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Abstract

Hankel matrices (aka connection matrices) of word functions and graph parameters
have wide applications in automata theory, graph theory, and machine learning. We give
a characterization of real-valued functions on nested words recognized by weighted visibly
pushdown automata in terms of Hankel matrices on nested words. This complements C.
Mathissen’s characterization in terms of weighted monadic second order logic.

1 Introduction and Background

1.1 Weighted Automata for Words and Nested Words

Classical word automata can be extended to weighted word automata by assigning weights from
some numeric domain to their transitions, thereby having them assign values to their input
words rather than accepting or rejecting them. Weighted (word) automata define the class of
recognizable word functions, first introduced in the study of stochastic automata by A. Heller
[39]. Weighted automata are used in verification, [6, 52], in program synthesis, [13, 14], in
digital image compression, [19], and speech processing, [53, 28, 1]. For a comprehensive survey,
see the Handbook of Weighted Automata [27]. Recognizable word functions over commutative
semirings S were characterized using logic through the formalism of Weighted Monadic Second
Order Logic (WMSOL), [26], and the formalism of MSOLEVAL 1, [44].

Nested words and nested word automata are generalizations of words and finite automata,
introduced by Alur and Madhusudan [3]. A nested word nw ∈ NW(Σ) over an alphabet Σ is a
sequence of linearly ordered positions, augmented with forward-oriented edges that do not cross,
creating a nested structure. In the context of formal verification for software, execution paths in
procedural programs are naturally modeled by nested words whose hierarchical structure cap-
tures calls and returns. Nested words also model annotated linguistic data and tree-structured
data which is given by a linear encoding, such as HTML/XML documents. Nested word au-
tomata define the class of regular languages of nested words. The key feature of these automata
is their ability to propagate hierarchical states along the augmenting edges, in addition to the
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states propagated along the edges of the linear order. We refer the reader to [3] for details.
Nested words nw ∈ NW(Σ) can be (linearly) encoded as words over an extended tagged al-
phabet Σ̂, where the letters in Σ̂ specify whether the position is a call, a return, or neither
(internal). Such encodings of regular languages of nested words give the class of visibly push-
down languages over the tagged alphabet Σ̂, which lies between the parenthesis languages and
deterministic context-free languages. The accepting pushdown automata for visibly pushdown
languages push one symbol when reading a call, pop one symbol when reading a return, and
only update their control when reading an internal symbol. Such automata are called visibly
pushdown automata. Since their introduction, nested words and their automata have found
applications in specifications for program analysis [24, 37, 25], XML processing [31, 54], and
have motivated several theoretical questions, [20, 2, 55].

Visibly pushdown automata and nested word automata were extended by assigning weights
from a commutative semiring S to their transitions as well. Kiefer et al introduced weighted
visibly pushdown automata, and their equivalence problem was showed to be logspace reducible
to polynomial identity testing, [41]. Mathissen introduced weighted nested word automata, and
proved a logical characterization of their functions using a modification of WMSOL, [51].

1.2 Hankel Matrices and Weighted Word Automata

Given a word function f : Σ⋆ → F , its Hankel matrix Hf ∈ FΣ⋆×Σ⋆

is the infinite matrix whose
rows and columns are indexed by words in Σ⋆ and Hf (u, v) = f(uv), where uv is the concate-
nation of u and v. In addition to the logical characterizations, there exists a characterization of
recognizable word functions via Hankel matrices, by Carlyle and Paz [12].

Theorem 1 (Carlyle and Paz, 1971). A real-valued word function f is recognized by a weighted
(word) automaton iff Hf has finite rank.

The theorem was originally stated using the notion of external function rank, but the above
formulation is equivalent. Multiplicative words functions were characterized by Cobham [15] as
exactly those with a Hankel matrix of rank 1.

