

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 25, 2024

Transforming Graphical System Models to Graphical Attack Models

Ivanova, Marieta Georgieva; Probst, Christian W.; Hansen, Rene Rydhof; Kammüller, Florian

Published in:
Revised Selected Papers from the 2nd International Workshop on Graphical Models for Security (GraMSec
2015)

Link to article, DOI:
10.1007/978-3-319-29968-6_6

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Ivanova, M. G., Probst, C. W., Hansen, R. R., & Kammüller, F. (2016). Transforming Graphical System Models
to Graphical Attack Models. In Revised Selected Papers from the 2nd International Workshop on Graphical
Models for Security (GraMSec 2015) (pp. 82-96). Springer. https://doi.org/10.1007/978-3-319-29968-6_6

https://doi.org/10.1007/978-3-319-29968-6_6
https://orbit.dtu.dk/en/publications/1d14c870-0a0a-46eb-885c-d4f395a75c44
https://doi.org/10.1007/978-3-319-29968-6_6

Transforming graphical system models
to graphical attack models

Marieta Georgieva Ivanova1, Christian W. Probst1,
René Rydhof Hansen2, and Florian Kammüller3

1 Technical University of Denmark
{mgiv, cwpr}@dtu.dk

2 Aalborg University, Denmark
rrh@cs.aau.dk

3 Middlesex University, UK
f.kammueller@mdx.ac.uk

Abstract. Manually identifying possible attacks on an organisation is a
complex undertaking; many different factors must be considered, and the
resulting attack scenarios can be complex and hard to maintain as the
organisation changes. System models provide a systematic representation
of organisations that helps in structuring attack identification and can
integrate physical, virtual, and social components. These models form a
solid basis for guiding the manual identification of attack scenarios. Their
main benefit, however, is in the analytic generation of attacks. In this
work we present a systematic approach to transforming graphical system
models to graphical attack models in the form of attack trees. Based on
an asset in the model, our transformations result in an attack tree that
represents attacks by all possible actors in the model, after which the
actor in question has obtained the asset.

1 Introduction

Organisations face a constant stream of attacks on their IT-infrastructure. Many
of these attacks and the ways to prevent them are well understood. Traditional
and well-established risk assessment methods can often identify these potential
threats, but due to a technical focus, these approaches often abstract away the
internal structure of an organisation and ignore human factors when modelling
and assessing attacks. However, an increasing number of attacks do involve at-
tack steps such as social engineering.

Attack trees [1,2] are a loosely defined, yet (or maybe therefore) widely used
approach for documenting possible attacks in risk assessment [3]; they can de-
scribe attack goals and different ways of achieving these goals by means of the
individual steps in an attack. The goal of the defender is then to inhibit one or
more of the attack steps, thereby prohibiting the overall attack, or at least mak-
ing it more difficult or expensive. While attacks trees for purely technical attacks
may be constructed by automated means [4,5], for example by scanning networks

1

and identifying software versions, this is currently not possible for attacks ex-
ploiting the human factors. Actually, only few, if any, approaches to systematic
risk assessment take such “human factor”-based attacks into consideration. The
goal of the TRESPASS project [6] is to close this gap by developing models
and analytic processes that support risk assessment in complex organisations in-
cluding human factors and physical infrastructure. The goal of this support is to
simplify the identification of possible attacks and to provide qualified assessment
and ranking of attacks based on the expected impact.

In this work we present the fundamental approach to systematically trans-
form graphical system models to graphical attack models in the form of attack
trees. Since the transformation considers all relevant system components, the
resulting attacks may include elements of human behaviour. These attacks can
then be used as input to a traditional risk assessment process and thereby ex-
tend and support the brainstorming results. Our approach is applicable to a
class of recent system models such as ExASyM [7] and Portunes [8], which have
been used to model and analyse organisations for possible attacks [9]. These
models contain both the physical infrastructure and information on actors, ac-
cess rights, and policies; consequently, analysis of such models can include, for
example, social engineering in the identified attacks.

The benefit of converting system models to attack models is a conceptually
new view on qualitative security properties. The system model represents spatial
connections on the different layers of an organisation, thus blurring potential
attacks exploiting items not connected in the model, or not connected in the
mental image of the modeller. Attack models represent connections between
elements and actions that can be exploited to perform an attack.

