results in this paper are based on the �2 norm.
A lattice L is the set of all linear combinations generated by n linearly inde-

pendent vectors b1, . . . , bn in R
m(m ≥ n), that is,

L = {
n∑

i=1

xibi|xi ∈ Z, 1 ≤ i ≤ n}.

The integer n is the rank of the lattice and m is the dimension of the lattice.
The sequence of linearly independent vectors b1, . . . , bn ∈ R

m is called a basis
of the lattice. We can represent b1, . . . , bn as a matrix B with m rows and n
columns, that is, B = [b1, . . . , bn] ∈ R

m×n. The lattice L generated by a basis
B is denoted by L = L(B) = {Bx : x ∈ Z

n}. A lattice has many different
bases. Two matrices B and B′ are two bases of the same lattice L if and only if
B = B′U for some unimodular matrix U . If L(S) is a sublattice of L(B), then
any lattice point from the lattice L(S) also belongs to L(B). We denote this by
L(S) ⊆ L(B).

For a lattice L, the dual lattice L∗ is a set of all vectors y ∈ span(L) that
satisfy 〈x,y〉 ∈ Z for all x ∈ L, that is,

L∗ = {y ∈ span(L) : ∀x ∈ L, 〈x,y〉 ∈ Z}.

The dual lattice L∗ is a lattice.
Successive minima are fundamental constants of a lattice. The first successive

minimum of a lattice L, denoted by λ1(L), is the length of the shortest non-zero
lattice vector. Formally, λ1(L) = min{‖x‖ : x ∈ L\{0}} = minx�=y∈L‖x − y‖.
The ith minimum λi(L) of a lattice L is the smallest value r such that B(0, r)
contains i linearly independent lattice vectors, that is, λi(L) = min{r : dim(L∩
B(0, r)) ≥ i} where B(0, r) is an open ball of radius r centered in 0.

Let g(B) be the maximum length of vectors bi in the basis B, that is, g(B) =
max

i
‖bi‖. We define g(L) as the minimum value of g(B) over all bases B of L,

that is, g(L) = min
B

g(B).

The following are several important lattice problems. Here we only concen-
trate on promise problems for approximate lattice problems.



On Promise Problem of the Generalized Shortest Vector Problem 41

Definition 1 (GAPSVPγ). (L, r) is an instance of GAPSVPγ , where L ⊆ Z
m

is a lattice of rank n and r ∈ Q is a rational number, such that
– (L, r) is a YES instance if λ1(L) ≤ r,
– (L, r) is a NO instance if λ1(L) > γ · r.

Definition 2 (GAPCVPγ). (L, t, r) is an instance of GAPCVPγ , where L ⊆
Z

m is a lattice of rank n, t ∈ Z
m is a vector and r ∈ Q is a rational number,

such that
– (L, t, r) is a YES instance if dist(L, t) ≤ r,
– (L, t, r) is a NO instance if dist(L, t) > γ · r.

Definition 3 (GAPSIVPγ). (L, r) is an instance of GAPSIVPγ , where L ⊆
Z

m is a lattice of rank n and r ∈ Q is a rational number, such that
– (L, r) is a YES instance if λn(L) ≤ r,
– (L, r) is a NO instance if λn(L) > γ · r.

Definition 4 (GAPSBPγ). (L, r) is an instance of GAPSBPγ , where L ⊆ Z
m

is a lattice of rank n and generated by a basis B and r ∈ Q is a rational number,
such that
– (L, r) is a YES instance if there exists an equivalent basis B′ to B such that

g(L(B′)) ≤ r,
– (L, r) is a NO instance if for all equivalent basis B′ to B has g(L(B′)) > γ ·r.
Definition 5 (SVP′ [16]). Given a lattice B ∈ Z

m×n and an index i ∈
{1, . . . , n}, find a lattice vector Bx with xi 
= 0 such that ‖Bx‖ ≤ γmin{‖Bx‖ :
xi 
= 0}.

