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Abstract

Hankel matrices (aka connection matrices) of word functions and graph parameters
have wide applications in automata theory, graph theory, and machine learning. We give
a characterization of real-valued functions on nested words recognized by weighted visibly
pushdown automata in terms of Hankel matrices on nested words. This complements C.
Mathissen’s characterization in terms of weighted monadic second order logic.

1 Introduction and Background

1.1 Weighted Automata for Words and Nested Words

(Classical word automata can be extended to weighted word automata by assigning weights from
some numeric domain to their transitions, thereby having them assign values to their input
words rather than accepting or rejecting them. Weighted (word) automata define the class of
recognizable word functions, first introduced in the study of stochastic automata by A. Heller
[39]. Weighted automata are used in verification, [6, 52|, in program synthesis, [13, 14], in
digital image compression, [19], and speech processing, [53, 28, 1]. For a comprehensive survey,
see the Handbook of Weighted Automata [27]. Recognizable word functions over commutative
semirings S were characterized using logic through the formalism of Weighted Monadic Second
Order Logic (WMSOL), [26], and the formalism of MSOLEVAL !, [44].

Nested words and nested word automata are generalizations of words and finite automata,
introduced by Alur and Madhusudan [3]. A nested word nw € NW(X) over an alphabet ¥ is a
sequence of linearly ordered positions, augmented with forward-oriented edges that do not cross,
creating a nested structure. In the context of formal verification for software, execution paths in
procedural programs are naturally modeled by nested words whose hierarchical structure cap-
tures calls and returns. Nested words also model annotated linguistic data and tree-structured
data which is given by a linear encoding, such as HTML/XML documents. Nested word au-
tomata define the class of regular languages of nested words. The key feature of these automata
is their ability to propagate hierarchical states along the augmenting edges, in addition to the

*Supported by the National Research Network RiSE (S114), and the LogiCS doctoral program (W1255)
funded by the Austrian Science Fund (FWF).

TPartially supported by a grant of Technion Research Authority.

1This formalism was originally introduced in [18] for graph parameters.


http://arxiv.org/abs/1512.02430v2

states propagated along the edges of the linear order. We refer the reader to [3] for details.
Nested words nw € NW(X) can be (linearly) encoded as words over an extended tagged al-
phabet 2, where the letters in 3 specify whether the position is a call, a return, or neither
(internal). Such encodings of regular languages of nested words give the class of visibly push-
down languages over the tagged alphabet 33, which lies between the parenthesis languages and
deterministic context-free languages. The accepting pushdown automata for visibly pushdown
languages push one symbol when reading a call, pop one symbol when reading a return, and
only update their control when reading an internal symbol. Such automata are called wisibly
pushdown automata. Since their introduction, nested words and their automata have found
applications in specifications for program analysis [24, 37, 25], XML processing [31, 54], and
have motivated several theoretical questions, [20, 2, 55].

Visibly pushdown automata and nested word automata were extended by assigning weights
from a commutative semiring S to their transitions as well. Kiefer et al introduced weighted
visibly pushdown automata, and their equivalence problem was showed to be logspace reducible
to polynomial identity testing, [41]. Mathissen introduced weighted nested word automata, and
proved a logical characterization of their functions using a modification of WMSOL, [51].

1.2 Hankel Matrices and Weighted Word Automata

Given a word function f : ¥* — F, its Hankel matriz Hy € F>"*=" is the infinite matrix whose
rows and columns are indexed by words in ¥* and H(u,v) = f(uv), where uv is the concate-
nation of v and v. In addition to the logical characterizations, there exists a characterization of
recognizable word functions via Hankel matrices, by Carlyle and Paz [12].

Theorem 1 (Carlyle and Paz, 1971). A real-valued word function f is recognized by a weighted
(word) automaton iff Hy has finite rank.

The theorem was originally stated using the notion of external function rank, but the above
formulation is equivalent. Multiplicative words functions were characterized by Cobham [15] as
exactly those with a Hankel matrix of rank 1.

