
Chapter 1

Understanding the impact of constraints: a rank

based fitness function for evolutionary methods

Eric S. Fraga and Oluwamayowa Amusat

1.1 Introduction

Model based process design is often formulated as an optimisation problem. The

problem definition includes one or more objective functions and both equality and

inequality constraints. In process design, many of the constraints originate from un-

derlying physical laws. For instance, the temperature of a distillation plate at equi-

librium is described by Raoult’s Law, an equality constraint, or the amount of mass

in a vessel must be greater than 0, an inequality constraint. These constraints cannot

be violated if the design obtained is to be realisable physically.

However, there are other types of constraints. Some constraints are of the form

of

It would be great if the solution we obtained had this characteristic.

Examples include: the temperature of the room in the dwelling should be 20 ◦C;

the purity of this by-product should be at least 90%; the pressure changes should be

less than some amount specified; and so on. Constraints such as these can be refor-

mulated as objectives and then either incorporated into a single objective function

using a penalty term or the problem is transformed into a multi-objective problem.

The use of penalty terms (or weighted objective functions equivalently for multi-

objective formulations) is difficult due to the need to choose the penalty weights.

Defining the problem as a multi-objective optimisation problem and using multi-

objective solution methods is therefore more attractive.

There are many methods for multi-objective optimisation; see, for instance,

Coello Coello and Landa Becerra (2009) for a selected review, concentrating on
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evolutionary methods. Multi-objective optimisation methods will traditionally at-

tempt to generate a population of solutions that consist of non-dominated solutions

and therefore represent an approximation to the Pareto front (Pardalos et al, 2016),

assuming that they are able to identify globally optimal solutions (Törn and Z̆ilinskas,

1989). As such, in principle, any multi-objective method is suitable for tackling the

types of problems noted above. On the other hand, multi-objective problems that are

derived from relaxing a desirable constraint are subtly different from more general

multi-objective problems: the original single objective is somehow more important.

Therefore, it is desirable to have a multi-objective optimisation method that em-

phasises solutions that have more favourable values for that objective. The aim is

to provide the design engineer with insight into how the relaxation of the desirable

constraint affects the main objective function.

The aim of this chapter is to present a fitness function that provides the selection

pressure on population based evolutionary optimisation methods to generate solu-

tions with a preference for those that improve the main objective function but not

at the expense of ignoring the other objectives completely. We illustrate this fitness

function using a new multi-objective evolutionary method adapted from an existing

single objective plant propagation algorithm (Salhi and Fraga, 2011).

The novel multi-objective optimisation method is presented and is applied to the

problem of designing an integrated energy generation and storage system for off-

grid mining operations. Although the design objective is to minimise capital cost,

there is a requirement imposed to design the system so that it needs no fuel brought

in from off-site. This requirement is a desired property and in this chapter is treated

as a separate objective. The results presented show that a multi-objective approach

does provide for a better understanding of what is possible and hence what may be

desirable as the final solution.

1.2 A Multi-objective Rank Based Fitness Function for Pareto

Extremes

Consider the set of points shown in Fig. 1.1 which plots the points in the space of

objective function values for a bi-criteria problem. The assignment of fitness values

to these points can be done in a variety of ways. Typically, the non-dominated solu-

tions will all be given the same fitness value, the best fitness when compared with the

fitness assigned to dominated points. The dominated points will then be assigned fit-

ness values in different ways. One approach is to remove the non-dominated points

from the set, find the now non-dominated points and assign these all the same fit-

ness value, one that is worse than that assigned to the original non-dominated points.

Then repeat the same process until no points are left. An alternative is to assign a

fitness to the originally dominated points based on the distance of these points to

either an approximation to the Pareto front defined by the piecewise linear fit to

the non-dominated points or by the distance to the nearest non-dominated point

(Fiandaca et al, 2009). The aim of these fitness methods is to emphasise the non-
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dominated points and hence drive an evolutionary algorithm towards a good ap-

proximation to the Pareto front.

2 4 6 8

2

4

6

8

z1

z 2

Fig. 1.1 Simple scatter plot with non-dominated points indicated by blue squares and dominated

points by red triangles, assuming that the goal is to minimise both objectives, z1 and z2

Although the Pareto front is of interest, for the design problems described above,

we are particular interested in at least one of the end-points of this front. End-points

correspond to the solution of individual single criterion problems. We are interested

in these end-points because they correspond either to the original design criterion

or to one or other design constraints that we have relaxed to gain an understanding

of the impact of these criteria. Therefore, although the Pareto front as a whole is

of interest, the end-points are particularly relevant. We therefore wish to define a

fitness function that emphasises the end-points and hopefully drives the evolutionary

algorithm to improve these as much as possible but without sacrificing the Pareto

front completely. If the Pareto front were not of interest, we could simply solve a

set of single criterion problems.

