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Abstract. In this chapter we propose a novel approach for real-time
robust pedestrian tracking in surveillance images. Typical surveillance
images are challenging to analyse since the overall image quality is low
(e.g. low resolution and high compression). Furthermore often birds-eye
viewpoint wide-angle lenses are used to achieve maximum coverage with
a minimal amount of cameras. These specific viewpoints make it unfeasi-
ble to directly apply existing pedestrian detection techniques. Moreover,
real-time processing speeds are required. To overcome these problems we
introduce a pedestrian detection and tracking framework which exploits
and integrates these scene constraints to achieve high accuracy results.
We performed extensive experiments on publically available challenging
real-life video sequences concerning both speed and accuracy. Our ap-
proach achieves excellent accuracy results while still meeting the strin-
gent real-time demands needed for these surveillance applications, using
only a single-core CPU implementation.
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sion, Real-time

1 INTRODUCTION

Reliable pedestrian detection and tracking in surveillance images opens up a wide
variety of applications (e.g. abnormal behaviour detection, path prediction, in-
truder detection, people safety on e.g. movable bridges and crowd counting). In
recent years, tremendous advances concerning pedestrian detection were pub-
lished. Current state-of-the-art detectors achieve excellent accuracy results on
publicly available datasets (see section 2). Unfortunately, directly applying these
existing techniques on challenging surveillance images is not a trivial task. This
is due to the inherent nature of these surveillance applications; often a large num-
ber of cameras are utilised since large areas need to be covered completely. Such
scenarios impose severe constraints on the hardware: low-cost cameras are em-
ployed with wide-angle lenses, mounted high in a partly down-looking birds-eye
view. Consequently image processing and analysis on these images is challenging.

Indeed, typical surveillance images are often captured at low-resolution and
use high compression. Classic background subtraction based object detection
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methods yield very noisy results at these high compression ratios. Moreover,
these techniques do not differentiate between people and other objects. Due to
their specific viewpoint (and wide-angle lens) standard pedestrian detectors -
which are trained and evaluated on forward-looking images - are also unable to
give accurate detection results on these images. Additionally, due to perspective
effects some pedestrians to be detected appear very small in the image, which
remains one of the most challenging tasks for current pedestrian detectors [15].
Furthermore, real-time processing speeds are required. In this chapter we pro-

Fig. 1. Example frame of one of the sequences of the CAVIAR dataset [8]

pose a flexible and fast pedestrian detection and tracking framework specifi-
cally addressing these challenging surveillance images. See figure 1 for a typical
example frame of the publicly available surveillance dataset we used [8]. Our
approach achieves excellent accuracy results at real-time processing speeds. We
overcome the above mentioned challenges by the integration of three modali-
ties: foreground segmentation approaches, the exploitation of scene constraints
and an accurate pedestrian detector. This is done as follows. First, candidate
regions in the image are generated. Using a calibrated scene distortion model,
an early rejection of false patches is achieved. Next the candidate regions are
warped to a standard viewing angle and used as input for a state-of-the-art
pedestrian detector. As explained in section 3 our approach allows for the use of
a highly accurate pedestrian detector which would otherwise be too computation-
ally intensive for real-time applications. Finally, the detections are employed in
a tracking-by-detection approach to further increase the accuracy. Note that, us-
ing our approach the actual scene calibration is trivial and easily performed. We
demonstrate the effectiveness of our approach on challenging surveillance video
sequences, and present extensive accuracy and speed results. Our approach is
generalisable to other object classes. The remainder of this chapter is structured
as follows. In section 2 we discuss related work on this topic, and distinguish our
approach from existing work. Section 3 presents our framework in detail. Next
we propose experimental results on challenging sequences in section 4. Finally,
in section 5 we conclude our work and give final remarks on future work.
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2 RELATED WORK

Pedestrian detection and tracking in general is a very active research topic. [10]
initially proposed the use of Histograms of Oriented Gradients (HOG) for pedes-
trian detection. Their insights paved the way for numerous derived approaches;
even today most state-of-the-art pedestrian detectors still rely on HOG features
albeit in a more subtle manner (e.g. in combination with other features). A well-
known example is the work of [17]. As opposed to the rigid model introduced by
Dalal and Triggs they propose the inclusion of parts (representing e.g. the limbs
or head of a pedestrian) to increase detection accuracy, coined the Deformable

Part Models (DPM). In later work the authors tackled the inevitable increase in
computational complexity by introducing a cascaded approach in which a fast
rejection of negative detection windows is possible [16]. An extension was pro-
posed using grammar models to cope with partial occlusion [19]. [21] published
a new and fast training methodology for DPM models. As opposed to enriching
the model with parts, [13] introduced the use of a rigid model with additional
features, called Channel Features (ChnFtrs).