Hankel matrices proved useful also in the study of graph parameters. Lovasz introduced
a kind of Hankel matrices for graph parameters [48] which were used to study real-valued
graph parameters and their relation to partition functions, [30, 49]. In [33], the definability
of graph parameters in monadic second order logic was related to the rank of their Hankel
matrices. Meta-theorems involving logic, such as Courcelle’s theorem and generalizations thereof
[23, 16, 17, 50], were made logic-free by replacing their definability conditions with conditions
on Hankel matrices, [45, 43, 46].

1.3 Our Contribution

The goal of this paper is to prove a characterization of the functions recognizable by weighted
visibly pushdown automata (WVPA), called here recognizable nested word functions, via Hankel
matrices. Such a characterization would nicely fill the role of the Carlyle-Paz theorem in the
words setting, complementing results that draw parallels between recognizable word functions
and nested word functions, such as the attractive properties of closure and decidability the
settings share [3], and the similarity between the WMSOL-type formalisms used to give their
logical characterizations.

The first challenge is in the choice of the Hankel matrices at hand. A naive straightforward
adaptation of the Carlyle-Paz theorem to the setting of nested words would involve Hankel ma-
trices for words over the extended alphabet 3 with the usual concatenation operation on words.
However, then we would have functions recognizable by WVPA with Hankel matrices of infinite



rank. Consider the Hankel matrix of the characteristic function of the language of balanced
brackets, also known as the Dyck language. This language is not regular, so its characteristic
function is not recognized by a weighted word automaton. Hence, by the Carlyle-Paz theorem,
its Hankel matrix would have infinite rank despite the fact its encoding over a tagged alphabet
is recognizable by VPA, hence also by WVPA.

Main results

We introduce nested Hankel matrices over well-nested words (see section 2) to overcome the
point described above and prove the following characterization of WVPA-recognizable functions
of well-nested words:

Theorem 2 (Main Theorem).

Let F = R or F = C, and let f be an F-valued function on well-nested words. Then f is
recognized by a weighted visibly pushdown automaton with n states iff the nested Hankel matriz
nH; has rank < n?.

As opposed to the characterizations of word functions, which allow f to have values over a
semiring, we require that f is over R or C. This is due to the second challenge, which stems
from the fact that in our setting of functions of well-nested words, the helpful decomposition
properties exhibited by Hankel matrices for word functions are absent. This is because, as
opposed to words, well-nested words cannot be split in arbitrary positions and result in two
well-nested words. Thus, we use the singular value decomposition (SVD) theorem, see, e.g.,
[35], which is valid only over R and C.

Outline

In section 2 we complete the background on well-nested words and weighted visibly pushdown
automata, and introduce nested Hankel matrices. The rather technical proof of Theorem 2
is given in section 5. In section 3 we discuss the applications of Theorem 2 to learning the-
ory. In section 4 we briefly discuss limitations of our methods and possible extensions of our
characterization.

2 Preliminaries

For the remainder of the paper, we assume that F is R or C. Let ¥ be a finite alphabet. For
¢ € Nt we denote the set {1,...,¢} by [¢]. For a matrix or vector N, denote its transpose by
N7'. Vectors are assumed to be column vectors unless stated otherwise.

2.1 Well-Nested Words

We follow the definitions in [3] and [51]. A well-nested word over ¥ is a pair (w, v) where w € ¥*
of length ¢ and v is a matching relation for w. A matching relation® for a word of length £ is a
set of edges v C [¢] x [¢] such that the following holds:

1. If (4,7) € v, then i < j.

2. Any position appears in an edge of v at most once: For 1 <i </,
{1 G,5)evi<Tand [{j|(5,79) € v} <1

2The original definition of nested words allowed “dangling” edges. We will only be concerned with nested
words that are well-matched.
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Figure 1: On the left, a well-nested word, where the successor relation of the linear order is in
bold edges, the matching relation is in dashed edges. On the right, its encoding as a word over
a tagged alphabet.

3. If (4,7), (i, j') € v, then it is not the case that i < i’ < j < j'. That is, the edges do not
cross.

Denote the set of well-nested words over ¥ by WNW ().