To achieve the desired fitness values that emphasise not only the Pareto front but

especially the end-points of that front, we have defined a rank based fitness func-

tion which combines the ranks assigned to each point with respect to each criterion

individually:

f = 1−
I1⊙ I2⊙ . . .⊙ Inc

n
nc
p

where⊙ represents the element-wise or Hadamard product of two vectors. The vec-

tors I j, j = 1, . . . ,nc, each of length np, are the indices for each point of their position

when the points are sorted with respect to criterion j. If two or more points have the

same objective function value, they are implicitly coalesced prior to the assignment

of rank for that objective function and hence given the same ranking. The prod-
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uct of the individual rankings denotes the fitness fi ∈ [0,1) for i = 1, . . . ,np where

larger values indicate better fitness. np is the number of points and nc the number of

criteria.

Table 1.1 Points and their fitness for the illustration example in Fig. 1.1 sorted in decreasing order

according to the rank based fitness

z1 z2 I1 I2 I1⊙ I2 f

5 1 6 1 6 0.93

1 8 1 7 7 0.91

3 3 3 3 9 0.89

7 2 8 2 16 0.80

2 9 2 8 16 0.80

4 6 4 5 20 0.75

6 4 7 4 28 0.65

5 7 5 6 30 0.63

9 9 9 9 81 0.00

Table 1.1 illustrates the values of the various vectors for the points shown in

Fig. 1.1 sorted according to the fitness value assigned to the points. The best fitness

values are for the two extreme points, (5,1) and (1,8) with the next best point being

the remaining non-dominated point, (3,3).
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Fig. 1.2 The fitness of solutions along the Pareto front if all solutions are non-dominated. In the

plot, the solutions have been sorted according to the first objective function

In general, the largest fitness value achievable is

1−
1

n
nc
p
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which approaches 1 asymptotically as np→ ∞. This value can only be achieved if

one point dominates all the rest. The lowest fitness value is 0, illustrated in the table

by the last row, a point that is worst in both criteria. For a population that consists

solely of non-dominated points, the fitness along the Pareto front would start at a

maximum value and decrease until the middle point of the set is reached and would

then start increasing again. The maximum fitness achievable, in this case, will be

fmax = 1−
1

n
nc−1
p

and the minimum fitness

fmin = 1−
1

4n
nc−2
p

.

With nc = 2 and np = 100, fmax = 0.99 and fmin = 0.75. This is illustrated in Fig.

1.2.

1.3 A Multi-objective Plant Propagation Algorithm

The fitness function defined in the previous section could be used with most popula-

tion based evolutionary algorithms, such as a genetic algorithm. However, we have

had good experience with the Strawberry algorithm (Salhi and Fraga, 2011), an im-

plementation of a plant propagation nature inspired evolutionary method. Further

evidence of the power of this approach has been provided by Merrikh-Bayat (2015).

The Strawberry algorithm was originally implemented for single criterion opti-

misation so it has been extended here for multi-objective problems. This extended

algorithm is shown in Algorithm 1. The basic premise is that plants that are in a

good position (fertile soil, plenty of water) will reproduce with greater probability

but will tend to do so in the vicinity of where they are. Less often, plants which

are not well situated will reproduce through longer distance methods. In the Straw-

berry algorithm, both single and multiple objective versions, each member of the

population can generate a number of runners, proportional to that member’s fitness,

to define new points a distance away proportional to 1 minus the fitness, with all

values randomly chosen.

1.4 Case Study: Off-grid Energy Systems Design with

Renewable Energy

Mining operations often are located in geographically remote regions of the planet.

These operations are seldom connected to grid supplies of energy, either electrical

or fuel. As a result, the operations typically require transport of fuel, e.g. diesel,
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Algorithm 1 The Strawberry plant propagation algorithm (Salhi and Fraga, 2011)

extended for multi-objective optimisation

Given: f (x), a vector function; ng, number of generations to perform, np, the propagation size;

nr , maximum number of runners to propagate.

Output: z, vector approximation to Pareto front.

p← initial random population of size np

for ng generations do

prune population p, removing similar solutions

N← fitness(p) ⊲ Use rank based fitness

p̃← φ ⊲ Empty set

for i← 0 . . .np do

x← select(p,N) ⊲ Tournament fitness based selection

for each runner to generate do ⊲ Number proportional to fitness rounded up

x̃← new solution(x,1−N) ⊲ Distance inversely proportional to fitness

p̃← x̃∪ p̃ ⊲ Add to new population

end for

p← p\x ⊲ Remove from old population

end for

p← p̃∪ Nondominated(p) ⊲ New population with elitism

end for

z← Nondominated(p)

over large distances using trucks or equivalent. There is a desire to reduce the need

for the transport of fuel and one possibility is the use of local energy generation.