Our transformations are independent of the underlying model. While we
present them in the setting of the TRESPASS model, the general approach
can be applied to any graphical system model. The transformations described
in this work can be used as the core technique for policy invalidation [10, 11],
where policies describe both access control to locations and data, as well as
system-wide policies such as admissible actions and actor behaviour. We have
implemented the transformations presented in this work in an attack tree gener-
ator for TRESPASS models. The example shown in Figure 9 has been generated
with this tool.

The rest of this article is structured as follows. The next section gives an
overview of graphical models for systems and attacks, followed by a description
of the transformations for simple models in Section 3. These simple models do
not consider mobility of data or other actors than the attacker. Mobility of data
through processes is added in Section 4. Finally, Section 5 concludes the paper
and discusses future work.

2 Graphical System Models and Attack Models

We start by introducing the main concepts in the system model and the attack
models we consider. System models includes representations of both the physical

and the digital infrastructure of an organisation. This is similar to approaches
such as ExASyM [7] and Portunes [8], which represent relevant elements as nodes
in a graph, that form the natural basis for the application of our techniques. How-
ever, for the current work, we do not require a particular kind of representation:
the only requirement is that the core concepts discussed later in this section can
be extracted from the underlying model. Similarly, attack models represent pos-
sible attacks on the modelled organisation. For the approach in this paper, we
essentially only require that attack goals can be divided into sub-goals that can
be combined either conjunctively (must all be completed) or disjunctively (only
one sub-goal need to be completed). This is very similar to attack trees [1, 2],
and just as for these it would be interesting to allow more complex combinations
at a later point.

2.1 Graphical System Models

We consider nodes as the central element in our graphical model of an organi-
sation. We differentiate between nodes representing

– Locations in the organisation, for example, rooms, access control points,
network components, computers, etc. Nodes representing locations that are
physically or logically connected in the organisation, are linked by directed
edges in the graph.

– Actors in the modelled organisation.
– Processes modelling information sharing or policies.
– Items modelling tangible assets in the modelled organisation, for example,

access cards, harddrives, etc.

Additionally, nodes can store items and data; in contrast to items, that are rep-
resented by nodes, data is represented by an (abstract) name and includes, e.g.,
pins, passwords, and other intangible assets. All elements in the model provide
a unique identifier that can be used to refer to the element and to obtain, for
example, information on its concrete type, model, or other relevant properties.

A location in the modelled organisation may belong to several domains, e.g.,
it can be (physically) part of the building and also be present (virtually) on the
network. Nodes in the model can also belong to different domains, which limit
the operations that can be performed on a node and limiting where processes
can move; human actors, for example, are restricted to nodes in the physical
domain, and computer processes are restricted to nodes in the virtual domain.

Assets are used for modelling any kind of item or data that is relevant in the
modelled organisation. In addition, assets can be annotated with extra informa-
tion, e.g., a probability representing how likely it is to lose a particular piece of
data.

Nodes that represent processes or actors can move around in the model, i.e.,
be associated to changing locations; actors are allowed to store both items and
data, while processes can only store data. Assets stored at either of these nodes
move around with the node.

To represent a wide variety of processes and the possible behaviour of actors,
we assume that a number of simple actions can be performed on a target, which
can be any location in the model, including physical locations or actors.

To constrain mobility of processes and actors, as well as to constrain actions,
we assume a policy mechanism in the model, consisting of

– Policies that regulate access to locations and assets. Policies consist of re-
quired credentials and enabled actions, representing what an actor needs
to provide in order to enable the actions in a policy, and what actions are
enabled if an actor provides the required credentials, respectively.

– Credentials are data, items, or an identity that the actor or process per-
forming an action needs to have, or predicates.

Predicates as credentials express that the actor must possess a certain attribute.
In the example shown in Figure 1, an actor must be trusted by Alice in order
to be allowed to move to the location Door. We also assume policies to support
variables to relate credentials to each other, or to restrict actions based on the
credentials provided. In the example shown in Figure 1, the policy at the ATM
requires the actor to present a card with a pin X and the matching pin.