All previously mentioned approaches employ a sliding window paradigm:
to cope with scale variations a scale-space feature pyramid is calculated and
each layer is evaluated at each location. To speedup detection [12] proposed an
approach which approximates features nearby to avoid a full feature pyramid
calculation. Several other techniques have been proposed to speedup detection:
using model scaling in stead of image scaling, GPU implementations [2] and
search space minimisation techniques [1, 9, 27]. For several years, the DPM ap-
proaches remained among the top performing methods [14, 15]. However, the
need of parts for pedestrian detection remains unclear [4]. Indeed, recent work
on optimised rigid models - e.g. Roerei [3] and ACF [11] - in fact outperform
the DPM detectors.

In [18] the authors present the use of convolutional neural networks (R-CNN)
for object detection, achieving unprecedented state-of-the-art accuracy results.
This methodology existed for a long time, but its applicability to image classifi-
cation tasks was highlighted by the work of [23]. Interestingly, their method steps
away from the traditional sliding window approach, and utilises region proposals
as input for the deep learning classifiers. Although currently not real-time, their
framework is able to classify a large variety of classes simultaneously, making it
ideal for large image database retrieval applications such as ImageNetimage [30].
Recently [20] presented a hybrid approach combining DPMs with CNNs, called
DeepPyramid DPM.

Several pedestrian tracking algorithms exist. Due to recent advances in ob-
ject detection techniques, tracking-by-detection has become increasingly popu-
lar. There, an object detector is combined with a reliable tracking algorithm
(e.g. particle filtering); see for example [7]. Concerning existing work on pedes-
trian tracking in surveillance images many either operate on standard viewpoint
and/or high-resolution images [6, 31], or employ thermal cameras to facilitate
segmentation to reduce the search area [24].
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In previous work we presented a real-time pedestrian detection framework for
similar viewpoint images which are captured with a blind-spot camera mounted
on a real truck [32]. These images are - apart from the viewpoint - challenging
since the camera is moving. However, in this work we can fully exploit and
integrate foreground segmentation methods to increase both accuracy and speed.
Furthermore, we work with images captured from genuine surveillance cameras.
These images are of low-resolution, low-quality and, due to the use of wide-angle
lenses show large amounts of distortion and contain non-trivial viewpoints.

Existing work on the same dataset either employs clustering algorithms with
GPU optimisation [25], or focusses on motion analysis by matching trained sil-
houette models [28]. We differ significantly from these previous works: we devel-
oped an accurate tracking framework in which we can employ a highly accurate
pedestrian detector on these challenging images, and thus perform much better
than existing methods. We achieve real-time processing speeds on a single-core
CPU implementation. Our approach easily lends itself for multi-threaded imple-
mentation if higher computational speeds are needed.