This local generation can be one of solar photovoltaic (PV), solar thermal or wind

turbines or a combination of these. Local generation may or may not have economic

benefits but such generation will usually have a positive environmental impact when

compared with transporting fuel.

Beyond the economics of the choice of generation technology, whether to gener-

ate locally at all is the key issue of continuous operation. Many mining sites operate

24 hours a day. A distinguishing factor of the renewable energy generation technolo-

gies mentioned above is that they have variable output. Solar based technologies

obviously do not generate energy when the sun is not in the sky. Wind turbines can

generate energy through day and night but the amount will vary from one moment

to the next.

The variability of generation requires changing the design of the mining opera-

tion to incorporate energy storage. A number of storage options can be considered

for large scale operations: molten salts, pumped hydraulic and compressed air. The

design problem then requires identifying the appropriate combination of both gen-

erating and storage technologies to minimise the cost of the mining operation. We

have previously addressed the minimisation of capital cost (Amusat et al, 2015b).

The optimisation problem for the design problem included a constraint that spec-

ified that the power and heat demands of the mining operation had to be satisfied

fully from local generated energy from renewable sources. However, in practice, due

to the variability of the energy supplies, even with storage, designing for complete

reliance on local generation will lead to over-design. Instead, it is more appropri-

ate to design for almost complete reliance on local generation but allowing for the
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use of fuel brought in from off-site. In other words, from an optimisation point of

view, it may be useful to relax the constraint and gain insight into how much impact

allowing the use of off-site energy sources, hopefully infrequently, may have.

An analysis of the impact of the constraint was undertaken using a scenario based

approach (Amusat et al, 2015a). In this approach, a set of scenarios was generated,

with each having a different solar profile over the period of time considered. Each

profile was generated randomly. The single objective optimisation problem was

solved for each scenario and the resulting design analysed in terms of how likely

it was to not meet the demand under different solar profiles. Although this approach

was useful, it did not necessarily represent the best solutions possible in a proba-

bilistic sense. A more rigorous approach would be to consider relaxing the demand

satisfaction constraint and treating the design problem as a bi-criteria optimisation

problem, as discussed above. The demand constraint is a desired attribute of a design

but not a hard constraint.

Using the models developed by Amusat et al (2015a) and adding the probability

of not meeting demand as a second objective, the problem is now

min
d

z =

{

c(d)
p(d)

(1.1)

where d are the design variables, c(·) is the capital cost of the energy generation and

storage systems and p(·) is the probability of not meeting the demand fully with

local generation sources. The probability is 1 minus the reliability. Reliability is a

measure of the ability of an energy system to deliver power to all points of con-

sumption with the frequency, the duration and the extent required by the operation

(Osborn and Kawann, 2001).

The evaluation of the objective functions proceeds as follows:

1. For a given d, the generation and storage technologies are defined, resulting in

an energy system for the mining operation.

2. The resulting design is then evaluated over a number of randomly generated sce-

narios based on a probability distribution function describing the variability of

solar irradiance for each hour of each day in the period of operation.

3. The probability of not meeting demand is simply the ratio of the number of sce-

narios where the demand was not met for design d, for at least one time period,

and the number of total scenarios. A value of 0 means that the design is able to

meet the demand under all likely solar conditions; a value of 1 means that the

design never fully meets the demand, always requiring the import of off-site fuel

for at least one time period over the full duration for each scenario.

As a starting point, we have solved this bi-criteria problem of dimension 8 using

NSGA-II (Deb, 2000) with population size 100, 150 generations, crossover rate of

0.25, mutation rate of 0.25, with binary tournament selection, intermediate crossover

and Gaussian mutation. The non-dominated objective function values for 5 attempts

are presented in Fig. 1.3. At the scale used, NSGA-II appears to identify the set of

non-dominated designs well. From an engineering point of view, we do see that the

designs are not that sensitive to the variability in solar irradiance. This is not entirely
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surprising as the case study consists of the Collahuasi mine located in the Atacama

region of Chile where most days have completely clear skies and so the irradiance

is relatively constant and predictable.
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Fig. 1.3 Final sets of non-dominated points resulting from 5 attempts at the off-grid design prob-

lem using NSGA-II (Deb, 2000) where the probability is the likelihood of not satisfying the energy

demands of the mining operation with only local energy generation

Figure 1.4 shows the different sets of non-dominated points for the left side of

the plot shown in Fig. 1.3. It is this part of the plot we are most interested in as the

designs here are those that will not very often require off-site fuel. In zooming in,

we see that the solutions obtained are similar in objective function value from one

attempt with NSGA-II to another.