As stated above, both the ExASyM [7] and Portunes [8] modelling languages
fulfil the above requirements for using our approach, as does any Klaim-like
models [12] in general. While Klaim models process mobility by processes moving
from node to node, we request processes to reside in special nodes that move
around with the process. We choose this abstraction to make the modelling of
(movement of) actors and assets carried by actors more intuitive and natural;
mapping “standard” Klaim-like models to this abstraction is straightforward.
In Figure 1, for example, the node representing the actor Alice has a pin code
and a card. The card in turn contains information about the owner and the pin
code for the card.

In the work described here, we only consider the pure transformation of
graphical system models to graphical attack models. An essential next step in
risk assessment is to valuate the risk and impact of an attack, for example, by
annotating the attack model with metrics and performing analyses on them [13].
This mapping can be achieved by associating the elements’ identifiers with rel-
evant metrics. These metrics can represent any quantitative knowledge about
components, for example, likelihood, time, price, impact, or probability distri-
butions. The latter could describe behaviour of actors or timing distributions.
For the transformation described in this article these metrics are irrelevant, but
they can be evaluated on the generated attack trees.

Containment. Items as described above are an important concept in our ab-
stract model, since they can represent containment. Containment represents for
example the fact that a workstation contains a harddrive that contains a file. In
the model underlying our transformations we would represent the workstation
as an item with a location; this location in turn would contain an item repre-
senting the harddrive; this item’s location would contain data representing the
(intangible) file.

We interpret containment as being transitive: if item a contains item b, and
item b contains the data d, then we say a contains d transitively, and b contains
d directly.

2.2 Graphical Attack Model

Attack trees [1, 2] are widely used by various security analysis techniques; they
support an easily accessible tree-like structure that can be visualised and under-
stood by non-experts. At the same time, they can be subjected to formal analysis
and structured treatment due to their tree-structure. Even though standard at-
tack trees represent sub-goals that must be completed in a specific sequence,
they have a hierarchical structure: the root node represents the attacker’s goal,
which is further refined by defining sub-goals. As mentioned above, the sub-goals
can be represented as sub-trees in the overall attack tree, where sub-trees, i.e.,
sub-goals, are combined conjunctively or disjunctively.

We do not require any further properties for the target of our transformations.
In principle the transformation could embed additional information into the
attack tree; for example, we currently assume an implicit left to right order in
sub-goals of conjunctive nodes.

2.3 Running Example

The running example in this paper is based on a case study in the TRESPASS
project [6] based on an actor Alice, who receives some kind of service, e.g.,
care-taking, provided by an actor Charlie. Charlie’s employer has a company
policy that forbids him to accept money from Alice. Figure 1 shows a graphical
representation of the example scenario, consisting of Alice’s home, a bank with
an ATM, and a bank computer. Alice owns a card and a concomitant pin code
to obtain money from an ATM, and a password to initiate transfers from her
workstation via the bank computer. Some of the nodes are labelled with policies
in dashed boxes; for example the money at the ATM requires a card with a pin
code, as well as that very pin code in order to obtain money (modelled as input).

Figure 1 shows a graphical representation of the model of our running ex-
ample. The locations, represented by small rectangles, are connected through
directed edges. Actors are represented as rectangles with a location, e.g., Alice
is at home and Charlie is in the city. Both actor nodes and location nodes can
contain data and items represented as circles. In our example, Alice has a card
that contains a pin code and Alice also has (knows) the pin code for her card.
Actor nodes can also represent processes running on the corresponding locations.
The processes at the workstation and the bank computer represent the required
functionality for transferring money; they initiate transfers from Alice’s home
(PWS), and check credentials for transfers (PC).

processes network actorsworld

Pc

Bank

City

Door

trustedby(Alice): move
Home

Computer C
WS: out

account

number,
34567 pwd,313 cash,

100

C: out(“transfer”, number, pwd, amount)
C: out(“deposit”, number, amount)

Charlie

card

pin,
96

pin,
96

owner,
Charlie

Alice
pin,
42

pwd,
313

card
pin,
42

owner,
Alice

Paccount

ATM A1

safe

cash,
1000

card[(pin,X)],(pin,X) : in

Pws

Workstation WS
Alice: out

harddrive
pwd,
313

Fig. 1. Graphical representation of the example system. The white rectangles represent
locations or items, the gray rectangles represent processes and actors; actors contain
the items or data owned by the actor. The round nodes represent data. Solid lines
represent the physical connections between locations, and dotted lines represent the
present location of actors and processes. The dashed rectangles in the upper right part
of some nodes represent the policies assigned to these nodes.

