
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solving stochastic ship fleet routing problems with inventory
management using branch and price

Citation for published version:
McKinnon, K & Yu, Y 2011, Solving stochastic ship fleet routing problems with inventory management using
branch and price. in PM Pardalos, A Zhigljavsky & J Žilinskas (eds), Springer Optimization and Its
Applications: 2016 Advances in Stochastic and Deterministic Global Optimization. vol. 107, Springer.
https://doi.org/10.1007/978-3-319-29975-4_8

Digital Object Identifier (DOI):
10.1007/978-3-319-29975-4_8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Springer Optimization and Its Applications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1007/978-3-319-29975-4_8
https://doi.org/10.1007/978-3-319-29975-4_8
https://www.research.ed.ac.uk/en/publications/2dd8c524-8c48-4444-ba92-359634c06fea


Solving Stochastic Ship Fleet Routing
Problems with Inventory Management
Using Branch and Price

Ken McKinnon and Yu Yu

Abstract This chapter describes a stochastic ship routing problem with inventory
management. The problem involves finding a set of least cost routes for a fleet of
ships transporting a single commodity when the demand for the commodity is uncer-
tain. Storage at supply and consumption ports is limited and inventory levels are
monitored in the model. Consumer demands are at a constant rate within each time
period, and in the stochastic problem, the demand rate for a period is not known until
the beginning of that period. The demand situation over the time periods is described
by a scenario tree with corresponding probabilities. A decomposition formulation is
given and it is solved using a Branch and Price framework. A master problem (set
partitioning with extra inventory constraints) is built, and the subproblems, one for
each ship, are solved by stochastic dynamic programming and yield the columns
for the master problem. Each column corresponds to one possible tree of actions for
one ship giving its schedule loading/unloading quantities for all demand scenarios.
Computational results are given showing that medium sized problems can be solved
successfully.

Keywords Stochastic Dynamic Programming • Branch and Price • Ship Rout-
ing • Inventory Management.

Introduction

The marine shipping industry has experienced an unprecedented boom over the past
decade. This is not only because of the rapid growth of the requirements to transfer
more and more energy and commercial commodities from one location to another,
but also because the characteristics of the ocean shipping industry, with its low
transportation costs and huge loading capacity, are suitable for cheaply transporting
huge amounts of products.
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The classical routing and scheduling problem for vehicles and ships is important
part of the general transportation problem, and has received a great deal of attention
in academic research. A large number of possible solution approaches have been
presented in the literature, involving either exact optimization methods or heuristic
algorithms. A comprehensive review is provided in [10]. This focuses on literature
about ship routing and scheduling published between the years 1990 and 2003. The
survey is presented in several different parts: strategy planning problem, tactical
and operational planning problems, naval problems, and other related problems.
A survey of different solution methods in the literature is also presented in the
review. A mixed integer programming (MIP) model is described in [25] for the
problem of transporting different bulk products from a set of origins to a set of
destinations by a fleet of ships. A ship has separate compartments for different
products. A ship’s voyage goes from a single loading port to a single discharging
port. A cost-based heuristic algorithm is also presented to obtain acceptable solution
quickly. Sherali et al. [26] have presented an MIP model for the Kuwait Petroleum
Corporation (KPC) problem. Because of the integrality conditions and the large
number of demand contract scenarios, the problem cannot be solved to optimality
by the MIP model. An alternative aggregated model is then formulated and solved
by a specialized rolling horizon heuristic method to make the problem solvable. In
the ocean shipping industry, expert opinion is an important factor. Crary et al. [11]
introduce a model integrating the expert opinion and MIP model for the problem
of sizing the US destroyer fleet. MIP models for SRP are also built in [3, 24, 27].
Heuristics are developed in [19] in order to obtain an acceptable solution within
reasonable time when solving the MIP model.

The Dantzig–Wolfe decomposition approach has proved to be successful for the
vehicle routing problem with time windows. Desrochers et al. [14] were the first to
propose a set partitioning model for the vehicle routing problem with time windows
solved by column generation, and this appears to be an efficient way of finding the
optimal solution. As for the ship routing problem, it is also a good solution approach.
There is much literature on solving the problem by Dantzig–Wolfe decomposition.
Early papers [1, 2] describe a typical tramp ship scheduling problem, which were
the first works to use a Dantzig–Wolfe decomposition approach for ship routing and
scheduling. The master problem is the linear relaxation of a set partitioning problem
and subproblems are shortest path problems. But the algorithm presented cannot
guarantee optimal integer solutions. In [5, 8, 9], the demand is regarded as a constant
and Branch and Price is used to solve the problem. The problem is decomposed
into a ship route subproblem for each ship and a port inventory subproblem for
each port. The approach presented in this chapter is closest to that used in their
paper. Compared to their papers, the present chapter deals with different inventory
situations, and solves the stochastic problem rather than deterministic problem.

In realistic shipping operations, especially for ocean shipping, much of the
planning data is uncertain. Deterministic models for ship routing and scheduling
are sometimes inappropriate, and there is a need to develop stochastic model.
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The stochastic vehicle routing problem (SVRP) without inventory constraints and
with simple recourse actions is discussed extensively in the literature. A Branch and
Price algorithm for vehicle routing problem with stochastic demands is presented
in [7]. In this paper, the expected number of failures and the corresponding penalty
cost are considered in the objective function and a two stage stochastic program with
fixed recourse and capacity constraints is built. A straight-forward modification of
the Clark and Wright savings algorithm for the SVRP based on a discussion of
route failure is presented in [16]. In [18, 20], an integer L-shaped method is used
to solve SVRP to optimality. In [4] an a priori sequence among all customers of
minimal expected total length is proposed, and a variety of theoretical approaches
are analyzed as well. In addition, several solution frameworks for the stochastic
vehicle routing with stochastic demands are discussed in [17].

