
ar
X

iv
:1

51
0.

07
82

5v
1

 [
qu

an
t-

ph
]

 2
7

O
ct

 2
01

5

Span-program-based quantum algorithms for

graph bipartiteness and connectivity ⋆

Agnis Āriņš

University of Latvia, Raiņa bulvāris 19, Riga, LV-1586, Latvia

Abstract. Span program is a linear-algebraic model of computation
which can be used to design quantum algorithms. For any Boolean func-
tion there exists a span program that leads to a quantum algorithm
with optimal quantum query complexity. In general, finding such span
programs is not an easy task.
In this work, given a query access to the adjacency matrix of a sim-
ple graph G with n vertices, we provide two new span-program-based
quantum algorithms:
– an algorithm for testing if the graph is bipartite that uses O(n

√

n)
quantum queries;

– an algorithm for testing if the graph is connected that uses O(n
√

n)
quantum queries.

1 Introduction

The concept of a span program as a linear-algebraic model of computation is
not new. It was introduced by Karchmer and Wigderson in 1993 [9] and has
many applications in classical complexity theory. Span programs can be used
to evaluate decision problems. In 2008 Reichardt and Spalek [12] introduced a
new complexity measure for span programs – witness size, which, as Reichardt
showed later in [10,11], has strong connection with the quantum query complex-
ity. There is a quantum algorithm for evaluating span programs [10] and these
two complexity measures are essentially equivalent. The difficulty is to come up
with a span program with a good witness size complexity.

In [12] authors dealt with bounded-size span programs evaluating Boolean
functions each on O(1) bits and posed an open question – do there exist interest-
ing quantum algorithms based directly on asymptotically large span program?
Belovs used span programs to construct learning graphs [4,3]. He also used span
program approach for the matrix rank problem [2]. In [1] Ambainis et al. came
up with a simple yet powerful span program for the graph collision problem.

In this paper, we extend the family of algorithms based on span programs.
We present two new span-program-based quantum algorithms – an O(n

√
n)

algorithm for the graph bipartiteness problem and an O(n
√
n) algorithm for the

graph connectivity problem. Both algorithms in the quantum query sense are

⋆ This work has been supported by the ERC Advanced GrantMethods for Quantum
Computing.

http://arxiv.org/abs/1510.07825v1

optimal because the witness sizes match the quantum query complexity lower
bounds [6,7] for these problems. Thus we demonstrate that span programs can
be useful also for the problems with an asymptotically large input and possibly
our algorithms could be building blocks for bigger span programs in the future.

The graph connectivity problem has been studied before [7] and there al-
ready exists a O(n

√
n) quantum query algorithm which requires O(n) qubits of

quantum memory. The advantage of our algorithm is that it uses only O(log n)
qubits of quantum memory because the span program P2 uses a vector space
with O(n2) dimensions. Similarly for the graph bipartiteness problem. It can be
solved with the breadth-first search method [8] which uses O(n) qubits of quan-
tum memory, but our approach with a span program requires O(log n) qubits of
quantum memory.

2 Preliminaries

In this paper, we present algorithms which work on simple graphs, given in
adjacency model. If the given graph has n vertices then the input size for an
algorithm is n×n and we assume that the input variable xi,j corresponds to the
value of entry in i-th row and j-th column of the adjacency matrix.

2.1 Span programs

Definition 1 ([1]). A span program P is a tuple P = (H, |t〉 , V), where H
is a finite-dimensional Hilbert space, |t〉 ∈ H is called the target vector, and
V = {Vi,b|i ∈ [n], b ∈ {0, 1}}, where each Vi,b ⊆ H is a finite set of vectors.

Denote by V (x) =
⋃

{Vi,b|i ∈ [n], xi = b}. The span program is said to com-
pute function f : D → {0, 1}, where the domain D ⊆ {0, 1}n, if for all x ∈ D,

f(x) = 1 ⇐⇒ |t〉 ∈ span(V (x)).

Basically, what this definition says is that for each input variable xi we have
two sets of vectors (as the span program authors, we define these vectors in
advance) – Vi,0 and Vi,1. If xi = b then we say that vectors from the set Vi,b

are available and vectors from the set Vi,1−b are not available. If some vector
is included in both sets Vi,0 and Vi,1 then we say that it is a free vector – it is
always available.

The function returns 1 iff the target vector can be expressed as a linear
combination of the available vectors, otherwise it returns 0.

Definition 2 ([1]).

(1) A positive witness for x ∈ f−1(1) is a vector w = (wv), v ∈ V (x), such that
|t〉 = ∑

v∈V (x) wvv. The positive witness size is

wsize1(P) := max
x∈f−1(1)

min
w:witness of x

‖w‖2.