3 Transforming Models without Asset Mobility

The class of attacks we generate from graphical system models address attackers
trying to reach a certain location or to obtain an asset. We mainly deal with
confidentiality and integrity properties. We are currently working on extending
this class to include attacks that aim at, e.g., starting a process as part of
a distributed denial-of-service attack. We expect to be able to generate these
attacks with similar transformations. In this section we consider assets in the
modelled organisation to be immobile. This restriction, which will be lifted in
the next section, simplifies the first presentation of transformations.

Attack generation assumes an asset in the system, which an attacker should
not be able to obtain. For every possible actor in the system, the goal of the
transformation is then to generate an attack that results in the actor having
obtained this asset. The overall transformation is a generalised version of policy
invalidation [10,11]:

1. Starting from the goal asset and the attacking actor,
2. the transformation identifies all paths to the asset,
3. and for every path, identifies the credentials that the actor is lacking;

l1

loc attacker

l

ln. . .
pass pn

goto l

goto l

pass p1

goto l1 goto l goto ln

. . .

Fig. 2. Transforming a location. Any credential ci that the attacker is lacking is ob-
tained before performing action a at the location loc.

4. for each missing credential, a new transformation is started recursively;

5. after obtaining all necessary credentials, the actor can reach the location of
the goal asset, and perform an action to obtain it.

In the following, we present for each of the model elements discussed in the
previous section, how they are transformed into an attack representation. For
each transformation we show the part of the system model that triggers the
translation as well as the generated part of the attack model. For the system
models we use the same graphical representation as shown in Section 2.3 and Fig-
ure 1. For attack models we use a special notation that represents parts of the
attack as circles, and invocations of the transformation as rectangles.

3.1 Locations

A location is transformed into a disjunction of all possible paths from the lo-
cations already reached by the attacker to the location in question. Whenever
traversing a path requires new credentials due to some policy, we recursively
invoke the attack transformation, which ensures that the attacker obtains the
necessary credentials to pass the path.

loc
{c1 … cn}: a

get credentials
& perform a

get
credentials

perform a
at loc

get c1 get cn. . .

Fig. 3. Transforming a policy. If the attacker lacks any credential to perform action a
at the location loc, the transformation creates an attack that obtains that credential.

The transformation pattern is shown in Figure 2. For every possible path
we first generate one step to the first node of the path, followed by a recursive
invocation of the transformation for going to the target location.

3.2 Policies

If the transformation at any point needs to create an action that is prohibited by
a policy, for which the attacker does not have all credentials, a new transforma-
tion is started to obtain this credential, resulting in a new attack representation.
The transformation pattern is shown in Figure 3.

As mentioned above, many system models support predicates as credentials,
for example, to express that the actor must possess a certain attribute. In the
example shown in Figure 1, an actor must be trusted by Alice in order to be
allowed to move to the location Door. Often, such a predicate is not a credential
that can be obtained, as for trust. In this case, the transformation generates a
social engineering action to “obtain” the predicate in question.

The variables in policies can be factored out before performing this trans-
formation by identifying all sets of assets that fullfil a policy. For the example
shown in Figure 1 and the location ATM, the possible sets of assets are the card
and the pin at Alice or at Charlie.

In the following we assume that the transformation generates all necessary
steps for obtaining assets before performing the transformations described. In
the resulting attack representation, the root node of the attack representation
for obtaining the necessary credentials will be to the left of the root node for
performing the following actions, expressing an ordering as described above.