There are few references in the literature to stochastic ship routing problems with
inventory. A robust ship scheduling with multiple time windows is presented in [6].
This uses a set partitioning approach with the columns found a priori to minimize
the chances that ships stay idle in ports during the non-working days. A Markov
decision process model of the stochastic inventory routing problem is introduced in
[23], and approximation methods are used to find acceptable solutions.

This chapter considers the problem of optimizing the distribution of a single
commodity by a fleet of ships when there is limited storage at the supply and
consumption ports and the consumer demand is uncertain. Consumer demand is
described by a scenario tree and demand is assumed to be constant within each
period. A solution consists of a tree of schedules for each ship, where a schedule
for a ship specifies the loading and unloading quantities at each port visited and
the start time of each such operation (which we refer to as a service). These ship
schedules must be such that the storage limits at ports are satisfied at all times.
The problem is formulated as a multistage stochastic programming problem and is
solved by Branch and Price—a Branch and Bound method that uses Dantzig–Wolfe
decomposition to solve each node. The master problem is a set partitioning problem
with extra inventory constraints. Each column in the master problem corresponds
to a tree of schedules for a ship. Attractive columns are generated by a stochastic
dynamic programming using a backward labelling method.

The structure of the rest of the chapter is as follows. Section “Decomposition
Approach for the Stochastic Ship Routing Problem” introduces the Dantzig–
Wolfe decomposition approach and describes the structure of the master and
subproblems. This section also describes the techniques used to eliminate cycles.
Sections “Branch and Bound” gives the Branch and Bound algorithm and “Exam-
ples and Results” present computational results, and section “Conclusion” gives the
conclusion.
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Decomposition Approach for the Stochastic Ship
Routing Problem

Assumptions

The ocean transportation problem is too complex to consider every factor in the
real world when modelling the problem. In this chapter we make the following
simplifying assumptions:

• At each consumer port, the rate of demand is constant within a period, but can
change between periods.

• At each port, loading and unloading rates are constant.
• At most one ship can be loading or unloading at any given time. This assumption

avoids the overlap of services at a port.
• For each ship the travel time and cost between any two ports are fixed.
• A service at a port must start and finish within a period. Note, however, this is not

a practical limitation as the service can continue without a break in the following
period.

Solution Framework

A Branch and Price algorithm is used in this chapter. This consists of a master
problem which is solved by Branch and Bound (B&B), with each node in the
B&B tree being solved by Dantzig–Wolfe (DW) decomposition. Each column in the
master problem corresponds to a tree of schedules for a ship. There is a huge number
of these columns and if all were included explicitly the master problem would be
impossible to solve. However the DW approach only generates the small subset
of them that are needed, and is thus able to solve the full problem at each B&B
node. In each iteration of DW a subproblem is solved for each ship to generate an
attractive tree of schedules for that ship. In this chapter the subproblems are solved
by stochastic dynamic programming.

At any stage in the solution of a master problem at a B&B node, a (finite) subset
of the columns will have been generated. This problem, called a restricted master
problem, is solved and the shadow prices of the constraints are then used to find
the most negative reduced cost from among the columns that have not yet been
generated. This can be done without explicitly generating any columns by solving
a stochastic dynamic programming problem separately for each ship. The solution
gives the tree of schedules for the ship. If this added as a column to the master
problem, it would have the most negative reduced cost among all the possible
columns for that ship. This procedure continues until no column with negative
reduced cost can be generated, at which stage the master problem for that B&B
node has been solved.
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Master Problem

The detail formulation of a master problem is introduced here. A port can be visited
several times within the time window of a scenario tree node, so an index for visit
number is needed. In the model, many objects are indexed by the triple (Port, Visit,
Scenario node) which is referred as a port visit. For any ship, there are a set of trees
of schedules for it. The problem is to choose one tree of schedules for each ship. We
introduce the details of master problem as below.

Indices

i port
k scenario tree node
a(k) predecessor node of node k in scenario tree
m the order of the visit to a port within a scenario tree node (i.e., the current

visit is the mth time the port has been visited in this node)
v ship
s tree of schedule for one ship
(i,m,k) a port visit

Sets

N set of ports
V set of ships
K set of scenario tree nodes
KT set of scenario tree nodes in final period
P set of port visits
Rv set of tree of schedules for ship v

Parameters

Asvimk the number of times in tree of schedules s for ship v that it makes port visit
(i,m,k) (must be 0 or 1 to be feasible)

Csv expected cost if ship v takes the tree of schedules s
Qsvimk quantity unloaded by ship v in port visit (i,m,k) if ship makes that port visit

in schedule tree s, and 0 otherwise (value is negative if ship is loading)
Tsvimk the start service time for ship v in (i,m,k) if the ship makes that port visit

in schedule tree s, and 0 otherwise
Bk end of the time period which includes scenario tree node k
Wi unloading rate from ship to port i (value is negative if ship is loading)
M the maximum number of visits to any port in a scenario tree node
Dik demand rate in port i in node k (value is negative at a supply port)
Si initial stock level in port i
S̄i upper bound for storage in port i
Si lower bound for storage in port i