3 ALGORITHM OVERVIEW

Running standard pedestrian detectors such as the Deformable Part Models on
surveillance images as shown in figure 1 is unfeasible. Current pedestrian detec-
tors are only trained on upright pedestrians at a fixed height. Scale invariance is
achieved using a scale-space pyramid. Thus in order to achieve decent detections
on these surveillance images the detectors ought to run on multiple rotations
and scales of the same surveillance image, using both dense rotation and scale
steps. Evaluating the total 4D rotation-scale search space in real-time evidently
is impossible. Nonetheless, the use of a pedestrian detector could significantly
increase the accuracy, as opposed to standard techniques which only rely on e.g.
background subtraction with blob analysis due to time constraints. Therefore,
to overcome these challenges we propose the integration of a foreground segmen-
tation approach with a scene model and a highly accurate pedestrian detector.
Our approach allows for the detection of pedestrians in challenging viewpoints
(e.g. rotated) under large lens distortion at low computational complexity, with
very high accuracy. To retrieve the scene model, a simple one-time calibration
procedure is performed, no explicit lens or camera calibration is needed. Our al-
gorithm briefly works as follows. As seen in figure 1, pedestrians appear rotated
and scaled based on their position in the image. We exploit this scene knowledge
throughout our detection and tracking pipeline. For each input image, after a pre-
liminary segmentation, we generate region proposals which potentially contain
pedestrians. The scene model is used to reduce the number of region proposals.
Next, based on the position in the image we warp each valid potential region
to an upright and fixed-height image patch. These patches are given as input
to a state-of-the-art pedestrian detector, which evaluates a pedestrian model
on a single scale only. This is the key advantage of our work: since only one
scale and position needs to be evaluated we can use a highly accurate pedes-
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trian detector which would otherwise be too time-consuming. Furthermore this
approach allows for the detection of extremely small pedestrians, if the detec-
tion model is powerful enough. The detections are retransformed to the original
input image, and employed in a tracking-by-detection framework to associate
pedestrian tracks and handle missing detections. Since each region can be eval-
uated independently, a fast multi-threaded implementation of this approach is
trivial. Figure 2 shows an overview of our approach. In the next subsections
we describe further details of each step in our pipeline, and motivate important
design choices.

Fig. 2. Overview of our detection pipeline. After a first foreground segmentation step
we extract region proposals which potentially contain pedestrians. Each region is
warped to an upright fixed-height patch. Next, a highly accurate pedestrian detector
is evaluated at a single scale. Finally, the detections are retransformed and tracked.

3.1 Foreground segmentation

First we perform a foreground segmentation step to identify moving regions
in the static camera images. Several segmentation approaches are applicable
ranging from basic background subtraction methods to more advanced motion
estimation methods. Since we employ scene constraints further on to reduce the
number of region proposals, our approach allows for the use of a coarse seg-
mentation. For this step we thus prefer low computational complexity over high
accuracy, excluding time-consuming techniques (e.g. optical flow). Hence, we
rely on background estimation techniques, which generate a statistical model of
the scene. Several popular methods exist. Since a comprehensive comparison of
these techniques is out of the scope of this work, we refer to [5] and [26] for a
detailed overview. Concerning background subtraction, the main challenges in
typical surveillance images arise from changing lightning conditions and cam-
era shake. Based on these comparative works we opted for the method of [33],
which employs Gaussian Mixture Models (GMM). These methods haven proven
to cope well with (limited) background motion. Their proposed method is an
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extension of the original GMM where the number of Gaussian components per
pixel is automatically selected. This effectively reduces memory requirements
and increases the computation speed, making it ideal for this application. A
qualitative segmentation output example is shown in the overview figure (fig. 2).

3.2 Modelling scene constraints

As previously mentioned, the pedestrians in the surveillance images appear ro-
tated and scaled. Since the position of the surveillance camera is fixed with
respect to the ground plane both parameters only depend on the position in
the image. If we know the rotation and average pedestrian height for each pixel
position x = [x, y] we can exploit this scene knowledge to achieve fast and ac-
curate pedestrian detection, similar to [32]. During the generation of the region
proposals this information can be used to reject regions which diverge too much
from the expected region properties, thus limiting the search regions. For each
valid proposed region, we use the transformation parameters to warp each patch
to an upright, fixed-scale image patch, allowing the use of an accurate pedestrian
detector whilst being real-time. To retrieve these transformation parameters a

Fig. 3. A one-time calibration step is needed. The transformation parameters are ex-
tracted from the annotations.

one-time offline calibration needs to be performed (see figure 3). However, the
scene calibration as proposed here is easy to perform and trivial. For this, we
extracted the rotation and height of each annotated pedestrian from the dataset,
giving the scale and rotation for that specific point. Next we interpolated the
datapoints using a second order 2D polynomial function fi(x) for both parame-
ters:

fi(x) = p0 + p1x+ p2y + p3x
2 + p4xy + p5y

2 (1)

Both fscale(x) and frotation(x) are used as Lookup functions (LUFs): at each
position in the image they define the expected region properties and transfor-
mation parameters.