(2) A negative witness for x ∈ f−1(0) is a vector w ∈ H, such that 〈t|w〉 = 1
and for all v ∈ V (x): 〈v|w〉 = 0. The negative witness size is

wsize0(P) := max
x∈f−1(0)

min
w:witness of x

∑

v∈V

〈v|w〉2.

(3) The witness size of a program P is

wsize(P) :=
√

wsize0(P) · wsize1(P).

(4) The witness size of a function f denoted by wsize(f) is the minimum witness
size of a span program that computes f .

Theorem 1 ([10,11]). Q(f) and wsize(f) coincide up to a constant factor.
That is, there exists a constant c > 1 which does not depend on n or f such that
1
c
wsize(f) ≤ Q(f) ≤ c · wsize(f).

3 Span program for testing graph bipartiteness

A bipartite graph is a graph whose vertices can be divided into two disjoint sets
such that there is no edge that connects vertices of the same set. An undirected
graph is bipartite iff it has no odd cycles.

Algorithm 1. There exists a span program P which for a graph with n vertices
detects if the graph is bipartite with wsize(P) = O(n

√
n).

Proof. We will make a span program which detects if a graph has an odd cycle.
Let n = |G| be a number of vertices in the given graph G. Then the span

program is as follows:

Span program P1 for testing graph bipartiteness

– H is a (2n2 + 1) dimensional vector space with basis vectors {|0〉} ∪
{|vk,b〉 |v, k ∈ [1..n], b ∈ {0, 1}}.

– The target vector is |0〉.
– For every k ∈ [1..n] make available the free vector |0〉+ |kk,0〉+ |kk,1〉.
– For every k ∈ [1..n], for every edge u− v (where input xu,v = 1), make

available the vectors |uk,0〉+ |vk,1〉 and |uk,1〉+ |vk,0〉.

The states in the span program P1 are mostly in the form |vk,b〉 where v is
vertex index, k represents vertex from which we started our search for an odd
length cycle and b represents the parity of the current path length. The first
subindex k in state |vk,b〉 can also be considered as the subspace index for the
subspace Vk = span({|vk,b〉 |v ∈ [1..n], b ∈ {0, 1}}). Vectors corresponding to

edges are in the form |uk,b〉 + |vk,1−b〉 consisting from sum of two states which
both belong to same subspace Vk.

In the span program P1 the target vector |0〉 can only be expressed as a linear
combination of the available vectors if at least one of the vectors in the form
|kk,0〉 + |kk,1〉 can be expressed. Without loss of generality, if there is an odd
length cycle v1 − v2 − · · · − v(2j+1) − v1 then the target vector can be expressed
by taking the vectors corresponding to the edges of this cycle, alternatingly with
plus and minus sign

|0〉 = (|0〉+ |11,0〉+ |11,1〉)− (|11,0〉+ |21,1〉) + · · · − (|(2j + 1)1,0〉+ |11,1〉)

therefore the span program P1 will always return 1 when the given graph is not
bipartite.

From the other side, if there is no odd length cycle then none of the vectors
in the form of |kk,0〉 + |kk,1〉 can be expressed using the available vectors from
P1. To cancel out the state |kk,0〉 we should be using a vector |kk,0〉 + |vk,1〉
corresponding to some edge k − v where v is some vertex adjacent to k because
no other vector contains the state |kk,0〉. By doing so we move from the state
|kk,0〉 to the state |vk,1〉 (possibly with some coefficient other than 1) which has
the parity bit flipped. Similarly, to cancel out the state |vk,1〉 we should be using
a vector corresponding to some edge going out from vertex v. To stop this process
we need to reach the state |kk,1〉. It can be done only if there is an odd cycle
because the path must be closed and the parity bit restricts it to odd length.
When there is no odd cycle, span program P1 will always return 0.

We can conclude that P1 indeed computes the expected function. It remains
to calculate the witness size of P1.

For the case when there is an odd cycle we need to calculate the positive
witness size. If there is an odd cycle v1 − v2 − · · · − vd − v1 with length d then
the target vector can be expressed in this way

|0〉 = 1 ·(|0〉+ |11,0〉+ |11,1〉)+(−1) ·(|11,0〉+ |21,1〉)+ · · ·+(−1) ·(|d1,0〉+ |11,1〉)

and the positive witness w here consists only from d + 1 entries ±1 therefore
‖w‖2= d+ 1.

If v1 − v2 − · · · − vd − v1 is a cycle then also v2 − v3 − · · · − vd − v1 − v2 is a
cycle and therefore the target vector can also be expressed in this way

|0〉 = (|0〉+ |22,0〉+ |22,1〉)− (|22,0〉+ |32,1〉) + · · · − (|12,0〉+ |22,1〉)

the same follows for all d vertices in this cycle and the target vector therefore
can be expressed in atleast d different ways. We can combine these d ways each
taken with coefficient 1/d and then we get that the positive witness size

wsize1(P1) ≤ d ∗ (1/d)2 ∗ (d+ 1) < 2 (1)

To estimate the negative witness size we must find a negative witness w′. We
derive w′ by defining how it acts on basis vectors. From definition 〈w′|0〉 = 1.