Given positions 4, j such that (i, ) € v, position i is a call position and position j is a return
position. Denote Yeq = {{s| s € L}, Zret = {5) | s € X}, and Y = Yean U Srer U Bipnt where
Yint = X and is disjoint from Y., and ... By viewing calls as opening parentheses and
returns as closing parentheses, one can define an encoding taking nested words over ¥ to words
over & by assigning to a position labeled s € 3:

@ the letter (s, if it is a call position,
@ the letter s), if it is a return position,
¢ the same letter s, if it is an internal position.

We denote this encoding by nw_w : WNW(E) — 3* and give an example in Figure 1. Note
that any parentheses appearing in such an encoding will be well-matched (balanced) parentheses.
Denote its partial inverse function, defined only for words with well-matched parentheses, by
wnw : $* — WNW(X). See [3] for details. We will freely pass between the two forms.

Given a function f : WNW(X) — F on well-nested words, one can naturally define a
corresponding function f’ : £* — F on words with well-matched parentheses by setting f/(w) =
f(wnw(w)). We will denote both functions by f.

2.2 Nested Hankel Matrices

Given a function on well-nested words f : WNW (X)) — F, define its nested Hankel matriz nH
as the infinite matrix whose rows and columns are indexed by words over S with well-matched
parentheses, and nHy(u,v) = f(uv). That is, the entry at the row labeled with u and the
column labeled with v is the value f(uv). A nested Hankel matrix nH/ has finite rank if there
is a finite set of rows in nHy that linearly span it. We stress the fact that nHy is defined over
words whose parentheses are well-matched, as this is crucial for the proof of Theorem 2.

As an example, consider the function f which counts the number of pairs of parentheses in a
well-nested word over the alphabet ¥ = {a}. Then the corresponding word function is on words
over the tagged alphabet 3 = {a, (a,a)}. In Figure 2 we see (part of) the corresponding nested
Hankel matrix nH ¢ with labels on its columns and rows.

2.3 Weighted Visibly Pushdown Automata

For notational convenience, now let ¥ = ¥ 451 U ¥per U Xype. We follow the definition given in
[41].



€ a (aa) aa (aaa) (alaa)a)
€ 0 0 1 0 1 2
a 0 0 1 0 1 2
(aa) 1 1 2 1 2 3
aa 0 0 1 0 1 2
(aaa) 1 1 2 1 2 3
(a{aa)a) 2 2 3 2 3 4

Figure 2: The nested Hankel matrix nH;. Note that nH; has rank 2.

Definition 3 (Weighted visibly pushdown automata). An F-weighted VPA on X is a tuple
A= (n,a,n, T, M) where

¢ n € NT s the number of states,
® a,n € F" are initial and final vectors, respectively,
¢ [ is a finite stack alphabet, and

¢ M are matrices in F"*" defined as follows.

For every v € T and every ¢ € Ycqy1, the matriz M) g Frxn g giwen by

call

M(C’V)(i,j) = the weight of a c-labeled transition from

call

state i to state j that pushes v onto the stack.

The matrices M) € Frxn gre given similarly for every r € ¥,et, and the matrices

ret
M)

iy € FX™ are given similarly for every s € Yine.

Definition 4 (Behavior of weighted VPA). Let A = (n,a,n,T,M) be an F-weighted VPA
on X. For a well-nested word v € WNW(X), the automaton A inductively computes a matriz

MSf‘) € F™*" for u in the following way.

¢ Base cases:

€

MY =1, and MW =M for s € Sin.

¢ Closure:
M =M Y for u,v € WNW(X), and
Méﬁz = Z'yer Mgfl’l’ly) : M&A) . Mi’;]) forceXequ and r € Xpet.

The behavior of A is the function fa : WNW(X) — F where
fa(u) =a® - MgA) ]

A function f: WNW(X) — F is recognizable by weighted VPA if it is the behavior of some
weighted VPA A.