Hankel matrices proved useful also in the study of graph parameters. Lovász introduced
a kind of Hankel matrices for graph parameters [48] which were used to study real-valued
graph parameters and their relation to partition functions, [30, 49]. In [33], the definability
of graph parameters in monadic second order logic was related to the rank of their Hankel
matrices. Meta-theorems involving logic, such as Courcelle’s theorem and generalizations thereof
[23, 16, 17, 50], were made logic-free by replacing their definability conditions with conditions
on Hankel matrices, [45, 43, 46].

1.3 Our Contribution

The goal of this paper is to prove a characterization of the functions recognizable by weighted
visibly pushdown automata (WVPA), called here recognizable nested word functions, via Hankel
matrices. Such a characterization would nicely fill the role of the Carlyle-Paz theorem in the
words setting, complementing results that draw parallels between recognizable word functions
and nested word functions, such as the attractive properties of closure and decidability the
settings share [3], and the similarity between the WMSOL-type formalisms used to give their
logical characterizations.

The first challenge is in the choice of the Hankel matrices at hand. A naive straightforward
adaptation of the Carlyle-Paz theorem to the setting of nested words would involve Hankel ma-
trices for words over the extended alphabet Σ̂ with the usual concatenation operation on words.
However, then we would have functions recognizable by WVPA with Hankel matrices of infinite
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rank. Consider the Hankel matrix of the characteristic function of the language of balanced
brackets, also known as the Dyck language. This language is not regular, so its characteristic
function is not recognized by a weighted word automaton. Hence, by the Carlyle-Paz theorem,
its Hankel matrix would have infinite rank despite the fact its encoding over a tagged alphabet
is recognizable by VPA, hence also by WVPA.

Main results

We introduce nested Hankel matrices over well-nested words (see section 2) to overcome the
point described above and prove the following characterization of WVPA-recognizable functions
of well-nested words:

Theorem 2 (Main Theorem).
Let F = R or F = C, and let f be an F-valued function on well-nested words. Then f is
recognized by a weighted visibly pushdown automaton with n states iff the nested Hankel matrix
nHf has rank ≤ n2.

As opposed to the characterizations of word functions, which allow f to have values over a
semiring, we require that f is over R or C. This is due to the second challenge, which stems
from the fact that in our setting of functions of well-nested words, the helpful decomposition
properties exhibited by Hankel matrices for word functions are absent. This is because, as
opposed to words, well-nested words cannot be split in arbitrary positions and result in two
well-nested words. Thus, we use the singular value decomposition (SVD) theorem, see, e.g.,
[35], which is valid only over R and C.

Outline

In section 2 we complete the background on well-nested words and weighted visibly pushdown
automata, and introduce nested Hankel matrices. The rather technical proof of Theorem 2
is given in section 5. In section 3 we discuss the applications of Theorem 2 to learning the-
ory. In section 4 we briefly discuss limitations of our methods and possible extensions of our
characterization.

2 Preliminaries

For the remainder of the paper, we assume that F is R or C. Let Σ be a finite alphabet. For
ℓ ∈ N+, we denote the set {1, . . . , ℓ} by [ℓ]. For a matrix or vector N, denote its transpose by
NT . Vectors are assumed to be column vectors unless stated otherwise.

2.1 Well-Nested Words

We follow the definitions in [3] and [51]. A well-nested word over Σ is a pair (w, ν) where w ∈ Σ⋆

of length ℓ and ν is a matching relation for w. A matching relation2 for a word of length ℓ is a
set of edges ν ⊂ [ℓ]× [ℓ] such that the following holds:

1. If (i, j) ∈ ν, then i < j.

2. Any position appears in an edge of ν at most once: For 1 ≤ i ≤ ℓ,
|{j | (i, j) ∈ ν}| ≤ 1 and |{j | (j, i) ∈ ν}| ≤ 1

2The original definition of nested words allowed “dangling” edges. We will only be concerned with nested
words that are well-matched.
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b a a b b b〈a〈ab〉b〉

Figure 1: On the left, a well-nested word, where the successor relation of the linear order is in
bold edges, the matching relation is in dashed edges. On the right, its encoding as a word over
a tagged alphabet.