The values of parameters Asvimk, Qsvimk, and Tsvimk are found by solving
subproblems. These three parameters represent the route information and all three
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are either zero or all three are nonzero. Asvimk is the number of times ship v makes
port visit (i,m,k) in schedule s, and to be feasible this must either be 0 or 1. However
during the solution process there may be cycles of port visits, and this leads to values
of Asvimk greater than 1. Such infeasible schedules cannot be included in the final
optimal solution. Parameters Qsvimk and Tsvimk represent, respectively, the quantity
loaded and the start service time for this port visit.
Variables

xsv 1 if ship v takes schedule tree s, and 0 otherwise
yimk 1 if some ship makes port visit (i,m,k), and 0 otherwise
qimk amount of commodity unloaded from a ship during port visit (i,m,k) (value

is negative if ship is loading)
tS
imk the start of service time in port visit (i,m,k)

tE
imk the end of service time in port visit (i,m,k)

hS
imk the stock level at time tS

imk
hE

imk the stock level at time tE
imk

Formulation of Master Problem

min ∑
v∈V

∑
s∈Rv

Csvxsv (1)

∑
v∈V

∑
s∈Rv

Asvimkxsv = yimk ∀(i,m,k) ∈ P (2)

∑
v∈V

∑
s∈Rv

Qsvimkxsv = qimk ∀(i,m,k) ∈ P (3)

∑
v∈V

∑
s∈Rv

Tsvimkxsv +(1− yimk)Bk = tS
imk ∀(i,m,k) ∈ P (4)

∑
s∈Rv

xsv = 1 ∀v ∈ V (5)

xsv ≥ 0 ∀v ∈ V,s ∈ Rv (6)

{xsv : s ∈ Rv} yield a valid tree of schedules for ship v, ∀v (7)

yimk ∈ {0,1} ∀ (i,m,k) ∈ P (8)

tE
imk = tS

imk +qimk/Wi ∀(i,m,k) ∈ P (9)

tE
i,m−1,k ≤ tS

imk ∀(i,m,k) ∈ P, m > 1 (10)

yimk ≥ yi,m+1,k ∀(i,m,k) ∈ P (11)

hE
imk = hS

imk − (tE
imk − tS

imk)Dik +qimk ∀(i,m,k) ∈ P (12)

hE
iMk − (Bk − tE

iMk)Dik ≥ 0 ∀i ∈ N, k ∈ KT (13)

hS
imk = Si − tS

imkDik ∀i ∈ N, m = 1, k = 1 (14)

hS
imk = hE

i,m−1,k − (tS
imk − tE

i,m−1,k)Dik ∀(i,m,k) ∈ P, m > 1 (15)
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hS
imk = hE

i,M,a(k)− (Ba(k)− tE
i,M,a(k))Di,a(k)

− (tS
imk −Ba(k))Dik ∀i ∈ N,m = 1,k > 1 (16)

Si ≤ hS
imk, hE

imk ≤ S̄i ∀(i,m,k) ∈ P (17)

In (1) we minimize the total expected cost. Constraints (5) and (6) result in a convex
combination of schedule trees for each ship v, and to be valid must yield a single
schedule tree. This can only happen if all schedule trees for ship v corresponding
to xsv > 0 follow the same tree of routes and the cost functions are linear over the
convex hull (as the cost functions are in our examples). Constraint (2) calculates
the number of occurrences of a port visit and ensures that each port visit occurs
at most once. The variable yimk is 0 if there are fewer than m ship visits at port
i in scenario node k and is 1 otherwise. Constraint (3) calculates the loading or
unloading quantity and constraint (4) calculates the start of service time for each
port visit. If port visit (i,m,k) occurs, then the first term in (4) gives the start time
for that service and the second term is zero. If port visit (i,m,k) does not occur, then
the first term will be zero and the second term will be Bk, i.e., the end of the period
for node k. Constraint (9) calculates the end of service time and (10) guarantees that
there is no overlap between two services, i.e., a later port visit can only be served
after the service of previous visit has been finished. Constraint (11) ensures that if
a port is visited m+ 1 times in a scenario node, it must be visited m times in that
scenario node. Constraints (12)–(17) are the inventory constraints. They ensure that
the storage level is between the upper and lower bound of the storage tank at the start
and end of each service. Since all flow rates are constant within a scenario node, the
inventory level will change linearly between the start and end service times. So the
constraints ensure that the inventory is within the bounds all the time within the
whole planning period.

Reduced Cost

After a restricted master problem is solved (i.e., a master problem with a subset
of the possible columns), dual variables will be known. These dual variables are
denoted by dA

imk, dQ
imk, dT

imk, and dS
v for constraints (2)–(5), respectively. The reduced

cost Ĉsv can then be calculated as follows:

Ĉsv = Csv − ∑
i,m,k

(AsvimkdA
imk +QsvimkdQ

imk +TsvimkdT
imk)−dS

v

= ∑
(i,m,k)→(i′,m′,k′)∈Es

PkCii′v − ∑
(i,m,k)∈Ns

(dA
imk −dQ

imkQsvimk +dT
imkTsvimk)−dS

v (18)

where Pk is the cumulative probability from start to node k that defines the scenario
tree, Es the set of edges, and Ns the set of port visits defining the tree of schedules
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s, and Cii′v is the travelling cost along the edge i → i′ for ship v. Constraint (18)
expresses the reduced cost as the sum of terms over the edges and nodes in the tree
of schedules.