3 Applications in Computational Learning Theory

A passive learning algorithm for classical automata is an algorithm which is given a set of strings
accepted by the target automaton (positive examples) and a set of strings rejected by the target
automaton (negative examples), and is required to output an automaton which is consistent
with the set of examples. It is well known that in a variety of passive learning models, such
as Valiant’s PAC model, [58], and the mistake bound models of Littlestone and Haussler et al,
[47, 38], it is intractable to learn or even approximate classical automata, [34, 4, 56]. However,
the problem becomes tractable when the learner is allowed to make membership and equivalence
queries, as in the active model of learning introduced by Angluin, [4, 5]. This approach was
extended to weighted automata over fields, [10].

The problem of learning weighted automata is of finding a weighted automaton which closely
estimates some target function, by considering examples consisting of pairs of strings with their
value. The development of efficient learning techniques for weighted automata was immensely
motivated by the abundance of their applications, with many of the techniques exploiting the
relationship between weighted automata and their Hankel matrices, [9, 36, 11].

3.1 Learning Weighted Visibly Pushdown Automata

The proof of our Theorem 2 suggests a template of learning algorithms for weighted visibly
pushdown automata, with the difficult part being the construction of the matrices that corre-
spond to call and return symbols. The proof of Lemma 11 spells out the construction of these
matrices, given an algorithm for finding SVD expansions (see section 6) and a spanning set of
the nested Hankel matrix. To the best of our knowledge, learning algorithms for weighted visibly
pushdown automata have not been proposed so far.

In recent years, the spectral method of Hsu et al [40] for learning hidden Markov models,
which relies on the SVD of a Hankel matrix, has driven much follow-up research, see the survey
[8]. Balle and Mohri combined spectral methods with constrained matrix completion algorithms
to learn arbitrary weighted automata, [7]. We believe the possibility of developing spectral
learning algorithms for WVPA is worth exploring in more detail.

Lastly, we should note that one could employ existing algorithms to produce a weighted
automaton from a nested Hankel matrix, if it is viewed as a partial Hankel matrix for a word
function. However, any automaton which is consistent with the matrix will have as many states
as the rank of the nested Hankel matrix, [12, 29]. This may be less than satisfying when
considering how, in contrast, Theorem 2 assures the existence of a weighted visibly pushdown
automaton with n states, given a nested Hankel matrix of rank < n2. This discrepancy funda-
mentally depends on the SVD Theorem.

4 Extension to Semirings

The proof of Theorem 2 relies on the SVD theorem, which, in particular, assumes the existence
of an inverse with respect to addition. Furthermore, notions of orthogonality, rank, and norms
do not readily transfer to the semiring setting. Thus it is not clear what an analogue to the
SVD theorem would be in the context of semirings, nor whether it could exist. Therefore the
proof of Theorem 2 cannot be used to characterize nested word functions recognized by WVPA
over semirings.

However, in the special case of the tropical semirings, De Schutter and De Moor proposed
an extended max algebra corresponding to R, called the symmetrized maz algebra, and proved
an analogue SVD theorem for it, [21]. See also [22] for an extended presentation. These results



suggest a similar Hankel matrix based characterization for WVPA-recognizable nested word
functions may be possible over the tropical semirings. This would be beneficial in situations
where we have a function that has a nested Hankel matrix of infinite rank when interpreted over
R, but has finite rank when it is interpreted over a tropical semiring. It is easy to verify that any
function on well-nested words which is maximizing or minimizing with respect to concatenation
would fall in this category.

5 The Characterization of WVPA-Recognizability

In this section we prove both directions of Theorem 2.

5.1 Recognizability Implies Finite Rank of Nested Hankel Matrix

This is the easier direction of Theorem 2. First we need a definition. For ¢, m € [n], define the
matrix A6™ € FPX" as having the value 1 in the entry (£,m) and zero in all other entries.
That is,

1, if (4,5) = (¢, m)

0, otherwise

A6m) (z,]) — {

Obviously, for any matrix M € F™**™ with entries M(4, j) = m;; we have
M= Zi,je[n] mijA(i"j)~

Theorem 5. Let f: WNW(X) — F be recognized by a weighted visibly pushdown automaton
A with n states. Then the nested Hankel matriz nHy has rank < n?.