We now propose the promise problem GAPSVP′ associated to the approxi-
mate problem SVP′.
Definition 6 (GAPSVP′

γ). (L, i, r) is an instance of GAPSVP′
γ , where L ⊆

Z
m is a lattice of rank n and generated by a basis B and r ∈ Q is a rational

number, such that

– (L, i, r) is a YES instance if λ
(i)
1 (L) ≤ r, i.e. there exists a vector x ∈ Z

n

with xi 
= 0 such that ‖Bx‖ ≤ r,
– (L, i, r) is a NO instance if λ

(i)
1 (L) > γ · r, i.e. for all vectors x ∈ Z

n with
xi 
= 0 such that ‖Bx‖ > γ · r.

where λ
(i)
1 (L) = min

x∈Zn
{‖Bx‖ : xi 
= 0}.

The next definition is a new lattice problem proposed in [6] where reductions
from SVP, CVP, SIVP, and SMP to GSVP are given.
Definition 7 (GSVP). Given a lattice L ⊆ Z

m and a linear subspace M ⊂
span(L), the goal is to find a vector v ∈ L\M such that ‖v‖ ≤ γ ·dist(0,L\M).
We set

λM (L) = min{r ∈ R|∃ v ∈ L\M , ‖v‖ ≤ r}
and call this the subspace avoiding minimum (SAM).

It is clear that SVP is a special case of GSVP when M = {0}, we have
λM (L) = λ1(L). So, there is a trivial reduction from SVPγ to GSVPγ .
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3 The Transference Theorems for GAPSAM

In this section, we first propose the promise problem (GAPSAM) associated to
GSVP and present new transference theorems for GAPSAM.

3.1 The Variants of Cai’s Transference Theorems

Definition 8 (GAPSAMγ). (L,M , r) is an instance of GAPSAMγ , where L ⊆
Z

m is a lattice of rank n, M is a linear subspace of span(L), r ∈ Q is a rational
number, such that

– (L,M , r) is a YES instance if λM (L) ≤ r,
– (L,M , r) is a NO instance if λM (L) > γ · r.

Banaszcyk [4], Cai [10], and Regev [17] proved that the following theorem.

Theorem 1. For any rank-n lattice L, its dual lattice is L∗, there exist con-
stants c, d such that

1. λ1(L) · λn(L∗) ≤ c · n.
2. 1 ≤ λ1(L) · g(L∗) ≤ d · n.
3. 1 ≤ λ1(L) · λ1(L∗) ≤ n.

We also need the following lemma.

Lemma 1 [16] . There is a polynomial time algorithm that on input a lattice
basis B = [b1, b2, . . . , bn] ∈ Q

m×n and a linear subspace S, outputs a new basis
B̃ = [b̃1, . . . , b̃d] for L(B) such that L(b̃1, . . . , b̃d) = S ∩ L(B), where d is the
dimension of S ∩ span(B).

Combining Lemma 1 with Theorem 1, we immediately obtain the following the-
orem about λM (L). The first two parts in the following theorem are variants of
Cai’s result [10]. We prove this independently with a simple method.

Theorem 2. For any rank-l lattice L and a subspace M ⊂ span(L), there exist
constants c > 0, d > 0 such that

1. 1 ≤ λM (L) · λn(L∗
1) ≤ c · n.

2. 1 ≤ λM (L) · g(L∗
1) ≤ d · n.

3. 1 ≤ λM (L) · λ1(L∗
1) ≤ n.

where L∗
1 is the dual of saturated sublattice L1 with rank n of L.

Proof. Assume the lattice L is generated by a basis B ∈ Z
m×l. Because M is a

subspace of span(L), rank(M) < rank(span(L)). Note that, by the properties
of subspaces, there must exists a subspace V such that

V ⊕ M = span(L).
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Run the algorithm from Lemma 1 on the lattice L and the subspace V to obtain
a lattice basis B̃ = [b̃1, . . . , b̃n] ∈ Z

m×n for L, such that L(b̃1, . . . , b̃n) = V ∩L,
where n = dim(V ∩ span(L)).