Ship Routing Subproblems

The parameters Qsvimk and Tsvimk as well as set Es and Ns in (18) represent the route
information generated by subproblems and are not given in advance. We wish to
generate a column with the minimum reduced cost so we replace these parameters
with variables qvimk and tS

vimk and also a variable route, which is specified by variable
sets of edges E and nodes N that will define the schedule tree. For a ship v, the
objective of the subproblem can be formulated as follows:

C̄v = min
E,N

min
q

min
tS

(
∑

(i,m,k)→(i′,m′,k′)∈E

PkCii′v

− ∑
(i,m,k)∈N

(dA
imk +dQ

imkqvimk +dT
imktS

vimk)

)
−dS

v (19)

In formulation (19), we try to find a physical visiting sequence and the correspond-
ing values of qsvimk and tS

svimk for each port visit in the sequence so as to minimize the
reduced cost given in (18). The dS

v term in (18) does not need to be considered in the
subproblems. It can be subtracted from the objectives after solving the subproblems.

A ship subproblem can then be formulated as a shortest tree problem and solved
by stochastic dynamic programming. The solution of the shortest tree problems is a
tree of schedules with the least reduced cost, and yields a column that can be added
into the master problem as a column. The state in the DP is (i,m,k,g, t), where i is
the port, m is the order of the visit, k is the node of scenario tree, g is the amount
of commodity on board the ship v when the ship arrives at port visit (i,m,k), and
t is the start service time for the port visit (i,m,k). Both start service time, t, and
the quantity on board the ship, g, are continuous quantities. However within the DP
step they have to be restricted to discrete values, and this may lead to slight sub-
optimality. If a service time is between two grid points, it will be delayed to the next
grid point, and a regular grid is used for values of g so that there is no inaccuracy
in accounting for the amounts on board ships. However, using discrete values for
g and t does not mean that our model can only generate the solution with these
discrete values. In fact, the master problem may choose several columns with the
same physical tree of routes but different time and loading quantities and use the
average of these columns as the solution, which may have the start service times
and loading quantities different from discrete values.
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Dummy start Dummy final

lower

lower

Period 1 Period 2 Period 3

lower
upper

upper

upper

Fig. 1 Structure of a DP network showing demand scenario parts as circles and alternative upper
and lower demand level branches in each period

Dynamic Programming Network

In this section, we describe the DP network for the ship subproblems. For each port
visit in the network, there is a start service node and an end service node related
to it. The costs in the objective are assigned to edges in the network. The DP
network for a ship subproblem is related to the scenario tree which describes the
pattern of consumer demands. We divide the network into several parts, each part,
called a demand scenario part, represents a node in the demand scenario tree in the
corresponding time period so that the DP network has the same top level structure
as the demand scenario tree. See Figs. 1, 2, and 3 for examples.

In a DP network, a ship starts from the dummy start node, makes a set of port
visits in different demand scenario parts of the network, and finishes the trip when
it arrives at the dummy final node. When the ship is at a start service node, it makes
decisions about how much to load or unload at the current port visit. When the ship
is at an end service node it has a choice of three different actions: it can sail to
another port visit in the same demand scenario part, it can stay at the current port
visit until the future information is available before deciding which port to visit in
the next period, or it can leave the current port visit immediately and sail to a port in
the next period, in which case the future information about demand will be revealed
during sailing but the ship will not change its destination port in response.
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Fig. 2 DP network with two ports, A and B, and a maximum of one visit to each port in each
demand scenario part
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Fig. 3 Detailed demand part of DP network with two ports, A and B, and two possible port visits
per port
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Figure 2 is a simple example of a DP network with two time periods. There are
three demand scenario parts in the network. The start node corresponds to the initial
status of the ship. Its status is defined by its position (in some port or at a position
at sea) and the amount of cargo on the ship. Figure 3 shows a fuller example of a
single demand scenario part of a network.

Table 1 DP network node types

Node Type Description

s decision node start service node: decision made is how
much to load or unload during the port visit

e decision node end service node: decision made is the
choice of next port visit or to delay until
more information is available

sum-up node forms the expected future value in port i at
current time given the decision to sail to
port j in next period

sum-up node forms the expected future value in port i at
end of current period before the decision of
which port to visit next

decision node split node: decision at current time of
which port visit of a given port to visit first
in the next period

decision node split node: decision at end of current period
of which port to visit in the next period and
which is the first port visit for that port

The different types of nodes in DP networks are listed in the Table 1. Nodes s ,
e and and the dummy start node are the decision nodes, and remaining nodes

are sum-up nodes. Each port visit (i,m,k) has a start service node s and an end

service node e . For each boundary between two periods there is one
i−j

node for
every pair of ports i and j. This is associated with a journey from port i to port j in
a later period starting before the period boundary at which the demands in the next

period will be revealed. Each
i−j

node is linked to a set of
i−j

decision nodes,
one for each demand scenario node in the following period, and its action is to sum

up the expected costs at these nodes. Each is associated with one future demand
scenario part and one port and selects the first port visit for that ship at that port.
For example, in Fig. 2, a ship can go from end service node of port visit (A,1,1) to

sum-up node
A−B

and sail to the start service node related to physical port B in
period 2 through the split nodes. (However in this example there is only one port
visit per port in period 2, so unlike the more general case shown in Fig. 3, there is no
choice in this example at the split node.) The horizontal line inside the node is used
to signify that the time window of this node is the whole period including the node.
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Table 2 Edge costs and times in DP network

Edges Edge costs Min edge time

s → e −dQ
imk(g−g′)−dT

imktS
imk −dA

imk |g−g′|/Wv

→ s PkCii′v T̃ ii′v
e → s PkCii′v T̃ ii′v

Another sum-up node
i
is on the boundary between two periods. This is associated

with a journey from port i to any port in the next period after the demands in next

period are known. Each
i
node is linked to a set of

i
nodes, one for each demand

scenario part. The decision made of which port to sail first at a node depends on
the future demands in its scenario, so can be different in different demand scenario
parts. The dot inside the node is used to signify that the arrival time at this node is

fixed on the period boundary. In the DP network the decision nodes are s and e

and : s and e relate to decisions within the current demand scenario part and
to the initial visit decisions in the following period.
Within a demand scenario part of the network, there can be edges from end

service nodes e to start service nodes s . These edges are the travelling edges,

and they have the associated travelling times and costs. Each end service node e

(related to physical port i) is linked with several sum-up nodes
i−j

and one sum-up

node
i
. The port visits of the same physical port share the same sum-up nodes.