For every k we must have 〈w′|(|0〉+ |kk,0〉+ |kk,1〉)〉 = 0 therefore lets pick w′

in such a way that 〈w′|kk,0〉 = 0 and 〈w′|kk,1〉 = −1. Now repeat the following
steps until no changes happen:

– for every available vector |uk,0〉 + |vk,1〉 if 〈w′|uk,0〉 is defined then define
〈w′|vk,1〉 = −〈w′|uk,0〉.

– for every available vector |uk,1〉 + |vk,0〉 if 〈w′|uk,1〉 is defined then define
〈w′|vk,0〉 = −〈w′|uk,1〉.

For all not yet defined 〈w′|vk,b〉 define 〈w′|vk,b〉 = 0.

For any given vector v in span program P1 the value 〈w′|v〉2 ≤ 1. The total
number of vectors does not exceed n+ n3 therefore the negative witness size is

wsize0(P1) ≤ 1 · (n+ n3) (2)

Combining positive and negative witness sizes we obtain the upper bound
for witness size which also corresponds to quantum query complexity

wsize(P1) =
√

wsize0(P1) · wsize1(P1) = O
(

n
√
n
)

(3)

4 Span program for testing graph connectivity

A graph is said to be connected if every pair of vertices in the graph is connected.
If in an undirected graph one vertex is connected to all other vertices then by
transitivity the graph is connected.

Algorithm 2. There exists a span program P which for a graph with n vertices
detects if the graph is connected with wsize(P) = O(n

√
n).

Proof. Let n = |G| be a number of vertices in the given graph G. Then the span
program is as follows:

Span program P2 for testing graph connectivity

– H is a n2 − 1 dimensional vector space with basis vectors {|vk〉 |v ∈
[0..n], k ∈ [2..n]}.

– The target vector is |t〉 = |02〉+ |03〉+ · · ·+ |0n〉.
– For every k ∈ [2..n] make available the free vector |0k〉+ |1k〉 − |kk〉.
– For every k ∈ [2..n], for every edge u− v (where u, v ∈ [1..n] and input

xu,v = 1), make available the vector |uk〉 − |vk〉.

If all vertices are reachable from vertex with index 1 then the given graph is
connected. Here we use Belov’s [5] span program for s-t connectivity as subrou-
tine. This subroutine checks if in a given graph there is a path from the vertex
s to the vertex t. The span program for it has the target vector |s〉 − |t〉 and for
each edge i− j (input xi,j = 1) we can use the vector |i〉 − |j〉.

In span program P2, by using this subroutine n−1 times, we check if all other
vertices are connected to vertex with index 1. We create a separate subspace Vk =
span({|vk〉 |v ∈ [0..n]}) for each such subroutine call to avoid any interference
between them, which is a common technique [10] how to compose span programs.
The span program returns 1 when all vertices are connected, but otherwise it
returns 0.

For the case when the given graph is connected we need to calculate the
positive witness size. In each s-t subroutine the shortest path length from the
vertex s to the vertex t can not be larger than n− 1. Threfore each vector from
the set {|0k〉 |k ∈ [2..n]} requires no more than n vectors to express it. There are
n− 1 such subroutines. The positive witness size is

wsize1(P2) ≤ n · (n− 1) ≤ n2 (4)

To estimate the negative witness size we must find a negative witness w′. We
derive w′ by defining how it acts on the basis vectors. From definition 〈w′|t〉 = 1.
We need to talk about negative witness only when some vertex v is not connected
to vertex with index 1. Then the vertex v belongs to different connected compo-
nent than vertex with index 1. Lets name this connected component Cv and let
the count of vertices in this connected component be dv. Lets pick w′ in such a
way that for each vertex vk ∈ Cv set 〈w′|0k〉 = 1/dv and for each vertex vz /∈ Cv

set 〈w′|0z〉 = 0.
For k ∈ [2..n] we must have 〈w′|(|0k〉+ |1k〉 − |kk〉)〉 = 0 therefore set 〈w′|1k〉 =

−〈w′|0k〉 and 〈w′|kk〉 = 0. Now repeat the following step until no changes
happen: for every available vector |uk〉 − |vk〉 if 〈w′|uk〉 is defined then define
〈w′|vk〉 = 〈w′|uk〉. For all other not yet defined basis vectors |vk〉 set 〈w′|vk〉 = 0.