3.3 Data

Data represents intangible assets, such as passwords or pins. For obtaining data,
a conjunction is generated where the first element is to reach the location of the
data. Once the attacker has reached a location that contains the goal data, an
action in the attack representation will be generated that depends on the kind
of location that contains the data:

– If the data is contained in a location, then a simple in action will be gener-
ated; or

– If the data is contained at an actor, then a social engineering action will be
generated.

If the goal data is contained in an item i, the transformation generates the
conjunction of several actions:

– Obtain the item and then obtain the data from the item; or
– Obtain the data from the item directly.

The difference between the two options is that the first option represents the
case that the attacker obtains the containing item itself and then obtains the

l1 X ln X. . .
get X

get X at lnget X at l1 . . .

Fig. 4. Items and data may be available from different locations. For each of these
locations, the transformation generates a separate attack path to obtain the asset. The
transformation will generate attacks to obtain all necessary credentials, and then input
the asset.

loc X
{credentials}: a

get X at l

goto loc get credentials
& input X at loc

Fig. 5. To obtain an asset from a location, the transformation generates the necessary
attack to go to the asset’s location, then obtains the credentials, and finally performs
the necessary in action.

data, while the second option represents the case that the attacker removes the
data or item in place.

For the example of the workstation mentioned before this would mean that
the attacker either steals the harddrive containing the file, or that he extracts
the file from the harddrive.

3.4 Items

Items represent tangible assets, such as the aforementioned workstation, hard-
disk, or an access card. Just as for data, we generate a conjunction that first
contains a node that represents reaching the location of an item. Once the at-
tacker has reached a location that contains the goal item, an action in the attack
representation will be generated that depends on the kind of location that con-
tains the item:

– If the item is contained in a location, then a simple in action will be gener-
ated;

– If the item is contained at an actor, then a disjunction of a social engineer-
ing action or an in action will be generated, where the latter represents an
attempt of stealing the item.

If the goal item is contained in another item, the transformation generates the
conjunction of several actions:

– Obtain the item and then obtain the goal item from the item; or

loc X
{credentials}: a

input X at loc

in X at loc

Fig. 6. To obtain an asset that is directly contained at a location, the transformation
simply generates an in action. Note that the necessary credentials have been obtained
before invoking this transformation.

loc
{credentials}: a

item X
input X at loc

in item at loc
get credentials

&
input X at item

input X at loc

get credentials
&

input X at item

Fig. 7. To obtain an asset that is transitively contained at a location, the transfor-
mation first obtains the item containing the asset and then recursively invokes the
transformation.

actorX

input X
at actor

in X at loc SE actor in X

Fig. 8. Obtaining an asset from an actor is almost the same as for locations; the only
difference is that assets can be obtained by social engineering. The transformation
generates a special social engineering action, which is not further defined. Refining this
action depends on the context of the action such as, e.g., the involved actors; this is
left to later phases that consume the generated attack.

– Obtain the goal item from the item directly.

The difference between the two options in the generated disjunctions is that the
first option represents the case that the attacker obtains the containing item
itself, while the second option represents the case that the attacker removes the
data or item in place.

For the example of the workstation mentioned before this would mean that
the attacker either steals the workstation containing the harddrive, or that he
extracts the harddrive from the workstation.

get cash

get cash
at ATM

goto ATM get card[(pin,X)], (pin,X)
& input cash at ATM

get Charlie’s credentials
and perform action

input cash
at ATM

in cash
at ATM

get Alice’s credentials
and perform action

get
credentials

get
card

get
pin

goto Home

goto Door &
get trust

SE Alice
move Door move Door

move Home

perform in
at Alice

in card
at Alice

SE Alice
in Card

goto Home

goto Door &
get trust

SE Alice
move Door move Door

move Home

perform in
at Alice

SE Alice
in Pin

get
card

perform in
at Alice

in card
at Alice

SE Alice
in Card

in pin
at card

input cash
at ATM

in cash
at ATM

Fig. 9. Result of transforming the example from Figure 1 using cash as the goal asset
and Charlie as an attacker.

3.5 Triggering the Transformation

In general the transformation will be triggered by a certain asset being off-
limit for an attacker. The transformation iterates over a specified set of actors
available in the system model, and generates for each of these actors all possible
attacks for how they can obtain the asset. The triggering transformation for an

asset X is get X . While transforming the system model into an attack model,

the transformation keeps track of the attacker, the location reached, and the
assets obtained. The attacker may already possess assets before starting the
transformation; this is specified in the system model.