For example, in Fig. 3, both end service nodes of port visit (A,1,k) and (A,2,k)

are linked with sum-up nodes
A−B

and
A

. Since a sum-up node is on the

boundary between periods, its time is fixed so the edges from node e to node
may have nonzero transition times on them. This corresponds to ships delaying their
journeys until more demand information is available.

The edge costs in the DP network are derived from the objective function (19)
of the ship routing subproblem, and are listed in the Table 2. Here g is the amount
of commodity on board the ship when it arrives at start service node (i,m,k), while
g′ is the amount of commodity on board the ship at end service node (i,m,k). So
the difference between them, |g− g′|, is the loading or unloading quantity in port
visit (i,m,k). Wv is the (constant) loading or unloading rate for ship v, Pk is the
cumulative probability of reaching node k in the demand scenario tree, Cii′v is the
travelling cost from port i to port i′ by ship v, and T̃ ii′v is the (undelayed) sailing
time from port i to port i′. Other edges which are in the network but not included
in the above table have zero costs and zero minimum edge times and are used to
define the stochastic structure of the network.

Every node in the network has a window for its visit time, so this is a stochastic
DP problem with time windows. The time window for nodes is the single time of
its period boundary, and the time window of every other node is initialized to be the
same as the period in which it lies. However if there are more restrictive windows
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for some nodes defined in the problem, the time windows on these nodes would be
reduced, and all windows can also be reduced in the course of the solution by the
B&B method.

Dynamic Programming Formulation

Since there are many different types of nodes in the DP network it is convenient
to be able to refer to any node by a general single index, l. Each node l in the DP
network for ship v has a function, denoted by flv(t,g), giving the expected cost to
the final node from node l when the node visit time is t and the amount on the ship
is g. In our problem, there is a time window for the visit time at each node (i.e.,
t ∈ [Ãlv, B̃lv]). Since a sum-up node is on the boundary between periods its time
is fixed and so its time window has zero width and there is only one time point in its
cost function, which therefore only depends on the quantity on board. Treating both
t and g as continuous quantities makes the problem difficult to solve, so instead we
restrict (t,g) to a discrete grid of values, T ×Gv. Consequently the loading quantity
is also discrete as it is the difference in g between the start and end service nodes.
An example of part of the T ×Gv grid and a port service are shown in Fig. 4. This

shows the expected cost f1 in a start service node s at start of service time t1 with

quantity g1 on board a ship, and the state reached in the end service node e for
two of the possible loadings that will be considered in calculating the best value of
f1. For instance, point (t4,g3) corresponds to a service lasting t4 − t1 with the ship’s
load increased by g3 −g1.

The direction of solving stochastic dynamic programming is from dummy final
node to the dummy start node. In the dummy final node L the cost function fLv(t,g)
is initialized to zero and on all other nodes is initialized to infinity (however, if we
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want to give a reward for a ship finishing early or having cargo on board at the end,
then a more general fLv(t,g) can be defined).

The values of flv(t,g) are calculated recursively as follows, the calculations being
for all ships v, all nodes l, all t ∈ T ∩ [Ãlv, B̃lv], and all g ∈ Gv.

• For l a s start service node and l′ the corresponding end service node e :

flv(t,g) = min
g′∈Gv:g′≥g

{
fl′v(T̃ lv(t,g

′ −g), g′) −dQ
l (g

′ −g)−dT
l t−dA

l

}
,

where T̃ lv(t,Δg) = min{t′ ∈ T : t′ ≥ t+ |Δg|/Wv} is the loading time rounded
to the closest higher discrete time, and assuming node l corresponds to a visit to
port i , dQ

l = dQ
i , dT

l −dT
i , and dA

l = dA
i as given in Table 2. The recurrence above

refers to a supply port. For a demand port the g′ ≥ g is replaced by g′ ≤ g.

• For l a split node or e end service node:

flv(t,g) = min
l′:l→l′

min
max{Ãl′v,t+T̃

ll
′ }≤t′≤B̃l′v

{fl′v(t
′,g)+ C̃ll′v},

where if node l corresponds to a visit to port i, C̃ll′v is the cost of edge l → l′ for

ship v as shown in the Table 2, and T̃ ll′ is the transition time from a s node l to

a e node l
′
, and for other cases is zero.

• For l a or sum-up node:

flv(t,g) = ∑
l′:l→l′

fl′v(t,g)

The goal is to find the cost function fFv(t) at the start dummy node F and the tree
of schedules for the ship, which can be found by tracking forward from F.

Algorithm for Solving Subproblems

The most common algorithms for the shortest path problem with time windows
are labelling algorithms, see [12, 13, 15]. These algorithms assign a label to each
node in the network giving the cost of the currently known shortest path from
the node to the final node. The algorithms repeatedly recalculate the labels for all the
nodes in the network (in an order determined by some heuristic rules), until there is
no improvement in the label of any node.