Clearly, the two bases B and B̃ are equivalent, that is, B̃ = BU for some
unimodular matrix U . Let L(b̃1, . . . , b̃n) = L1. Using Theorem 1 for a lattice L1

of rank n, we obtain the inequality:

λ1(L1) · λn(L∗
1) ≤ c · n.

Furthermore, we need to prove that 1 ≤ λ1(L1) · λn(L∗
1). Let v ∈ L1 be a

vector such that ‖v‖ = λ1(L1). By definition of λn(L∗
1), there exist n linearly

independent vectors x1, . . . , xn in L∗
1 such that ‖xi‖ ≤ λn(L∗

1). We clearly see
that not all of them are orthogonal to v. Hence, there exists an i such that
〈xi, v〉 
= 0. Since xi ∈ L∗

1 there must be 〈xi, v〉 ∈ Z. We have 1 ≤ 〈xi, v〉 ≤
‖xi‖ · ‖v‖ ≤ λn(L∗

1) · λ1(L1). Then,

λ1(L1) · λn(L∗
1) ≥ 1.

Because λ1(L1) is the shortest non-zero vector of the saturated sublattice L1 ⊂ L
generated by L ∩ V and λM (L) is the shortest non-zero vector of the lattice
L\M , we have λM (L) ≤ λ1(L1). Therefore

1 ≤ λM (L) · λn(L∗
1) ≤ c · n.

The proofs of 2 and 3 similar. For the lattice L1, we have 1 ≤ λ1(L1)·g(L∗
1) ≤ d·n

and 1 ≤ λ1(L1) · λ1(L∗
1) ≤ d · n. Because λM (L) ≤ λ1(L1), the results follow.

This completes the proof.

Since λ1(L) ≤ λM (L), we obtain the following corollary.

Corollary 1. For any rank-l lattice L and a subspace M ⊂ span(L), there exist
constants c, d such that

1. 1 ≤ λ1(L) · λn(L∗
1) ≤ c · n.

2. 1 ≤ λ1(L) · g(L∗
1) ≤ d · n.

3. 1 ≤ λ1(L) · λ1(L∗
1) ≤ n.

where L∗
1 is the dual of saturated sublattice L1 with rank n of L.

This corollary reflects the relationships between the shortest lattice vector of
L and the nth successive minimum, the shortest basis, and the first successive
minimum of the dual of a saturated sublattice L1. That is, it connects the lattice
with the dual lattice of a saturated sublattice.

Part 1 of Theorem 2 immediately implies reductions between GAPSIVP and
GAPSAM.

Theorem 3. There are the following cook reductions between problem
GAPSIVP and GAPSAM:
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– The problem GAPSAMcn can be reduced to GAPSIVP1;
– The problem GAPSIVPcn can be reduced to GAPSAM1,

where c is a constant.

Proof. Let (L,M , r) be an instance of GAPSAMcn, where L ⊆ Z
m is a lattice

of rank l, and let M ⊂ span(L) be a subspace of L. Note that (L,M , r) is a
YES instance if λM (L) ≤ r, whereas (L,M , r) is a NO instance if λM (L) > cnr.

From the proof of Theorem 2, we can obtain a lattice L1 of rank n with
the dual L∗

1. By Theorem 2, if λM (L) ≤ r then λn(L∗
1) ≥ 1/λM (L) > 1/r, if

λM (L) > cnr then λn(L∗
1) ≤ cn/λM (L) < cn/cnr < 1/r.

The reduction calls a GAPSIVP1 oracle on (L∗
1, 1/r), which allows

GAPSAMcn to be solved. Indeed, if the GAPSIVP1 oracle on (L∗
1, 1/r) answers

YES, then (L,M , r) is a NO instance of GAPSAMcn. On the other hand, if
GAPSIVP1 oracle on (L∗

1, 1/r) answers NO, then (L,M , r) is a YES instance
of GAPSAMcn.

The second reduction follows by a similar method.

Using Theorem 3, we can also show the non-approximability result for GAPSAM,
namely that there exists a constant c such that GAPSAMcn ∈ coNP .

Corollary 2. GAPSAMcn ∈ coNP for some constant c.