3. If (i, j), (i′, j′) ∈ ν, then it is not the case that i < i′ ≤ j < j′. That is, the edges do not
cross.

Denote the set of well-nested words over Σ by WNW(Σ).
Given positions i, j such that (i, j) ∈ ν, position i is a call position and position j is a return

position. Denote Σcall = {〈s | s ∈ Σ}, Σret = {s〉 | s ∈ Σ}, and Σ̂ = Σcall ∪ Σret ∪ Σint where
Σint = Σ and is disjoint from Σcall and Σret. By viewing calls as opening parentheses and
returns as closing parentheses, one can define an encoding taking nested words over Σ to words
over Σ̂ by assigning to a position labeled s ∈ Σ:

the letter 〈s, if it is a call position,

the letter s〉, if it is a return position,

the same letter s, if it is an internal position.

We denote this encoding by nw w : WNW(Σ) → Σ̂⋆ and give an example in Figure 1. Note
that any parentheses appearing in such an encoding will be well-matched (balanced) parentheses.
Denote its partial inverse function, defined only for words with well-matched parentheses, by
w nw : Σ̂⋆ → WNW(Σ). See [3] for details. We will freely pass between the two forms.

Given a function f : WNW(Σ) → F on well-nested words, one can naturally define a
corresponding function f ′ : Σ̂⋆ → F on words with well-matched parentheses by setting f ′(w) =
f(w nw(w)). We will denote both functions by f .

2.2 Nested Hankel Matrices

Given a function on well-nested words f : WNW(Σ) → F , define its nested Hankel matrix nHf

as the infinite matrix whose rows and columns are indexed by words over Σ̂ with well-matched
parentheses, and nHf (u, v) = f(uv). That is, the entry at the row labeled with u and the
column labeled with v is the value f(uv). A nested Hankel matrix nHf has finite rank if there
is a finite set of rows in nHf that linearly span it. We stress the fact that nHf is defined over
words whose parentheses are well-matched, as this is crucial for the proof of Theorem 2.

As an example, consider the function f which counts the number of pairs of parentheses in a
well-nested word over the alphabet Σ = {a}. Then the corresponding word function is on words
over the tagged alphabet Σ̂ = {a, 〈a, a〉}. In Figure 2 we see (part of) the corresponding nested
Hankel matrix nHf with labels on its columns and rows.

2.3 Weighted Visibly Pushdown Automata

For notational convenience, now let Σ = Σcall ∪ Σret ∪ Σint. We follow the definition given in
[41].
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ε a 〈aa〉 aa 〈aaa〉 〈a〈aa〉a〉 · · ·

ε 0 0 1 0 1 2 · · ·

a 0 0 1 0 1 2 · · ·

〈aa〉 1 1 2 1 2 3 · · ·

aa 0 0 1 0 1 2 · · ·

〈aaa〉 1 1 2 1 2 3 · · ·

〈a〈aa〉a〉 2 2 3 2 3 4 · · ·
...

...
...

...
...

...
...

Figure 2: The nested Hankel matrix nHf . Note that nHf has rank 2.

Definition 3 (Weighted visibly pushdown automata). An F -weighted VPA on Σ is a tuple
A = (n,α,η,Γ,M) where

n ∈ N+ is the number of states,

α,η ∈ Fn are initial and final vectors, respectively,

Γ is a finite stack alphabet, and

M are matrices in Fn×n defined as follows.

For every γ ∈ Γ and every c ∈ Σcall, the matrix M
(c,γ)
call ∈ Fn×n is given by

M
(c,γ)
call (i, j) = the weight of a c-labeled transition from

state i to state j that pushes γ onto the stack.

The matrices M
(r,γ)
ret ∈ Fn×n are given similarly for every r ∈ Σret, and the matrices

M
(s)
int ∈ Fn×n are given similarly for every s ∈ Σint.