In this chapter we are considering a stochastic model whose objective is to
minimize the expected cost. This requires the problem of finding a single shortest
path which occurs in the deterministic case to be replaced by the problem of finding
a tree of shortest paths. Each label associated with a node is now the lowest expected
future cost known from the node to the end of the planning horizon for a specific
node visit time and quantity on board. The set of all labels at a node therefore
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Fig. 5 Cost function

define this expected cost as a function of the visit time and quantity on board. An
example of dependency of a cost function with visit time is shown in Fig. 5. The
cost functions in our problem are increasing functions of time. In a deterministic DP
network the shortest path calculation can be performed either from the start or from
the terminal nodes. In the stochastic case where the expected costs are required the
calculation starts at the terminal nodes. The iteration is started by setting the cost
function to zero at this dummy final node and to infinity at all other nodes. The
stochastic DP calculation then iteratively updates the cost function on each node in
the network from all the nodes on its outgoing edges.

Because the graphs in our problems contain directed cycles, we may not be able
to finish the updating by going through the network only once. We therefore have
to update the node cost functions iteratively and be prepared to update the cost for
one node several times. In an iteration of updating, we go through each node in
the network, and for each node we consider all the outgoing edges from the node.
If there has been any updating in the end node of an outgoing edge in last iteration,
we will update the cost of the start node of the edge using the cost function of the
end node. For the sum-up nodes, if one of the corresponding split nodes is updated
in the previous iteration, the sum-up node will be updated in the current iteration.
Therefore, we use a flag for each node to indicate whether or not the node is updated
in the last DP iteration.

The number of iterations required during the updating is highly dependent on
the order in which the nodes of the network are updated. Before starting to update
the cost functions we order the nodes as follows. First we calculate the minimum
number of directed edges from each node to the final dummy node. Then the nodes
are ordered so that nodes closer to the final dummy vertex have lower index than
those farther away. Then in each iteration the costs are updated in order of increasing
node index. Once there has been no change in the cost of any node in a complete
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Fig. 6 Cycles of Type I and II

pass through all the nodes, then the optimal costs have been found and we choose
the least cost from the cost function of the dummy start node in the network and
track the shortest tree through the network from the dummy start node.

Cycle Elimination

Because there are several port visits for each port and the order of port visits to
different ports is not predetermined by the structure of the network, it is possible
to generate port visit paths which are not logically possible. There are two types of
such impossible paths. Type I means that the ship returns to some port visit which
occurred for that ship before, while Type II means that the ship route contains a port
visit (i,m1,k) and a later port visit (i,m2,k) where m2 ≤ m1. Examples of these two
situations are shown in Fig. 6. We refer to both of these cases as cycles even though
Type II may not include a cycle in the graph of port visits.

When there is a cycle of Type I, a port visit occurs more than once, and in this
case the value of Asvimk will be greater than 1 and equal to the number of times the
port visit occurs. Also the Tsvimk and Qsvimk quantities will be the total over all the
times the port visit occurs. Allowing cycles gives a relaxation of the true situation in
our model, so bounds allowing them are still valid. However, a solution with cycles
is not logically feasible. However allowing cycles gives a relaxation of the true
situation, so we do not need to eliminate all the cycles when solving subproblems
and can add the tree of routes including cycles into the master problem. Then we
can eliminate cycles in the B&B algorithm by splitting a time window.

A K-cycle is defined to be a cycle of length K and elimination of K-cycles is well
described in the literature, by Irnich and Villeneuve [22] and Irnich and Desaulniers
[21]. However, it is not easy to avoid all the cycles with different lengths when
solving the subproblems, and doing that is time consuming. We therefore only
eliminate the 2-cycles. In our DP network, we divide a port visit into two nodes,
a start service node and an end service node, so a 2-cycle in our problem is different
from its original definition. See Fig. 7 for example. In the example, the start service
and end service nodes for a port visit are regarded as a big node, and the definition
of a 2-cycle is based on the corresponding port visits rather than the real nodes of
the network.
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Fig. 7 A Type I cycle in our DP network

In our problem, cycles can only occur within a demand scenario part of the DP
network, and there is no cycle crossing the period boundary or between different
scenarios at the same period. Hence we only need to consider cycle elimination for
start and end service nodes in the network. To eliminate 2-cycles using the method

introduced in [22], at each s and e node and for every time, we store the next port
visit following the current one for the best and second best path for each time point.
If there is a cycle when using the best solution, we use the second best solution
instead. This usually allows us to avoid 2-cycles of Type I and II and we call paths
satisfying this rule allowed paths. Note that all legal paths are allowed paths. We
need to keep updating the best and second best solution on each node during the
updating. The best path is the best among all allowed paths, while the second best
is the best among all allowed paths where the next port visit is different from the
best path.

Branch and Bound

The optimal solution of the stochastic ship routing problem must generate feasible
schedules of all ships. However the master problem is a relaxation and may yield
an infeasible ship schedule, either because the schedule is a mixture of schedules
with different sequences of port visits or because it contains a cycle of port visits.
To avoid this we use B&B. At each node of B&B tree a master problem with
the discrete requirements relaxed is solved using column generation method. If the
solution of this problem is not feasible, we branch so as to eliminate one of these
infeasibilities. The columns generated from subproblems are kept in the master
problem for other B&B nodes, only the infeasible column is deleted by setting the
upper bound of the column to zero.

There are many possible choices for the branching strategy. We branch on
infeasibilities in the following order.
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If there are columns with positive weight in the solution that correspond to a
path with a cycle, then we first branch on a time window so as to eliminate a cycle.
Assume that port visit (i,m,k) is involved in a cycle. Let {tS1

imk, . . . , t
SK
imk} be discrete

start service times associated with the port visit (i,m,k). Let t̄imk = 1/K ∑
y=1...K

tSy
imk

denote the average of these start service times. We do branching by splitting the
time window [Ã, B̃] for the start service time of port visit (i,m,k). Since the width
of the port visit time window is also reduced in child nodes, there is less chance of
getting other cycles later in the solution.