3.6 Transforming the Example

We will now sketch the transformation of the example system discussed in Sec-
tion 2.3 and shown in Figure 1. We assume that the goal asset of the attacker
is cash, which is available from locations ATM A1 and Computer. We will only
described data mobility in the next section, so for now we concentrate on the
“physical” cash available at the ATM location.

As discussed above, the transformation considers all possible actors and starts

with the get cash action, which in turn will result in a get cash at ATM

transformation (Figure 4). This results in a conjunction of going to the ATM,
getting the credentials, and inputting the asset at that location, since the goal
asset is directly contained in the ATM.

The credentials at the cash asset require a card with a matching pin. In the
example system, both Charlie and Alice own matching assets, so the transfor-
mation generates two possible attacks, one using Charlie’s card, another using
Alice’s card. Clearly, the first transformation result does not necessarily rep-
resent an attack; generating such unwanted artefacts can either prohibited by
restricting permissible actors in the policy,4 or it can be dealt with in later phases
that work on the generated attacks.

For the first possible attack, Charlie would use his own card and pin; this does
not require further credentials. For the second possible attack, Charlie needs to
obtain the pin and the card from Alice. Alice’s location is Home, and to pass
the path to this location, Charlie must fullfil the predicate trustedby(Alice). This
results in an action social engineer Alice move Door, which could in a later phase,
for example, be translated into a forceful entrance or pretending to be somebody
who Alice trusts or is likely to let in her home. Once the location Home has been
reached, Charlie has several options for obtaining the card and the pin:

– Social Engineer Alice to give him the card and the pin;

– Input card from Alice (stealing); and

– Input the pin from the card (skimming).

4 In this case, the owner of the card would not be allowed to be the actor performing
the action.

The generated attack takes account for all combinations hereof; some parts of
the tree can be pruned or simplified in a later phase similar to [4]. Once the card
and the pin have been obtained, Charlie moves to the location ATM and inputs
the asset cash.

The resulting attack model is shown in Figure 9. Not surprisingly, the trans-
formation result contains identical sub-trees due to identical assets to obtain or
identical patterns being transformed. Similar to the actions for obtaining items,
these could be simplified by a followup pass.

4 Adding Data Mobility

So far we have assumed assets to be at static locations. This assumption simplifies
both the transformations for attack generation and the structure of the generated
attacks; instead of having to consider all the locations that an asset can reach
by means of actors or processes, we only have to consider the locations where
data is available in the model. We now discuss how to loosen this restriction.

In Section 3.3 and Section 3.4 the transformations described assume that
the data is available from a number of locations in the model, either directly or
transitively. The main transformation starting the generation of sub-attacks is
shown in Figure 4. When adding data mobility, we are interested in which other
locations the assets are able to reach, either by means of processes (for virtual
assets) or by means of actors (for real-world assets).

The transformation for data mobility works reverse to the transformations we
have presented in the previous section. Before being able to generate an attack,
we need to perform three steps:

1. Identify who is able to move the asset;
2. Identify how to trigger the movement; and
3. Identify which locations the asset can reach.

The result of these steps is an attack that triggers the movement, and a set of
locations that the asset can reach; these locations can then be used as input to
the transformation shown in Figure 4.

The main task lies in identifying who can trigger the movement and how.
Beyond these steps, adding data mobility does not add to the transformation,
but to the complexity of the generated attack model.

5 Conclusion

In this article we have presented a systematic approach for transforming graphic
system models into graphical attack models. Graphical models in general have
the advantage of easing understanding by non-technical personelle. This is a
significant advantage especially when communicating the risk of attacks on an
organisation. While the techniques discussed in this work especially target IT
security attacks, the techniques are applicable to any kind of attacks and risks.

Especially the support for social engineering attacks, though only at a very
abstract level, enables handling of a wide class of attacks involving physical,
virtual, and social layers of organisations. As recent events have shown, this
class of attacks will become ever more important.