Definition 4 (Behavior of weighted VPA). Let A = (n,α,η,Γ,M) be an F-weighted VPA
on Σ. For a well-nested word u ∈ WNW(Σ), the automaton A inductively computes a matrix

M
(A)
u ∈ Fn×n for u in the following way.

Base cases:

M(A)
ε = I, and M(A)

s = M
(s)
int for s ∈ Σint.

Closure:

M
(A)
uv = M

(A)
u ·M

(A)
v for u, v ∈ WNW(Σ), and

M
(A)
cur =

∑

γ∈ΓM
(c,γ)
call ·M

(A)
u ·M

(r,γ)
ret for c ∈ Σcall and r ∈ Σret.

The behavior of A is the function fA : WNW(Σ) → F where

fA(u) = α
T ·M(A)

u · η

A function f : WNW(Σ) → F is recognizable by weighted VPA if it is the behavior of some
weighted VPA A.
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3 Applications in Computational Learning Theory

A passive learning algorithm for classical automata is an algorithm which is given a set of strings
accepted by the target automaton (positive examples) and a set of strings rejected by the target
automaton (negative examples), and is required to output an automaton which is consistent
with the set of examples. It is well known that in a variety of passive learning models, such
as Valiant’s PAC model, [58], and the mistake bound models of Littlestone and Haussler et al,
[47, 38], it is intractable to learn or even approximate classical automata, [34, 4, 56]. However,
the problem becomes tractable when the learner is allowed to make membership and equivalence
queries, as in the active model of learning introduced by Angluin, [4, 5]. This approach was
extended to weighted automata over fields, [10].

The problem of learning weighted automata is of finding a weighted automaton which closely
estimates some target function, by considering examples consisting of pairs of strings with their
value. The development of efficient learning techniques for weighted automata was immensely
motivated by the abundance of their applications, with many of the techniques exploiting the
relationship between weighted automata and their Hankel matrices, [9, 36, 11].

3.1 Learning Weighted Visibly Pushdown Automata

The proof of our Theorem 2 suggests a template of learning algorithms for weighted visibly
pushdown automata, with the difficult part being the construction of the matrices that corre-
spond to call and return symbols. The proof of Lemma 11 spells out the construction of these
matrices, given an algorithm for finding SVD expansions (see section 6) and a spanning set of
the nested Hankel matrix. To the best of our knowledge, learning algorithms for weighted visibly
pushdown automata have not been proposed so far.

In recent years, the spectral method of Hsu et al [40] for learning hidden Markov models,
which relies on the SVD of a Hankel matrix, has driven much follow-up research, see the survey
[8]. Balle and Mohri combined spectral methods with constrained matrix completion algorithms
to learn arbitrary weighted automata, [7]. We believe the possibility of developing spectral
learning algorithms for WVPA is worth exploring in more detail.

Lastly, we should note that one could employ existing algorithms to produce a weighted
automaton from a nested Hankel matrix, if it is viewed as a partial Hankel matrix for a word
function. However, any automaton which is consistent with the matrix will have as many states
as the rank of the nested Hankel matrix, [12, 29]. This may be less than satisfying when
considering how, in contrast, Theorem 2 assures the existence of a weighted visibly pushdown
automaton with n states, given a nested Hankel matrix of rank ≤ n2. This discrepancy funda-
mentally depends on the SVD Theorem.

4 Extension to Semirings

The proof of Theorem 2 relies on the SVD theorem, which, in particular, assumes the existence
of an inverse with respect to addition. Furthermore, notions of orthogonality, rank, and norms
do not readily transfer to the semiring setting. Thus it is not clear what an analogue to the
SVD theorem would be in the context of semirings, nor whether it could exist. Therefore the
proof of Theorem 2 cannot be used to characterize nested word functions recognized by WVPA
over semirings.