Proof. Assume that (L,M , r) is an instance of GAPSAMcn. Then (L,M , r) is
a YES instance if λM (L) ≤ r, and (L,M , r) is a NO instance if λM (L) > cnr.
Hence, we need to prove that if (L,M , r) is a YES instance then there is no
witness that the verifier accepts, and that if (L,M , r) is a NO instance then
there is a witness that the verifier accepts.

Indeed, using Theorem 3, when (L,M , r) is a YES instance of GAPSAMcn we
have λn(L∗

1) > 1/r, and when (L,M , r) is a NO instance we have λn(L∗
1) ≤ 1/r.

We then obtain n vectors v1,v2, . . . ,vn non-deterministically, and check that
they are linearly independent in L∗

1 and that each length at most 1/r. Hence,
there exist n vectors for which we accept a NO instance of GAPSAMcn.

3.2 Relationships Between GAPSAM and Other Lattice Problems

In this section, we give polynomial time reductions between promise problems
of GAPSVP, GAPSBP and GAPSAM.

Theorem 4. There are polynomial time Karp reductions between GAPSVP and
GAPSAM.

– GAPSVPn is reducible to GAPSAM1.
– GAPSAMn is reducible to GAPSVP1.

Proof. Let (L∗
1, r) be an instance of GAPSVPn, where L∗

1 ⊂ Z
m is a lattice.

b∗
1, . . . , b

∗
n be a basis of the lattice L∗

1, and let L1 be the dual lattice of L∗
1.

We may assume that (b1, . . . , bn) is a basis of L1, so there must exist a lattice
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L of rank l such that (b1, . . . , bn) is a basis of L ∩ span(b1, . . . , bn), that is,
L1 = L ∩ span(L1). Thus L has a basis b1, . . . , bn, bn+1, . . . , bl.

Set V = span(b1, . . . , bn). Then V is a subspace of span(L) and L1 is a
saturated sublattice of L. Define the orthogonal projection

π : span(L) −→ span(b1, . . . , bn)⊥

as following, for all b ∈ span(L),

π(b) = b −
n∑

i=1

〈b, b̃i〉
〈b̃i, b̃i〉

b̃i

where b̃i is the Gram-Schmidt orthogonal vector of bi, i = 1, . . . , n. π(L) is
a lattice of rank l − n with basis [π(bn+1), . . . , π(bl)], where bn+1, . . . , bl ∈ L.
Then, we see that b1, . . . , bn, bn+1, . . . , bl is a basis of the lattice L. In the linear
span of lattice L, we can find a subspace M such that V ⊕ M = span(L).

The output of the reduction is (L,M , 1/r). We next show this reduction is
correct.

Assume that (L∗
1, r) is a YES instance of GAPSVPn, such that λ1(L∗

1) ≤ r.
From the Theorem 2, 1 ≤ λM (L) · λ1(L∗

1) ≤ n. We have λM (L) ≥ 1/r. Then,
(L,M , 1/r) is a NO instance of GAPSAMγ .

Now assume that (L∗
1, r) is a NO instance of GAPSVPn, so that λ1(L∗

1) > nr.
By Theorem 2, we have λM (L) < 1/r. It follows that (L,M , 1/r) is a YES
instance of GAPSAMγ .

The proof of the second part is similar.

Using Theorem 2, we obtain the following corollary.

Corollary 3. There are approximate reductions between GAPSBP and
GAPSAM, for some constant d.

– GAPSAMdn can be reduced to GAPSBP1.
– GAPSBPdn can be reduced to GAPSAM1.

4 The Rank and Approximation Preserving Reductions

In this section, we will establish the rank and approximation preserving reduction
between GAPSAM and other lattice problems.

Theorem 5. For any approximation factor γ, there is a deterministic polyno-
mial time rank-preserving reduction from GAPSVPγ to GAPSAMγ .