Proof. We describe infinite row vectors v(*7) where i,j € [n], whose entries are indexed by
well-nested words w € WNW(X), and show they span the rows of nH;. We define the entry of
v(49) associated with w to be

v(i"j)(w) —aT -A(i’j)MguA) -

Note that there are n? such vectors. Now let u € WNW(X) be a well-nested word and let 1\/[1([4)
be the matrix computed for v by A as described in the . Then the row r, corresponding to u
in nH; has entries

ru) = oMY MY

We show this row is linearly spanned by the vectors v(#/) 4,5 € [n]. Consider the linear
combination N
e S MG v
1<i,j<n

Then

viw)= > M6V w) = 3 M) - (o - AWM )

1<i,j<n 1<i,5<n
—a” MM = r )

Therefore the rank of nHy is at most n?. O



6 Finite Rank of Nested Hankel Matrix Implies Recogniz-
ability

Here we prove the second direction of Theorem 2. This will be done by defining a weighted VPA
which recognizes the function f described by a given Hankel matrix nH,. It will hold that if
the rank of nH/ is < n?, the automaton will have at most n states, and a stack alphabet I' of
size at most n.

We first describe the initial and final vectors o, and the matrices that will be used to
construct the automaton, and prove useful properties for them.

As we cannot decompose the Hankel matrix entries in arbitrary positions, but only in ways
that maintain the well-nesting, we will need to use the following theorem to show the matrices
used in the construction of the automaton indeed exist:

Theorem 6 (The SVD Theorem, see [35]). Let N € F™*" be a non-zero matrixz, where F = R
or F = C. Then there exist vectors x1,...,Xm € F™ and y1,...,yn € F" such that the
matrices

X=[x1...x) EF™™ Y =|[y1...yn] € F*"
are orthogonal, and
YINX = diag(oy, . ..,0,) € F™*"

where p = min{m, n}, diag(o1,...,0p) is a diagonal matriz with the values o1,...,0p on its
diagonal, and o1 > 02 > ... > 0y.

As a consequence, if we define r by o1 > ... > 0, > 0,41 = ... = 0, that is the number of
non-zero entries in diag(o1,...,o0p), then we have the SVD expansion of N:

T

T

N = E 0:X5Y;
=1

In particular, if N is of rank 1, then N = xy”.

The SVD is perhaps the most important factorization for real and complex matrices. It is
used in matrix approximation techniques, signal processing, computational statistics, and many
more areas. See [42, 57, 32] and references therein.

6.0.1 The Components of the Automaton

Let ¥ = Yean U Xret U Xint, where Yy, Xret and X;,; are disjoint. Throughout this section,
let f: WNW(X) — F be a function on well-nested words over 3, and let its nested Hankel
matrix nHy have finite rank 7(nHy) < n? Denote by B = {w11,...,wn,n} the well-nested
words whose rows linearly span nHy.

Definition 7 (Initial and final vectors). Let the matric N € F™*™ be defined as N(i,j) =
f(wi;), and let x,y € F™ be vectors such that N = xy™. Let

n=y, ~a=x (1)

Note that this definition is sound; as N has rank 1, Theorem 6 guarantees there exist such
vectors x,y.



Definition 8 (Internal matrices). For w; ; € B, define B3; ; = f(w; ;) f(wi,;)"t, and let
Mwi,j = Bi,j - AL (2)

Note that for wy j, we have B1; =1 and My, ; = AL
For a letter a € Yy, let v, denote the row in nHy corresponding to a. The rows indexed by
the elements in B span the matriz, so there is a linear combination of them equal to ry:

Set N
M,= > 27 My, (3)

Before we define the call and return matrices, we show the above defined vectors and matrices
behave as expected:

Lemma 9. Let a,n € F", My, , € F™"*" for w; ; € B, and M, for a € Xy be defined as in
Definitions 7 and 8. It holds that:

f(wi,j) =a’ 'Mwm' 'n (4)
fla)=a’ -My-n (5)
Proof. Since the entries of M,,, ; are zero except for entry (i, j), we have
a’ My, -n=al(i)-Bi;-n(j)
Since a(i)n(j) = f(w1,5), we have
ol My, ;-1 =By flwy) = flwig) flwi) ™" - flwy) = fwig)

and Equation 4 holds.
By the definition of M, we have

o’ M, n=a" Z Ztiij My, ; | 1= Z Ztil)j (aTMan)