However, in the special case of the tropical semirings, De Schutter and De Moor proposed
an extended max algebra corresponding to R, called the symmetrized max algebra, and proved
an analogue SVD theorem for it, [21]. See also [22] for an extended presentation. These results
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suggest a similar Hankel matrix based characterization for WVPA-recognizable nested word
functions may be possible over the tropical semirings. This would be beneficial in situations
where we have a function that has a nested Hankel matrix of infinite rank when interpreted over
R, but has finite rank when it is interpreted over a tropical semiring. It is easy to verify that any
function on well-nested words which is maximizing or minimizing with respect to concatenation
would fall in this category.

5 The Characterization of WVPA-Recognizability

In this section we prove both directions of Theorem 2.

5.1 Recognizability Implies Finite Rank of Nested Hankel Matrix

This is the easier direction of Theorem 2. First we need a definition. For ℓ,m ∈ [n], define the
matrix A(ℓ,m) ∈ Fn×n as having the value 1 in the entry (ℓ,m) and zero in all other entries.
That is,

A(ℓ,m)(i, j) =

{

1, if (i, j) = (ℓ,m)

0, otherwise

Obviously, for any matrix M ∈ Fn×n with entries M(i, j) = mij we have
M =

∑

i,j∈[n] mijA
(i,j).

Theorem 5. Let f : WNW(Σ) → F be recognized by a weighted visibly pushdown automaton
A with n states. Then the nested Hankel matrix nHf has rank ≤ n2.

Proof. We describe infinite row vectors v(i,j) where i, j ∈ [n], whose entries are indexed by
well-nested words w ∈ WNW(Σ), and show they span the rows of nHf . We define the entry of
v(i,j) associated with w to be

v(i,j)(w) = α
T ·A(i,j)M(A)

w · η

Note that there are n2 such vectors. Now let u ∈ WNW(Σ) be a well-nested word and let M
(A)
u

be the matrix computed for u by A as described in the . Then the row ru corresponding to u
in nHf has entries

ru(w) = α
T ·M(A)

u ·M(A)
w · η

We show this row is linearly spanned by the vectors v(i,j), i, j ∈ [n]. Consider the linear
combination

vu =
∑

1≤i,j≤n

M(A)
u (i, j) · v(i,j).

Then

vu(w) =
∑

1≤i,j≤n

M(A)
u (i, j) · v(i,j)(w) =

∑

1≤i,j≤n

M(A)
u (i, j) ·

(

α
T ·A(i,j)M(A)

w · η
)

= α
T ·M(A)

u ·M(A)
w · η = ru(w)

Therefore the rank of nHf is at most n2.

7



6 Finite Rank of Nested Hankel Matrix Implies Recogniz-

ability

Here we prove the second direction of Theorem 2. This will be done by defining a weighted VPA
which recognizes the function f described by a given Hankel matrix nHf . It will hold that if
the rank of nHf is ≤ n2, the automaton will have at most n states, and a stack alphabet Γ of
size at most n.

We first describe the initial and final vectors α,η and the matrices that will be used to
construct the automaton, and prove useful properties for them.

As we cannot decompose the Hankel matrix entries in arbitrary positions, but only in ways
that maintain the well-nesting, we will need to use the following theorem to show the matrices
used in the construction of the automaton indeed exist:

Theorem 6 (The SVD Theorem, see [35]). Let N ∈ Fm×n be a non-zero matrix, where F = R

or F = C. Then there exist vectors x1, . . . ,xm ∈ Fm and y1, . . . ,yn ∈ Fn such that the
matrices

X = [x1 . . .xm] ∈ Fm×m, Y = [y1 . . .yn] ∈ Fn×n

are orthogonal, and
YTNX = diag(σ1, . . . , σp) ∈ Fm×n

where p = min{m,n}, diag(σ1, . . . , σp) is a diagonal matrix with the values σ1, . . . , σp on its
diagonal, and σ1 ≥ σ2 ≥ . . . ≥ σp.