If there are no cycles in the solution but there are fractional port visit variables,
then a branch is made so as to either force a port visit to occur or not to occur. For
a port i and node k, the set of port visit variables yimk satisfies yi1k ≥ yi2k ≥ yi3k ≥
·· · ≥ yi,M−1,k ≥ yiMk and to be feasible all values must be 0 or 1. We first calculate
for each combination of (i,k) the difference between consecutive pairs of variables
and choose the maximum difference:

Yi,k = max
1≤m≤M−1

{yi,m+1,k − yi,m,k}

We then choose the minimum value for Yi,k, and choose the maximum value of yimk

which is less than 1 and branch on that variable. If the chosen yimk ≥ 0.5, we branch
first on yimk = 1 and the other branch is yimk = 0. If the value of chosen yimk < 0.5,
we branch first on yimk = 0 and the other branch is yimk = 1.

When in a branch where yim′ k is set to 0, no port arrivals (i,m,k) can occur for

m ≥ m
′
. So we delete all the port arrivals (i,m,k) (where m ≥ m

′
) as well as all the

edges linked with these port arrivals from the network of each ship. If yim′ k is set to
1 in a branch, no update happens for the structure of the ship networks. However, a
small artificial negative cost is added to each edge from the start service node of port
visit (i,m

′
,k) to its end service node, which makes port visit (i,m

′
,k) more attractive

than port arrivals (i,m,k) for m ≥ m
′
.

If there are no cycles or non-integer yimk, then we calculate the flow ximkjnlv,
where ximkjnlv = ∑s∈Rv;(i,m,k)→(j,n,l)∈Es xsv. This quantity defines whether or not ship
v sails from port visit (i,m,k) to port visit (j,n, l). For each (j,n, l), we find the
maximum fractional value for ximkjnlv. Then from these maximum values we choose
the minimum value over (j,n, l). The formulation for this process is shown as
follows:

min
j,n,l

max
i,m,k,v

{ximkjnlv}

If the value of the chosen variable is less than 0.5, we branch first on ximkjnlv = 0
and ximkjnlv = 1 on the other branch. In the branch where ximkjnlv is set equal to 0,
the ship v does not sail from (i,m,k) to (j,n, l). Hence all corresponding edges are
deleted from the network of ship v. In the branch where ximkjnlv set to 1, we delete
all the edges for ship v coming out of (i,m,k) except those going into (j,n, l). For all
other ships, the edges from (i,m,k) to (j,n, l) are deleted from the networks.
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Table 3 Properties of test examples

EX Ports Max arrival Scenario nodes in tree Planning periods Branches Ships

a1 3 2 3 2 2 2

b1 5 3 3 2 2 2

b2 5 3 3 2 2 2

b3 5 3 3 2 2 2

c1 5 3 7 3 2 2

c2 5 3 7 3 2 2

c3 5 3 7 3 2 2

d1 6 4 7 3 2 3

d2 6 4 7 3 2 3

d3 6 4 7 3 2 3

f1 5 3 13 3 3 2

f2 5 3 13 3 3 2

g1 6 3 13 3 3 3

g2 6 3 13 3 3 3

g3 6 3 13 3 3 3

h1 8 4 40 4 3 3

h2 8 4 40 4 3 3

Stochastic ship routing problems are computationally demanding, and as a result
there is the danger that the B&B search may terminate because of time or memory
limits before finding an acceptable feasible solution. Depth-first search, although not
the fastest B&B search strategy for proving optimality, has the advantage of finding
feasible solutions early. Best-first B&B algorithm is a better strategy for proving
optimality, and both strategies can be combined by first using depth-first search to
find an early integer solution and then switching to best-first search to produce better
bounds. This mixed strategy worked well on some examples; however, all the results
reported in the next session use depth-first search only and were solved to zero gap.

Examples and Results

To test the models and solution methods developed in this chapter, a set of test
problems has been built. The implementation is written in C and CPLEX10.0 is
used to solve the sequence of LPs in each B&B node of the master problem. The ship
subproblems are independent of each other and are solved in parallel using OpenMP
on a 4-core processor. The data structures needed to represent the networks in the
subproblems are generated once only before the start of the optimization.

Table 3 gives the characteristics of each test problem. Example a1 is very small
and is used to illustrate the details of a solution, including the visit sequences,
start service time, quantity on board each ship, and the storage levels. All of these
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Fig. 8 Scenario tree of Example g1

Table 4 DP and master problem dimensions

EX Nodes Edges (i,m,k) Combinations Constraints

a1 56 82 18 152

b1 137 706 45 372

b2 137 706 45 372

b3 137 706 45 372

c1 347 1786 105 862

c2 347 1786 105 862

c3 347 1786 105 862

d1 416 2335 126 1033

d2 416 2335 126 1033

d3 416 2335 126 1033

f1 632 3421 195 1607

f2 632 3421 195 1607

g1 758 3421 234 1928

g2 758 4477 234 1928

g3 758 4477 234 1928

h1 3170 23,481 960 7898

h2 3170 23,481 960 7898

details are given as an example later in this section. The examples named with
the same first letter are problems with the same physical ports layout and the
same demand scenario tree structure, but different initial inventory levels and
demand rate situations at each port. The “Max Arrival” column gives the maximum
number of possible arrivals for each port in each demand scenario part, which is
the parameter M in the formulation introduced in section “Master Problem”. The
“Scenario Nodes”, “Planning Periods” and “Branches” columns give the structure
of the scenario tree. For example, in example g1, there are 13 demand scenario parts,
3 time periods, and 3 branches for each period in the scenario tree, which indicates
a scenario tree as shown in Fig. 8 (Table 4).
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Table 5 Computational results (elapsed time in sec)