With such negative witness w′ choice the overall negative witness size will
only get increased by vectors which correspond to nonexistent graph edges which
connects Cv with other connected components in graph - i.e. border edges. An
edge u−v is a border edge if u ∈ Cv and v /∈ Cv. To a border edge u−v correspond
the vectors |uk〉 − |vk〉 where k ∈ [2..n] but only dv from these vectors will have
〈w′|uk〉 6= 〈w′|vk〉 and each such vector increases the negative witness size by
value (1/dv)

2. For Cv there are at most dv · (n − 1) border edges therefore the
overall negative witness size is

wsize0(P2) ≤ d2v · (n− 1) · (1/dv)2 ≤ n (5)

Combining the positive and negative witness sizes we obtain the upper bound
for the witness size which also corresponds to the quantum query complexity

wsize(P2) =
√

wsize0(P2) · wsize1(P2) = O
(

n
√
n
)

(6)

Acknowledgements

I am grateful to Andris Ambainis for the suggestion to solve the graph problems
with span programs, and for many useful comments during the development of
the paper.

References

1. Ambainis, A., Balodis, K., Iraids, J., Ozols, R., Smotrovs, J.: Parameterized
quantum query complexity of graph collision. CoRR abs/1305.1021 (2013),
http://arxiv.org/abs/1305.1021

2. Belovs, A.: Span-program-based quantum algorithm for the rank problem. CoRR
abs/1103.0842 (2011), http://arxiv.org/abs/1103.0842

3. Belovs, A.: Learning-graph-based quantum algorithm for k-
distinctness. In: IEEE 53rd Annual Symposium on Founda-
tions of Computer Science (FOCS). pp. 207–216. IEEE (2012),
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6375298

4. Belovs, A.: Span programs for functions with constant-sized 1-certificates. In: Pro-
ceedings of the 44th symposium on Theory of Computing. pp. 77–84. ACM (2012),
http://dl.acm.org/citation.cfm?id=2213985

5. Belovs, A., Reichardt, B.: Span programs and quantum algorithms for st-
connectivity and claw detection. In: Epstein, L., Ferragina, P. (eds.) Algorithms –
ESA 2012, Lecture Notes in Computer Science, vol. 7501, pp. 193–204. Springer
Berlin Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-33090-2_18

6. Berzina, A., Dubrovsky, A., Freivalds, R., Lace, L., Scegulnaja, O.: Quantum
query complexity for some graph problems. In: Van Emde Boas, P., Pokorný, J.,
Bieliková, M., Štuller, J. (eds.) SOFSEM 2004: Theory and Practice of Computer
Science, Lecture Notes in Computer Science, vol. 2932, pp. 140–150. Springer Berlin
Heidelberg (2004), http://dx.doi.org/10.1007/978-3-540-24618-3_11

7. Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complex-
ity of some graph problems. In: Dı́az, J., Karhumäki, J., Lepistö, A., San-
nella, D. (eds.) Automata, Languages and Programming, Lecture Notes in
Computer Science, vol. 3142, pp. 481–493. Springer Berlin Heidelberg (2004),
http://dx.doi.org/10.1007/978-3-540-27836-8_42

8. Furrow, B.: A panoply of quantum algorithms. Quantum Info. Comput. 8(8), 834–
859 (Sep 2008), http://dl.acm.org/citation.cfm?id=2017011.2017022

9. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the Eighth
Annual Structure in Complexity Theory Conference. pp. 102–111. IEEE (1993),
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=336536

10. Reichardt, B.W.: Span programs and quantum query complexity: The general ad-
versary bound is nearly tight for every boolean function. In: 50th Annual IEEE
Symposium on Foundations of Computer Science (FOCS). pp. 544–551. IEEE
(2009), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5438598

11. Reichardt, B.W.: Reflections for quantum query algorithms. In: Proceedings of
the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms. pp.
560–569. SIAM (2011), http://dl.acm.org/citation.cfm?id=2133080

12. Reichardt, B.W., Spalek, R.: Span-program-based quantum algorithm for evalu-
ating formulas. In: Proceedings of the Fortieth Annual ACM Symposium on The-
ory of Computing. pp. 103–112. STOC ’08, ACM, New York, NY, USA (2008),
http://doi.acm.org/10.1145/1374376.1374394

http://arxiv.org/abs/1305.1021
http://arxiv.org/abs/1103.0842
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6375298
http://dl.acm.org/citation.cfm?id=2213985
http://dx.doi.org/10.1007/978-3-642-33090-2_18
http://dx.doi.org/10.1007/978-3-540-24618-3_11
http://dx.doi.org/10.1007/978-3-540-27836-8_42
http://dl.acm.org/citation.cfm?id=2017011.2017022
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=336536
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5438598
http://dl.acm.org/citation.cfm?id=2133080
http://doi.acm.org/10.1145/1374376.1374394

	Span-program-based quantum algorithms for graph bipartiteness and connectivity
	References