As a consequence, if we define r by σ1 ≥ . . . ≥ σr > σr+1 = . . . = 0, that is the number of
non-zero entries in diag(σ1, . . . , σp), then we have the SVD expansion of N:

N =

r
∑

i=1

σixiy
T
i

In particular, if N is of rank 1, then N = xyT .
The SVD is perhaps the most important factorization for real and complex matrices. It is

used in matrix approximation techniques, signal processing, computational statistics, and many
more areas. See [42, 57, 32] and references therein.

6.0.1 The Components of the Automaton

Let Σ = Σcall ∪ Σret ∪ Σint, where Σcall,Σret and Σint are disjoint. Throughout this section,
let f : WNW(Σ) → F be a function on well-nested words over Σ, and let its nested Hankel
matrix nHf have finite rank r(nHf ) ≤ n2. Denote by B = {w1,1, . . . , wn,n} the well-nested
words whose rows linearly span nHf .

Definition 7 (Initial and final vectors). Let the matrix N ∈ Fn×n be defined as N(i, j) =
f(w1,j), and let x,y ∈ Fn be vectors such that N = xyT . Let

η = y, α = x (1)

Note that this definition is sound; as N has rank 1, Theorem 6 guarantees there exist such
vectors x,y.
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Definition 8 (Internal matrices). For wi,j ∈ B, define βi,j = f(wi,j)f(w1,j)
−1, and let

Mwi,j
= βi,j ·A

(i,j) (2)

Note that for w1,j, we have β1,j = 1 and Mw1,j
= A(1,j).

For a letter a ∈ Σint, let ra denote the row in nHf corresponding to a. The rows indexed by
the elements in B span the matrix, so there is a linear combination of them equal to ra:

ra =
∑

1≤i,j≤n

zi,ja · rwi,j

Set
Ma =

∑

1≤i,j≤n

zi,ja ·Mwi,j
(3)

Before we define the call and return matrices, we show the above defined vectors and matrices
behave as expected:

Lemma 9. Let α,η ∈ Fn, Mwi,j
∈ Fn×n for wi,j ∈ B, and Ma for a ∈ Σint be defined as in

Definitions 7 and 8. It holds that:

f(wi,j) = α
T ·Mwi,j

· η (4)

f(a) = α
T ·Ma · η (5)

Proof. Since the entries of Mwi,j
are zero except for entry (i, j), we have

α
T ·Mwi,j

· η = α(i) · βi,j · η(j)

Since α(i)η(j) = f(w1,j), we have

α
T ·Mwi,j

· η = βi,j · f(w1,j) = f(wi,j) · f(w1,j)
−1 · f(w1,j) = f(wi,j)

and Equation 4 holds.
By the definition of Ma, we have

α
T ·Ma · η = α

T





∑

1≤i,j≤n

zi,ja ·Mwi,j



η =
∑

1≤i,j≤n

zi,ja

(

α
TMwi,j

η
)

=
∑

1≤i,j≤n

zi,ja · f(wi,j) = f(a)

and Equation 5 holds.

Definition 10 (Call and return matrices). For each pair c ∈ Σcall and r ∈ Σret, define the
n× n matrix Nc,r as Nc,r(i, j) = f(cwi,jr)/βi,j and let its SVD be

Nc,r =
n
∑

k=1

pc,k(pr,k)
T

For γ ∈ Γ, define

M
c,γ
call(ℓ, i) =

{

pc,γ(i)/α(γ) ℓ = γ

0 else

and

M
r,γ
ret(j,m) =

{

pr,γ(j)/η(γ) m = γ

0 else

9



Now we show these matrices behave as expected:

Lemma 11. Let M
(c,γ)
call and M

(r,γ)
ret for c ∈ Σcall, r ∈ Σret be defined as in Definition 10. Then

it holds that:

f(cwi,jr) = α
T

(

n
∑

γ=1

M
(c,γ)
call ·Mwi,j

·M
(r,γ)
ret

)

η (6)

Proof. By the definition of Nc,r we have:

Nc,r(i, j) = f(cwi,jr)/βi,j =

n
∑

k=1

pc,k(i)pr,k(j) (7)

In addition, Mwij
is zero in all entries that are not the (i, j) one. Therefore,

(Mc,γ
call ·Mwij

)(ℓ,m) =

{

M
c,γ
call(γ, i)βi,j = pc,γ(i)βi,j/α(γ) ℓ = γ,m = j

0 else

Thus multiplying with M
r,γ
ret results in:

(Mc,γ
call ·Mwij

·Mr,γ
ret)(ℓ,m) =

{

(pc,γ(i)βi,jpr,γ(j))/(α(γ)η(γ)) ℓ = m = γ

0 else

Note that the above matrix M
c,γ
call ·Mwij

·Mr,γ
ret is diagonal. Therefore, in total:

α
T

(

n
∑

γ=1

M
c,γ
callMwi,j

M
r,γ
ret

)

η = βi,j

n
∑

γ=1

pc,γ(i)pr,γ(j)

=
Equation7

βi,j(f(cwi,jr)/βi,j) = f(cwi,jr)

so Equation 6 holds.

6.0.2 Putting the Automaton Together

We are now ready to prove the second direction of Theorem 2:

Theorem 12. Let f : WNW(Σ) → F have a nested Hankel matrix nHf of rank ≤ n2. Then f
is recognizable by a weighted visibly pushdown automaton A with n states.

Proof. Use Definitions 7, 8, and 10 to build a weighted VPA A with n states, and set M
(A)
ε = I.

From Lemmas 9 and 11 it only remains to show that for u, t ∈ WNW(Σ),

M
(A)
ut = M(A)

u ·M
(A)
t

Note that we defined the matrices M
(A)
wi,j such that rwi,j

= v(i,j) up to a constant factor. We
show that if

ru =
∑

1≤i,j≤n

M(A)
u (i, j) · v(i,j) and rt =

∑

1≤i,j≤n

M
(A)
t (i, j) · v(i,j),

then
rut =

∑

1≤i,j≤n

(M(A)
u ·M

(A)
t )(i, j) · v(i,j)

10



Or, equivalently, that for every well-nested word w ∈ WNW(Σ),

rut(w) = α
T ·M(A)

u ·M
(A)
t ·M(A)

w · η

Consider the linear combination:

vut =
∑

1≤i,j≤n

(M(A)
u ·M

(A)
t )(i, j) · v(i,j) =

∑

1≤i,k,j≤n

M(A)
u (i, k) ·M

(A)
t (k, j) · v(i,j)

Then, for w ∈ WNW(Σ) we have

vut(w) =
∑

1≤i,k,j≤n

M(A)
u (i, k) ·M

(A)
t (k, j) · v(i,j)(w)

=
∑

1≤i,k,j≤n

M(A)
u (i, k) ·M

(A)
t (k, j) ·

(

α
T ·A(i,j)M(A)

w · η
)

Note that the row i of A(i,j)M
(A)
w is row j of M

(A)
w and all other rows are zero. Then

vut(w) =
∑

1≤i,k,j≤n

M(A)
u (i, k) ·M

(A)
t (k, j) ·

(

n
∑

l=1

α(i) ·M(A)
w (j, l) · η(l)

)

=
∑

1≤i,k,j,l≤n

α(i) ·M(A)
u (i, k) ·M

(A)
t (k, j) ·M(A)

w (j, l) · η(l)

= α
T ·M(A)

u ·M
(A)
t ·M(A)

w · η = rut(w)

From Theorem 12 and Theorem 5 we have our main result, Theorem 2.

Acknowledgments.

We thank Boaz Blankrot for helpful discussions on matrix decompositions and the anonymous
referees for valuable feedback.

References

[1] C. Allauzen, M. Mohri, and M. Riley. Statistical modeling for unit selection in speech
synthesis. In Proceedings of the 42nd Annual Meeting on Association for Computational
Linguistics, page 55. Association for Computational Linguistics, 2004.
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