EX B&B nodes Columns Total time Subprob time Master iters

a1 6 56 0.8 0.6 24

b1 78 1251 13 11 497

b2 177 3079 31 25 1407

b3 219 4204 47 41 1973

c1 81 2435 20 18 879

c2 87 3948 26 21 1633

c3 237 4757 57 48 1978

d1 564 6206 120 103 2649

d2 63 1353 15 14 284

d3 750 6945 138 105 2954

f1 405 9034 439 379 3799

f2 138 3623 126 118 1181

g1 342 7241 403 352 2805

g2 624 11,557 705 611 4731

g3 132 4109 181 161 1298

h1 3598 30,753 3690 3112 43,850

h2 2987 31,983 3371 2958 40,791

The computational results given in Table 5 are: the number of branch-and-
bound nodes used to find the optimal discrete solution, the total number of columns
generated from the subproblems, the total solving time, the elapsed time for solving
the subproblems, and the total number of column generation iterations in the
master problem. Examples a1–c3 are relatively small and can be solved within a
minute. However, when the problem size is increased, the solving times for the
later examples increase sharply. Another factor which may effect the solving time
is the initial storage levels and demand situations. For instance, examples f1 and
f2 have the same problem structure, but different initial storage levels and demand
situations, and f2 is solved much faster than f1. This is because the initial storage
levels and demand situations are related to the number of visits to each port in each
demand scenario part. If there is sufficient initial storage at a port, fewer visits may
be required, which reduces the length of the visiting sequences for ships and makes
the problem easier to solve.

As previously discussed, because of the size of the DP networks, the major
solving time in each example is taken in solving the ship subproblems, and Table 5
indicates that this takes around 75–94 % of the total time. In the tests the ship
subproblems are solved in parallel using one core per ship.

Some detailed solutions are given based on two of the above examples. In exam-
ple c1, there are 5 ports, and ports A, B, and C are customer ports and ports D and E
are supply ports. The left-hand side of Fig. 9 shows the demand scenario tree of the
example, and the demand trend changes in each demand scenario part. The tree of
routes on the right-hand side of Fig. 9 shows the ship routes in the solution of c1. In
the figure, ships choose different routes according to the different demand situations
in each period. For instance, ship 1 visits the different ports in the upper and lower
cases of period 2, since in the upper case the demands at ports A and B go up while
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Fig. 9 Solution of Example c1

the demand at port C goes down, and in the lower case the demand situations are just
the opposite. In period 3, ship 1 does nothing in the lower case, and this is because
all of the demands are satisfied in the case so that there is no need to travel any
further.

Figure 10 shows the optimal solution for b1. The physical routes, inventory
levels, and quantities on board ships are shown. The changes in the storage of each
consumer port and on ships as a function of time can be clearly seen. In period 1,
ship 1 sails the route D→A→D. There is an unloading service made by the ship at
port A so that there is an increase in the storage level at port A. There are also two
visits made by ship 2 to port C, so the storage level of port C goes up twice during
the period. There is no visit to port B for the whole period, and the stock level of port
B goes down throughout the period because of the constant demand rate. A similar
situation can be seen in period 2 from the same figure.

Conclusion

In this chapter, we propose a solution approach to solve the stochastic ship routing
problem with inventory management at the ports. The only uncertainty considered is
the demand levels at the ports. A Branch and Price algorithm is presented. A master
problem is formulated as a set partitioning model including inventory constraints,
while a subproblem for each ship is solved by dynamic programming to find the
least reduced cost columns for the master problem. The optimal integer solution is
searched along the B&B tree and column generation method is used to solve the
relaxed LP iteratively in each B&B node.

The ship routing subproblems are stochastic dynamic programming problems,
and they are solved by a backward labelling algorithm. The method we use is
analogous to the methods that have been used in the deterministic case, but have
had to be extended to deal with the scenario branching in the stochastic case. The
minimum expected costs from the start node to the final dummy node is calculated.
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Fig. 10 Solution of Example b1

Because of the complicated DP network, there are many possible cycles (which are
not feasible in a solution). Two-cycles are eliminated when solving the subproblems
and other cycles with length greater than 2 are eliminated during the B&B algorithm
by splitting the time windows. Because the ship subproblems are independent of
each other, OpenMP is used to solve them in parallel on a multi-core computer.

From the computational experience, our decomposition method is able to solve
medium sized examples. A set of test examples with different geographical port
layouts, number of ships, scenario trees, and initial storage situations were built
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and were solved by the decomposition method. Our computational experience
shows that around 75–94 % of the elapsed time to solve the problem is used to
solve the ship subproblems, even when subproblems are solved in parallel. The rest
of the elapsed time is used to do B&B administration and solve the LPs. Because
of the need to model on entire scenario tree, the stochastic problems become large,
even for a small transport network, and this limits the size of problem that can be
solved. Generating useful columns in a heuristic way a priori is a possible area for
further work. The generated columns can be added into the master problem to give
a warm start, which should reduce the solution times and allow larger problems to
be solved.

The methods in this chapter naturally extend to cases where ships can divert
during sailing (when new demand information becomes available) and cases where
ships can alter their speed. These cases give rise to nonlinear subproblems (with
whole problem becoming a stochastic nonlinear integer programming problem).
However because the subproblems can be solved by discretization and DP the
solution approach given in this chapter can still be applied.
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