For comparison, we have also applied the Strawberry method using the rank

based fitness function described above with population size 100, 150 generations,

and nr = 5. The aim of this fitness function is to emphasise the end-points of the

Pareto front and, due to the asymmetry in evaluation, particularly the left end-point.

Figure 1.5 shows the resulting solutions. Of note,

1. The Strawberry algorithm is less consistent over the full range of probability

values.

2. The number of points in the set of non-dominated points is small compared with

the sets generated by NSGA-II.

3. The distribution of points is less even than it is for the NSGA-II case with points

concentrated more towards the extremes of the Pareto front than towards the

centre. Note that the use of diversity control reduces the number of points at the

right extreme.

4. The cost objective function values obtained are lower than those obtained using

NSGA-II.
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Fig. 1.4 A zoomed in view of Fig. 1.3
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Fig. 1.5 Final sets of non-dominated points resulting from 5 attempts at the off-grid design prob-

lem using the new multi-objective Strawberry algorithm where the probability is the likelihood of

not satisfying the energy demands of the mining operation with only local energy generation

If we zoom in as we did for the NSGA-II results, we see (Fig. 1.6) that the cost

objective function is often better than what is obtained with NSGA-II.
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Fig. 1.6 A zoomed in view of Fig. 1.5

1.4.1 Analysis of the designs

The aim of using a multi-objective approach to solve the constrained single objective

design problem is to gain insight into the impact of the particular constraint on the

designs obtained. In the off-grid design problem, the question the design engineer

would like to answer is: Does the constraint of not using any off-site fuel lead to a

significant over-design?

Table 1.2 Design points with low probability of not meeting the demand for the mining operation.

The first row is a design which should always meet the demand and the second row is one in which

the demand will be met all but 1% of the possible solar profiles that could be encountered. The G

columns are generation (power tower, PT, and photovoltaic, PV). The S columns refer to storage:

MS for molten salts, PH for pumped hydro and CA for compressed air. Finally, E columns indicate

the peak electricity release rate from storage.

GPT SMS EMS GPV SPS EPS SCA ECA p c

(MW ) (MW h) (MW ) (MW ) (MW h) (MW ) (MW h) (MW ) 106 C

1257 6022 180 0.00 2746 89.2 0.00 60.26 0.000 1396

1246 6036 177 0.00 2740 94.8 0.00 64.80 0.010 1390

1238 6000 179 0.00 2749 96.4 25.98 64.73 0.030 1388

1235 6021 179 0.87 2839 93.5 1.44 58.34 0.033 1383

1232 6029 177 1.54 2795 93.6 0.00 59.79 0.043 1381

1228 6021 179 0.00 2736 89.8 0.00 65.10 0.063 1376

∆ (%) 2 1 2 100 4 7 100 10 100 1

Table 1.2 shows the values of the first 6 design points, counting from the left,

from the bottom graph in Fig. 1.6. The cost does not include the actual cost of

the off-site fuel and the cost of transporting that fuel so this table (and the results
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discussed earlier) only allows us to analyse the impact on the physical structure of

the mining operation’s energy systems.

The final row shows the variation as a percentage of the maximum value for

each design variable and objective function. From the first design through to the last

one, there is a change of 1% in cost. Some variables are stable whereas the use of

photovoltaic generation and compressed air storage have large changes: the feasible

design does not include either of these technologies. Introducing them allows the

cost to be reduced but at the expense of not meeting demands in all scenarios.

For the design engineer, the main conclusion is that the feasible design is not

over-specified. In fact, some of the slightly less expensive designs introduce more

complexity by the incorporation of further alternative technologies. Generally, the

simpler the design, the more attractive it is so the feasible design is favoured even

more.

The ability to perform this analysis enables the engineer to have the confidence

necessary to move to the next stage of design: the detailed specification of the indi-

vidual technologies and further modelling, simulation and optimisation.

1.5 Conclusions

The use of multi-objective optimisation can provide useful insight into the impact of

constraints on designs. By converting a constraint to an extra objective, the approx-

imation of the Pareto front for the design problem will help determine, for instance,

whether the “feasible” design is over-constrained or not. To ensure that the impact

of the relaxation of a constraint is understood, it is necessary to have a good approx-

imation to the Pareto front at the extremes. This motivates the definition of a fitness

function to provide the appropriate selection pressure for evolutionary methods.

A rank based fitness function has been presented. An implementation has been

incorporated in a new multi-objective plant propagation algorithm based on the ex-

isting single objective Strawberry algorithm (Salhi and Fraga, 2011). The procedure

has been applied to a problem in off-grid operation of large scale mining where there

is a desire to reduce the cost and environmental impact of using fuel brought in from

a long distance away. The results demonstrate the effectiveness of both the fitness

function and the multi-objective Strawberry method.
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