Pedestrian detection and tracking in challenging surveillance videos 7

Fig. 4. Our region proposals pipeline. After foreground segmentation and noise removal
a first blob elimination is performed. Next we perform region growing using a distance
transform. Finally, we determine the optimal search points.

3.3 Generation of region proposals

In a next step we refine the segmentation and generate region proposals which
need to be warped and evaluated using our single-scale pedestrian detector. Since
we employ a pedestrian detector in the next stage to validate each region we are
allowed to propose more regions than needed, i.e. regions without pedestrians.
An accurate detector should indeed negatively classify such patches. However, it
is important to early reject false patches, since they lead to useless computations
and lower processing speeds. This stage thus tries to balance between optimal
accuracy and speed, generating an optimal amount of search locations. Figure 4
gives an overview of our region proposal calculation. Let us now discuss each
consecutive step in this pipeline.

First elimination. As a preprocessing step, we first eliminate noise in the
segmentation which remained after the background subtraction step (due to e.g.
changing lightning conditions). This is simply done using morphological open-

ing. Next, we perform a connected component analysis (using 8-connectivity),
and test the local scene model for each blob. That is, we construct a bounding
box of the expected scale and rotation around the centroid of each blob. We
reject two types of regions: extremely small ones (25 pixels or less) due to the
high SNR there (drawn in magenta in the second step of figure 4), and those
that diverge from an area constraint (drawn in red). For this constraint, we re-
quire that the area of the connected component should be larger than a minimal
percentage of the expected area (15%). This step eliminates most invalid regions.

Region growing. In the case of insufficient contrast, the foreground seg-
mentation performs suboptimal (i.e. tends to split a valid pedestrian in multiple
blobs, as seen for the largest pedestrian in figure 4). For each remaining valid
region we therefore perform region growing based on the Euclidean distance
transform, joining regions nearby. This has a second advantage: multiple pedes-
trians which are nearby are joined into a single detection region, even if one of
them was removed after the first elimination. This is also illustrated in figure 4:
after the first elimination only one of both small pedestrians is maintained. How-
ever, after region growing both are connected.
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Defining search points. Finally, we define exact search locations where
the pedestrian detector will be applied. This is done as follows. Each remaining
region is again verified against the scene constraints since, due to the previous
step, these regions could have grown significantly. This is the case when multiple
(possibly previously invalid) regions are joined. Note that we do not reject re-
gions at this stage. We locally evaluate each region and use the expected height
and rotation to estimate the number of possible pedestrians. Based on the size of
the region we first evaluate if multiple search points are necessary for this region.
If so, we define a linear grid over the entire region of which the step size depends
on the ratio of the expected and actual region parameters, and eliminate grid
points which are located outside the segmented region.

The final region proposals are visualised as the green rectangles shown in
the rightmost image in figure 4. As seen, our regions accurately predict possible
pedestrians in the image. This is the power of this approach: by combining
foreground segmentation and scene model constraints the search space for the
computationally expensive pedestrian detector can be enormously restricted.
Slight deviations from the exact pedestrian position are allowed since we employ
a sliding-window approach in the final warped patch.

3.4 Warping patches

Our scene model has another advantage: for each image location we know how
a pedestrian is locally distorted. Each region proposal is warped to an upright
pedestrian at a fixed-scale. Using this approach we are able to accurately detect
even rotated and extremely small pedestrians, using a single-scale pedestrian
detector only. The region proposals I are warped such that Iwarp = TI where
transformation matrix T simply consists of a Euclidean transformation of which
the parameters are extracted from the LUFs:

T =





s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1



 (2)

Note that the optimal scale to which the patches are warped highly depends
on which pedestrian detector is used. This is dicussed in the next section, where
we motivate the choice of pedestrian detector and determine the optimal scale.