Proof. Let (L, r) be an instance of GAPSVPγ , and define GAPSAMγ instance
(L,M , r), where M = {0} ⊆ span(L). If we computer a shortest non-zero lattice
vector in L, we compute a shortest lattice vector in L\M , i.e., λM (L) = λ1(L).
So there is a trivial reduction from GAPSVPγ to GAPSAMγ .
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In the following, we will give a deterministic polynomial time rank-preserving
reduction from GAPSAM to GAPCVP by an intermediate problem GAPSVP′.

Theorem 6. For any approximation factor γ, there is a deterministic polyno-
mial time rank-preserving reduction from GAPSAMγ to GAPSVP′

γ .

Proof. Let (L,M , r) be an instance of GAPSAMγ , where L ⊆ Z
m is a lattice of

rank n and L is generated by a basis B = (b1, . . . , bn), and let M ⊂ span(L)
be a subspace. Using the algorithm from Lemma1, the algorithm that on input
a lattice L and a subspace M , outputs a new basis B̃ = [b̃1, . . . , b̃n] for L such
that M ∩ L = L(b̃1, . . . , b̃d), where d is the dimension of M ∩ span(L), then
M = span(b̃1, . . . , b̃d). We have L = L(B) = L(B̃), for any lattice vector in L
can be represented by the integral combinations of n linearly independent vectors
b̃1, . . . , b̃n. Hence, on input an GAPSAMγ instance (L,M , r), the reduction
outputs the GAPSVP′

γ instance (L, i, r) where i ∈ {d+1, . . . , n}. We prove that
the reduction is correct.

First assume that (L,M , r) is a YES instance of GAPSAMγ , λM (L) ≤ r,
i.e., there exists a vector x = (x1, . . . , xd, xd+1, . . . , xn) ∈ Z

n with xi 
= 0,
i ∈ {d + 1, . . . , n} such that

‖B̃x‖ = ‖x1b̃1 + . . . + xdb̃d + xd+1b̃d+1 + . . . + xnb̃n‖ ≤ r.

For any vector x′ = (x′
1, . . . , x

′
d, x

′
d+1, . . . , x

′
n) ∈ Z

n with x′
i 
= 0, i ∈ {d +

1, . . . , n}, we have

λ
(i)
1 (L) = min

x′∈Zn,x′
i �=0

{‖B̃x′‖} ≤ ‖B̃x‖ ≤ r.

This prove that (L, i, r) is a YES instance.
Now assume that (L,M , r) is a NO instance, λM (L) > γ · r, i.e., for all

vectors x = (x1, . . . , xd, xd+1, . . . , xn) ∈ Z
n with xi 
= 0, i ∈ {d + 1, . . . , n} such

that ‖B̃x‖ > γ · r. First assume for contradiction that (L, i, r) is not a NO
instance, i.e., there exists a vector x′ = (x′

1, . . . , x
′
d, x

′
d+1, . . . , x

′
n) ∈ Z

n with
x′

i 
= 0, i ∈ {d+1, . . . , n}, hence, ‖B̃x′‖ ≤ γ ·r. Since (L,M , r) is a NO instance
of GAPSAMγ , we have ‖B̃x′‖ > γ · r, contradicting the fact that (L, i, r) is not
a NO instance of GAPSVP′

γ . Then, this proved that (L, i, r) is a NO instance.

Theorem 7. For any approximation factor γ, there is a deterministic polyno-
mial time rank-preserving reduction from GAPSVP′

γ to GAPCVPγ .

Proof. Let (L, i, r) be an instance of GAPSVP′
γ , where L ⊆ Z

m is a lattice of
rank n and L is generated by a basis B = (b1, . . . , bn). We construct instances
of GAPCVPγ as follows. The ides is to use the reduction from GCVPγ (Gen-
eralized Closest Vector Problem) to CVPγ of [16]. The jth instance consists
of a lattice L(j) = L(B(j)) = L(b1, . . . , 2j+1bi, . . . , bn) and the target vector
t(j) = 2jbi, j = 0, 1, . . . , �log2 A�(A is sufficiently large and the bound can
be determined (see [16] (Theorem 3.2)). We use these instances of GAPCVPγ
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corresponding queries to the GAPCVPγ oracle. By call on all these instances
(L(j), t(j)), the GAPCVPγ oracle return the shortest difference vectors. Since
r is given in GAPSVP′