1<i,j<n 1<i,j<n

= Yz fwij) = fla)

1<i,j<n
and Equation 5 holds. o

Definition 10 (Call and return matrices). For each pair ¢ € Y and r € X,q:, define the
n x n matric N¢, as N¢ - (i,7) = f(ew; ;v)/Bi; and let its SVD be

Nc,r - ch,k(pr,k)T
k=1
For v €T, define

call =
else

Mcﬂ’ ([7 Z) {5077(2)/0(’7) [ =7
and

ret
else

MT”Y(]', m) = {gm(j)/n(v) m =



Now we show these matrices behave as expected:

Lemma 11. Let Mt(;lﬁ) and Miﬁ]) forc € Beau, v € Xret be defined as in Definition 10. Then
it holds that:

flew;;r) = T <Z M M, | - Miﬁ’?) n (6)
y=1

Proof. By the definition of N, , we have:

Ne.r(i,5) = flewi;7)/Bij =Y Pek(i)Pri(d) (7)

k=1

In addition, M, is zero in all entries that are not the (i, j) one. Therefore,

c,y NgQo - _ _
(M;’;l . Mwij Y, m) = {OMcall(’yv Z)Bz;] pCKY(Z)BZ,J/a(’V) gl Y, m =
else

Thus multiplying with M.} results in:

call Wij ret else

(Mc,’Y M . MT”Y)(K, m) _ {(()pcﬁ(i)ﬁi,jprw(j))/(a(V)n(’V)) L=m=r

Note that the above matrix M7, - M, - M} is diagonal. Therefore, in total:

call ret

o’ (Z MiﬂzMwi,jM?’eO N="05i; Y Per(i)Prr(j)
~y=1 y=1
= _ Bij(f(cwi;r)/Bij) = flcwi r)

Equation7

so Equation 6 holds. O

6.0.2 Putting the Automaton Together
We are now ready to prove the second direction of Theorem 2:

Theorem 12. Let f: WNW(X) — F have a nested Hankel matriz nHy of rank < n?. Then f
is recognizable by a weighted visibly pushdown automaton A with n states.

Proof. Use Definitions 7, 8, and 10 to build a weighted VPA A with n states, and set MgA) =1L
From Lemmas 9 and 11 it only remains to show that for u,t € WNW(X),

A A
MG = MG v

Note that we defined the matrices MEU’?)J such that Ty, = v(.d) up to a constant factor. We
show that if

ro= . M5 v and re= Y MP(i,j) v,

1<i,j<n 1<i,j<n

then N N
Tyt = Z (M(A) ' Mi(f ))(Zaj) ' V(LJ)

u
1<i,j<n

10



Or, equivalently, that for every well-nested word w € WNW (),

ro(w) = al - M@ -MgA) MW .y

Consider the linear combination:

vae =y (MO M), ) v = 3T MO k) M (K, ) - v D)

u u
1<ij<n 1<ik,j<n

Then, for w € WNW(X) we have

vaw) = Y M@ k) M (k, ) v (w)
1<i,k,j<n
= Y. MPGk

1<i,k,j<n

IN

MY (&, ) - (aT CAGDMA) | ,7)

IN

Note that the row 7 of A(i’j)MguA) is row j of Mi(UA) and all other rows are zero. Then

= Y MymxyMﬁw”»<zywwwmw$mmm)

1<i,k,j<n 1=1

ST al) M k) - MY (k,5) - MY, -0 ()

1<i,k,g,l<n

— MM MG = )

From Theorem 12 and Theorem 5 we have our main result, Theorem 2.

Acknowledgments.

We thank Boaz Blankrot for helpful discussions on matrix decompositions and the anonymous
referees for valuable feedback.

References

[1]

C. Allauzen, M. Mohri, and M. Riley. Statistical modeling for unit selection in speech
synthesis. In Proceedings of the 42nd Annual Meeting on Association for Computational
Linguistics, page 55. Association for Computational Linguistics, 2004.