3.5 Pedestrian detector

The warped image patches are now classified by a pedestrian detector. In fact, the
method described in the previous sections is generic and can be combined with
each existing pedestrian detection algorithm. As discussed in section 2, recent R-
CNN based detection methods currently achieve top accuracy results concerning
object detection in general. However, their performance is far from real-time, and
they are more suited for multi-class large database retrieval tasks. Rigid pedes-
trian detectors (such as ChnFtrs) currently offer the best trade-off between speed
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and accuracy when a full-scale space pyramid needs to be constructed. However,
since we need to evaluate a single scale only, no scale-space pyramid needs to be
constructed. Therefore we are able to use an accurate pedestrian detector which
would otherwise be too time-consuming, such as the Deformable Part Models.
Moreover, since a rigid model does not allow for any deformation, using it in our
single-scale approach is even unfeasible in a direct manner. Since natural slight
height variations exist between pedestrians (and due to small calibration errors),
the detection accuracy significantly drops when using these models on a single-
scale. Given this information, we opted to use the cascaded DPM model [16].
When used out-of-the-box this detector works as follows. First a scale-space pyra-
mid is constructed in which for each layer HOG features are calculated resulting
in a feature pyramid. Next, this pyramid is evaluated using a sliding window
with the pedestrian model shown in figure 5. A pedestrian is represented as a

Fig. 5. Pedestrian model used in our implementation. (L) Root model. (M) Different
parts. (R) Deformation costs.

root model (left), several parts representing e.g. the limbs and head which are
calculated at twice the resolution of the root model (middle), and a deformation
cost which penalises large deviations from the expected part locations (right).
The responses of both root filter and part filters are summed to give a final de-
tection score. We altered this detector into a single-scale only implementation,
and performed experiments to simultaneously determine the optimal scale fac-
tor to which the region proposals need to be warped, and the optimal detection
threshold. This is done as follows. We extracted about 6000 annotated pedes-
trians from the CAVIAR dataset and warped them to different scales (heights).
Combined with 6000 negative patches we calculated the accuracy in function of
the height and detection score threshold. The results are shown in figure 6.

As can be seen, at low resolutions the accuracy drops significantly, since only
very limited spatial information is available. At high resolution similar behaviour
is seen, since the pedestrians mismatch the detection model. Concerning the
detection threshold, the detection accuracy is low at both high values (high false
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Fig. 6. The accuracy versus the pedestrian height and detection threshold for the
single-scale cascaded DPM detector.

negative rate) and low values (high false positive rate). Figure 7 displays the
optimal threshold slice extracted from figure 6. The accuracy is almost constant
between 130-170 pixels. However, at larger pedestrian heights the detection time
significantly increases. We therefore used 140 pixels as our optimal rescale height
to which the region proposals will be warped such that a one-scale pedestrian
model can be directly applied.

3.6 Tracking

The resulting detections are then retransformed to the input image coordinates.
Next a non-maxima suppression step is performed, in which overlapping detec-
tions are filtered; only the highest scoring detection is kept. To link detections
over multiple frames and to cope with occasional missing detections we inte-
grate our approach in a tracking-by-detection framework. For this we employ
the well-know Kalman filter [22]. For each new detection, a Kalman filter is
initialised. We employ a constant velocity motion model. The state vector xk

thus consists of the centre of mass of each detection, the velocity and the scale:

xk =
[

x y vx vy
]T

. Our process matrix A thus equals:

A =









1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









(3)

Using this motion model we predict the position of the pedestrians in the next
frame. When a new frame is processed, we try to match each running tracker with
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Fig. 7. The optimal threshold slice displaying the accuracy versus the pedestrian
height.

a new detection as follows. We construct a circular region - based on the scale
of that tracked detection - around the estimated new centroid. If the centroid
of a new detection is found within that region, the detection is associated with
this track, and the Kalman filter is updated. If multiple detections are found,
we take the closest one based on the Euclidean distance. If no detection can be
associated with a running track, we update the Kalman filter with its estimated
position. If this occurs for multiple frames in a row, the track is discarded.
For detections without an associated track, evidently a new Kalman filter is
instantiated. Furthermore the exact size of the bounding boxes are averaged
over multiple frames. See figure 8 for two qualitative tracking sequences of our
proposed algorithm.