γ instance (L, i, r), and return YES if and only if at
least one of the oracle calls is answered by YES. For example, the jth call on
input (L(j), t(j)), the shortest of the vector B(j)x − t(j) ∈ L is returned where
x = (x1, x2, . . . , xi, . . . , xn) ∈ Z

n and

‖B(j)x − t(j)‖ = ‖x1b1 + x2b2 + . . . + xi · 2j+1bi + . . . + xnbn − 2jbi‖
= ‖x1b1 + x2b2 + . . . + 2j(2xi − 1)bi + . . . + xnbn‖
≤ γ.

Since xi ∈ Z
n, we have 2j(2xi − 1) 
= 0. There exists a vector x′ =

(x1, x2, . . . , x
′
i, . . . , xn) ∈ Z

n with x′
i = 2j(2xi − 1) 
= 0 for some i ∈ {1, . . . , n}

such that ‖B(j)x − t(j)‖ = ‖Bx′‖ ≤ r. Then, (L, i, r) is a YES instance of
GAPSVP′

γ . And selecting j is the hight power of 2 such that 2j divides xi. The
reduction outputs the GAPCVPγ instance (L(j), t(j), r).

We want to prove that if (L, i, r) is a YES instance then (L(j), t(j), r) is a
YES instance for some j = 1, . . . , n, while if (L, i, r) is a NO instance then
(L(j), t(j), r) is a NO instance for all j = 1, . . . , n.

First assume (L, i, r) is a YES instance, λ
(i)
1 (L) ≤ r, i.e., there exists a

vector x = (x1, x2, . . . , xi, . . . , xn) ∈ Z
n with xi 
= 0, i ∈ {1, . . . , n} such that

‖Bx‖ ≤ r. Let j be the hight power of 2 such that 2j divides xi. Since xi is
nonzero, we define xi = 2j(2a−1) for some integer a. We obtain the vector x′ by
replacing the ith entry xi with a, i.e., x′ = (x1, x2, . . . , a, . . . , xn) ∈ Z

n. Then,

dist(L(j), t(j)) ≤ ‖B(j)x′ − t(j)‖
= ‖x1b1 + x2b2 + . . . + a · 2j+1bi + . . . + xnbn − 2jbi‖
= ‖x1b1 + x2b2 + . . . + ·2j(2a − 1)bi + . . . + xnbn‖
= ‖Bx‖ ≤ r.

This proves that (L(j), t(j), r) is a YES instance.
Now assume that (L, i, r) is a NO instance, λ

(i)
1 (L) > γ · r, i.e., for any

vector x = (x1, x2, . . . , xi, . . . , xn) ∈ Z
n with xi 
= 0, i ∈ {1, . . . , n} such that

‖Bx‖ > γ · r. For some j,

dist(L(j), t(j)) = min
x∈Zn

‖B(j)x − t(j)‖
= min

x∈Zn
‖x1b1 + x2b2 + . . . + xi · 2j+1bi + . . . + xnbn − 2jbi‖

= min
x∈Zn

‖x1b1 + x2b2 + . . . + 2j(2xi − 1)bi + . . . + xnbn‖
> γ · r.

This proves that (L(j), t(j), r) is a NO instance.

Combining the two theorem we get the following corollary.

Corollary 4. For any approximation factor γ, there is a deterministic polyno-
mial time rank-preserving reduction from GAPSAMγ to GAPCVPγ .
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5 Conclusions

In this paper, we propose the promise problem associated with GSVP, namely
GAPSAM. We present variants of Cai’s transference theorems for GAPSAM.
From the relationship, we prove that GAPSAMcn lies in coNP , where c is a
constant. We also give the relationships between the shortest vector of a lattice,
the nth successive minima, shortest basis, and the shortest vector of the dual of a
saturated sublattice. Using these new relations, we reduce some lattice problems
to GAPSAM. We also reduce GAPSAM to GAPCVP under a deterministic
polynomial time rank-preserving reduction.
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