R. Alur, M. Arenas, P. Barcel6, K. Etessami, N. Immerman, and L. Libkin. First-order and
temporal logics for nested words. In Logic in Computer Science, 2007. LICS 2007. 22nd
Annual IEEE Symposium on, pages 151-160. IEEE, 2007.

R. Alur and P. Madhusudan. Adding nesting structure to words. In Developments in
Language Theory, pages 1-13. Springer, 2006.

D. Angluin. On the complexity of minimum inference of regular sets. Information and
Control, 39(3):337-350, 1978.

D. Angluin. Learning regular sets from queries and counterexamples. Information and
computation, 75(2):87-106, 1987.

11



(6]

[7]

[20]

[21]

[22]

A. Arnold and J. Plaice. Finite transition systems: semantics of communicating systems.

Prentice Hall International (UK) Ltd., 1994.

B. Balle and M. Mohri. Spectral learning of general weighted automata via constrained
matrix completion. In Advances in neural information processing systems, pages 21682176,
2012.

B. Balle and M. Mohri. Learning weighted automata. In Algebraic Informatics, pages 1-21.
Springer, 2015.

A. Beimel, F. Bergadano, N. Bshouty, E. Kushilevitz, and S. Varricchio. Learning functions
represented as multiplicity automata. Journal of the ACM (JACM), 47(3):506-530, 2000.

F. Bergadano and S. Varricchio. Learning behaviors of automata from multiplicity and
equivalence queries. STAM Journal on Computing, 25(6):1268-1280, 1996.

L. Bisht, N. Bshouty, and H. Mazzawi. On optimal learning algorithms for multiplicity
automata. Springer, 2006.

J. Carlyle and A. Paz. Realizations by stochastic finite automata. J. Comp. Syst. Sc.,
5:26—-40, 1971.

K. Chatterjee, L. Doyen, and T. Henzinger. Probabilistic weighted automata. In CONCUR
2009-Concurrency Theory, pages 244—-258. Springer, 2009.

K. Chatterjee, T. Henzinger, B. Jobstmann, and R. Singh. Measuring and synthesizing
systems in probabilistic environments. In Computer Aided Verification, pages 380-395.
Springer, 2010.

A. Cobham. Representation of a word function as the sum of two functions. Mathematical
Systems Theory, 11:373-377, 1978.

B. Courcelle and J. Engelfriet. Graph structure and monadic second-order logic: a language-
theoretic approach, volume 138. Cambridge University Press, 2012.

B. Courcelle, J. Makowsky, and U. Rotics. Linear time solvable optimization problems on
graph of bounded clique width, extended abstract. In J. Hromkovic and O. Sykora, editors,
Graph Theoretic Concepts in Computer Science, 24th International Workshop, WG9S,
volume 1517 of Lecture Notes in Computer Science, pages 1-16. Springer Verlag, 1998.

B. Courcelle, J. Makowsky, and U. Rotics. On the fixed parameter complexity of graph enu-
meration problems definable in monadic second order logic. Discrete Applied Mathematics,
108(1-2):23-52, 2001.

K. Culik IT and J. Kari. Image compression using weighted finite automata. In Mathematical
Foundations of Computer Science 1993, pages 392—402. Springer, 1993.

L. D’Antoni and R. Alur. Symbolic visibly pushdown automata. In Computer Aided
Verification, pages 209-225. Springer, 2014.

B. De Schutter and B. De Moor. The singular-value decomposition in the extended max
algebra. Linear Algebra and Its Applications, 250:143-176, 1997.

B. De Schutter and B. De Moor. The QR decomposition and the singular value decompo-
sition in the symmetrized max-plus algebra revisited. SIAM review, 44(3):417-454, 2002.

12



[23] R. Downey and M. Fellows. Parametrized Complezity. Springer, 1999.

[24] E. Driscoll, A. Burton, and T. Reps. Checking compatibility of a producer and a consumer.
Citeseer, 2011.

[25] E. Driscoll, A. Thakur, and T. Reps. Opennwa: A nested-word automaton library. In
Computer Aided Verification, pages 665—-671. Springer, 2012.