Fig. 8. Qualitative tracking example on two of the evaluation sequences (top and bot-
tom row). See http://youtu.be/kWoKBPQoeQI for a video.
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4 EXPERIMENTS AND RESULTS

We performed extensive experiments concerning both speed and accuracy on
the publicly available CAVIAR dataset [8]. This dataset was recorded at the
entrance lobby of the INRIA labs with a wide-angle camera lens. The images are
taken with a resolution of 384×288 at 25 frames per second, and are compressed
using MPEG2. See figure 1 for an example frame. The dataset is divided into six
different scenarios: walk, browse, meet, leave bags, rest and fight. Each scenario
is again subdivided into multiple sequences, making a total of 28 sequences. We
used all sets for testing. Note that some sequences contain pedestrians which are
inherently undetectable with our proposed framework. For example, the fight

sequences include scenarios with people in specific fighting poses, and the rest

sequences contain scenarios where people fall on the floor or rest in e.g. chairs
thus violating our scene constraints. Table 1 gives a textual overview of each
scenario. For each scenario we give a difficulty measure, i.e. an indication of the
complexity of the sequences of each scenario. Easy scenarios are composed of
simple sequences with only few people and low interaction whereas difficult sce-
narios contain many occlusions and challenging poses. In total, our evaluation
set consists of about 26400 frames, containing about 36200 annotations. Our
algorithm is implemented in Matlab, with time-consuming parts (e.g. the de-
tection and transformation) in C and OpenCV (using mexopencv as interface).
Our test hardware consists of an Intel Xeon E5 CPU which runs at 3.1 GHz. All
speed test are performed on a single CPU core. However, a multi-threaded CPU
implementation to further increase the processing speed is trivial.

Table 1. Overview of the difference sequences of the CAVIAR dataset.

Scenario # frames difficulty comments

Walk 3045 easy Few people, low interaction.

Browse 6654 medium People browse at e.g. reception desk.

Leave bags 5839 medium Leaving objects behind.

Rest 4220 medium Resting on floor and in chairs.

Fight 2492 difficult People fighting. Difficult poses.

Meet 4123 difficult Group meetings, multiple occlusions.

4.1 Accuracy

Figure 9 displays the accuracy results of our algorithm, using precision-recall

curves. We give results for all scenarios mentioned above, ranging from easy
(e.g. walk - limited number of persons) through difficult (e.g. meet - multiple
persons with occlusions). For the sake of clarity we spread the accuracy results
of the six sequences over two separate plots, based on their difficult. The left
accuracy plot groups the easy and medium scenarios, the right plot gives the
accuracy results for the more difficult scenarios. We exclude small pedestrians
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Fig. 9. The accuracy of our algorithm over the CAVIAR dataset. Solid lines indicate
the results without tracking, dotted lines include tracking. The accuracy results for
the six scenarios are divided over two graphs based on their difficulty for the sake of
clarity. The black curve (All sets) indicates the average accuracy over all six scenarios.

from the annotations (smaller than 20 pixels), and remove annotations in the top
left corner of the image (on the balcony) and the bottom left corner of the image
(people behind the covered reception desk). Furthermore we discard annotations
close to the image border, since the pedestrians are not completely visible there
(the annotation is strict and already starts when part of a pedestrian enters
the frame). The solid lines in figure 9 indicate the accuracy without tracking,
whereas the dotted lines show the accuracy with tracking. The black curves on
both figures indicate the total average accuracy over the entire evaluation set (all
six scenarios). To indicate the difficulty, in figure 10 we display some extracted
annotations which are warped to an upright position. As can be seen, these low-
resolution output images contain severe compression artifacts. Even for humans
they are sometimes difficult to recognize as a pedestrian. However, we achieve
excellent accuracy results given these strict dataset annotations and challenging
nature of these images. As observed, on some difficult scenarios (e.g. Meet and
Rest) a lower accuracy is obtained. This is mainly due to two reasons: these

Fig. 10. Example of warped annotations. Low-resolution and high-compression arti-
facts are noticeable.
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sets contain many long-term occlusions and poses which a standard pedestrian
detector is unable to detect (e.g. sitting in a chair, lying on the floor). Since our
tracker handles missing detections, the accuracy significantly improves.