Our techniques help identifying and communicating attacks faced by organ-
isation by enhancing traditional risk assessment methods that often abstract
away the internal structure of an organisation and ignore human factors when
modelling and assessing attacks. The attacks we identify consider all relevant
system components, including elements of human behaviour, and can be used as
input to a traditional risk assessment process.

Our approach is generally applicable to graphical system models and graph-
ical attack models; examples for instances of such models include system mod-
els, e.g., ExASyM [7] and Portunes [8], and attack models such as attack trees
and attack-defence trees [1, 2].

As discussed in Section 3, we are currently working on extending the class
of generated attacks to include attacks that aim at, e.g., starting a process as
part of a distributed denial-of-service attack. Another extension of our approach
aims at considering the environment in which the system under attack is used.
This environment influences, e.g., the value of data or assets, either for the
organisation or the attacker. Finally, we are exploring the relation of our ap-
proach to transformations of UMLsec models to sequence diagrams representing
attacks [14].

Acknowledgment

Part of the research leading to these results has received funding from the Eu-
ropean Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 318003 (TRESPASS). This publication reflects only the authors’
views and the Union is not liable for any use that may be made of the information
contained herein.

References

1. Schneier, B.: Attack Trees: Modeling Security Threats. Dr. Dobb’s Journal of
Software Tools 24(12) (1999) 21–29

2. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: Don’t miss the forest for the attack trees. Computer Science Review
13-14 (2014) 1 – 38

3. Pinchinat, S., Acher, M., Vojtisek, D.: Towards synthesis of attack trees for sup-
porting computer-aided risk analysis. In Canal, C., Idani, A., eds.: Software Engi-
neering and Formal Methods. Volume 8938 of Lecture Notes in Computer Science.
Springer International Publishing (2015) 363–375

4. Vigo, R., Nielson, F., Nielson, H.R.: Automated generation of attack trees. In:
Proceedings of the 27th Computer Security Foundations Symposium (CSF), IEEE
(2014) 337–350

5. Hong, J.B., Kim, D.S., Takaoka, T.: Scalable attack representation model us-
ing logic reduction techniques. In: Proceedings of the 12th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), 2013. (July 2013) 404–411

6. The TRESPASS Consortium: Project web page. Available at http://www.

trespass-project.eu

7. Probst, C.W., Hansen, R.R.: An extensible analysable system model. Information
Security Technical Report 13(4) (November 2008) 235–246

8. Dimkov, T., Pieters, W., Hartel, P.: Portunes: Representing attack scenarios span-
ning through the physical, digital and social domain. In Armando, A., Lowe, G.,
eds.: Automated Reasoning for Security Protocol Analysis and Issues in the Theory
of Security. Volume 6186 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2010) 112–129

9. Probst, C.W., Hansen, R.R., Nielson, F.: Where can an insider attack? In Dim-
itrakos, T., Martinelli, F., Ryan, P.Y., Schneider, S., eds.: Formal Aspects in Se-
curity and Trust. Volume 4691 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2007) 127–142

10. Kammüller, F., Probst, C.W.: Invalidating policies using structural information.
In: Proceedings of the 2nd International IEEE Workshop on Research on Insider
Threats (WRIT’13), IEEE (2013) Co-located with IEEE CS Security and Privacy
2013.

11. Kammüller, F., Probst, C.W.: Combining generated data models with formal
invalidation for insider threat analysis. In: Proceedings of the 3rd International
IEEE Workshop on Research on Insider Threats (WRIT’14), IEEE (2014) Co-
located with IEEE CS Security and Privacy 2014.

12. de Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering 24(5) (May
1998) 315–330

13. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In
Focardi, R., Myers, A., eds.: Principles of Security and Trust. Volume 9036 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg (2015) 95–114

14. Jürjens, J., Wimmel, G.: Security modelling for electronic commerce: The com-
mon electronic purse specifications. In: Towards The E-Society: E-Commerce,
E-Business, and E-Government, The First IFIP Conference on E-Commerce, E-
Business, E-Government (I3E 2001). (2001) 489–505

http://www.trespass-project.eu
http://www.trespass-project.eu

	Transforming graphical system modelsto graphical attack models