4.2 Speed

The exact calculation time depends on the number of region proposals per image.
Figure 11 therefore displays the speed of our algorithm (in frames per second),
versus the number of region proposals. Evidently, the processing speed decreases
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Fig. 11. The processing speed of our algorithm versus the number of region proposals.

when multiple region proposals need to be evaluated. However, even at e.g.
four region proposals we still achieve 17 fps. Over the entire evaluation set we
achieve an average of 32 frames per second, indicated with the dotted red line.
Note that all experimental results are performed on a single CPU core. In fact,
each region proposal can be evaluated independently, thus allowing for an easy
multi-threaded implementation. Figure 12 visualises the individual calculation
times for each important step in the entire algorithm pipeline, for a varying
number of region proposals. As visualised, generation of the region proposals
takes about 15-20ms. The warping operation is very fast: on average 1ms per
region proposal is needed. Concerning the pedestrian evaluation step, the average
feature calculation time per region is about 3ms whereas the model evaluation
takes 4ms. The time needed to retransform the coordinates is negligible.

4.3 Comparative evaluation

Figure 13 illustrates the accuracy improvement we achieved as compared to a ba-
sic background subtraction technique, i.e. interpreting the foreground blobs that
are large enough as pedestrians. As seen, on these challenging images these naive
methods yield poor results. The inclusion of our scene model and the application
of a state-of-the-art pedestrian detector raises the accuracy enormously.

A quantitative comparison with other work using precision-recall curves on
this dataset is difficult, since to the best of our knowledge no such accuracy
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Fig. 12. An overview of the calculation time for each step in the algorithm versus the
number of region proposals.

results similar to our work exist. Existing work on these specific sequences
of the CAVIAR dataset often focusses on activity recognition (e.g. fight) and
anomaly detection. However, [29] present accuracy experiments using tracking

failure measurements on 11 tracks of the CAVIAR dataset. For this, the authors
consider a track lost if the tracking failed for 20 frames or more. In their work
a multi-hypothesis tracking approach (particle filter) is used. They achieve a
tracking failure percentage of 33.64% with N = 20 particles and 16.82% when
N = 50. Using our approach we achieve a tracking failure of 9.1% on the same
sequences relying only on a single hypothesis tracker (Kalman filter). As a final
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Fig. 13. The obtained accuracy improvement compared to a naive background sub-
traction approach.
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qualitative analysis we compare our approach with a naive detection approach,
that is running the standard deformable part model detector on all scales and
all rotations. For this, we need to upscale the image five times (the smallest
pedestrian to be detected is only 25 pixels high, and the height of the detection
model equals 120 pixels), and use a rotation step size of 10 degrees. Using this
approach, the calculation time for a single frame increases to about 13 minutes.
Figure 14 displays the detections found using this naive approach (left), and the
output of our algorithm (right). As seen, the naive approach yields several false
positives and fails to detect all pedestrians. Our algorithm achieves excellent
accuracy results with minimal computational cost (89ms for this frame).

Fig. 14. Qualitative comparison between running a detector on all scales and rotations
(left) versus the output of our algorithm (right).

5 CONCLUSIONS AND FUTURE WORK

We presented a fast and accurate pedestrian detection and tracking frame-
work targeting challenging surveillance videos. Our proposed algorithm inte-
grates foreground segmentation methods with scene constraints to generate re-
gion proposals, which are then warped and evaluated by a single-scale pedes-
trian detector. Using this approach we can employ a highly accurate pedestrian
detector for non-trivial camera-viewpoint images where existing pedestrian de-
tectors fail, while still achieving real-time performance. We performed exten-
sive evaluation experiments concerning both accuracy and speed on the publicly
available CAVIAR dataset. This dataset consists of typical low-resolution high-
compression surveillance images taken with a wide-angle lens from a challenging
viewpoint. We show that our approach achieves both excellent accuracy and
processing speeds using a single-core CPU implementation only. Furthermore,
our proposed method easily lends itself for a multi-threaded implementation.

To improve the detection accuracy on very difficult scenarios (e.g. long-term
occlusions, people in chairs or people lying on the floor) several further opti-
misations are possible. To cope with challenging poses an upperbody detector
or an evaluation at multiple rotations could be employed. For this, the rotation
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should be included in the tracker. Additional features (e.g. color information)
could be used to enable person reidentification. Furthermore, the scene calibra-
tion currently is based on annotation data. In the future we plan to investigate
if an automated calibration method can be implemented (using e.g. an offline
exhaustive search over all scales and rotations).
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