[26] M. Droste and P. Gastin. Weighted automata and weighted logics. In ICALP 2005, pages
513-525, 2005.

[27] M. Droste, W. Kuich, and H. Vogler. Handbook of weighted automata. Springer Science &
Business Media, 2009.

[28] C. Fernando, N. Pereira, and M. Riley. Speech recognition by composition of weighted
finite automata. Finite-State Language Processing. MIT Press, Cambridge, Massachusetts,
1997.

[29] M. Fliess. Matrices de hankel. J. Math. Pures Appl, 53(9):197-222, 1974.

[30] M. Freedman, L. Lovdsz, and A. Schrijver. Reflection positivity, rank connectivity, and
homomorphism of graphs. Journal of the American Mathematical Society, 20(1):37-51,
2007.

[31] O. Gauwin and J. Niehren. Streamable fragments of forward xpath. In Implementation
and Application of Automata, pages 3—15. Springer, 2011.

[32] J. Gentle. Computational statistics, volume 308. Springer, 2009.

[33] B. Godlin, T. Kotek, and J. Makowsky. Evaluation of graph polynomials. In 3/th Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science, WG08, volume 5344
of Lecture Notes in Computer Science, pages 183—194, 2008.

[34] E. Gold. Complexity of automaton identification from given data. Information and control,
37(3):302-320, 1978.

[35] G. Golub and C. Van Loan. Matriz computations, volume 3. JHU Press, 2012.

[36] A. Habrard and J. Oncina. Learning multiplicity tree automata. In Grammatical Inference:
Algorithms and Applications, pages 268-280. Springer, 2006.

[37] W. R. Harris, S. Jha, and T. Reps. Secure programming via visibly pushdown safety games.
In Computer Aided Verification, pages 581-598. Springer, 2012.

[38] D. Haussler, N. Littlestone, and M. Warmuth. Predicting {0, 1}-functions on randomly
drawn points. In Foundations of Computer Science, 1988., 29th Annual Symposium on,
pages 100-109. IEEE, 1988.

[39] A. Heller. Probabilistic automata and stochastic transformations. Theory of Computing
Systems, 1(3):197-208, 1967.

[40] D. Hsu, S. Kakade, and T. Zhang. A spectral algorithm for learning hidden markov models.
Journal of Computer and System Sciences, 78(5):1460-1480, 2012.

[41] S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. On the complexity
of equivalence and minimisation for Q-weighted automata. Logical Methods in Computer
Science (LMCS), 9(1:8):1-22, 2013.

13



[42] V. Klema and A. Laub. The singular value decomposition: Its computation and some
applications. Automatic Control, IEEE Transactions on, 25(2):164-176, 1980.

[43] N. Labai. Definability and hankel matrices. Master’s thesis, Technion - Israel Institute of
Technology, Faculty of Computer Science, 2015.

[44] N. Labai and J. Makowsky. Weighted automata and monadic second order logic. EPTCS
Proceedings of GandALF, 119:122-135, 2013.

[45] N. Labai and J. Makowsky. Tropical graph parameters. DMTCS Proceedings of FPSAC,
(01):357-368, 2014.

[46] N. Labai and J. Makowsky. Meta-theorems using hankel matrices. 2015.

[47] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine learning, 2(4):285-318, 1988.

[48] L. Lovész. Connection matrices. OXFORD LECTURE series IN MATHEMATICS AND
ITS APPLICATIONS, 34:179, 2007.

[49] L. Lovédsz. Large Networks and Graph Limits, volume 60 of Colloquium Publications. AMS,
2012.

[50] J. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and
Applied Logic, 126.1-3:159-213, 2004.

[61] C. Mathissen. Weighted logics for nested words and algebraic formal power series. In
Automata, Languages and Programming, pages 221-232. Springer, 2008.

[52] K. McMillan. Symbolic model checking. Springer, 1993.

[63] M. Mohri. Finite-state transducers in language and speech processing. Computational
linguistics, 23(2):269-311, 1997.

[54] B. Mozafari, K. Zeng, and C. Zaniolo. High-performance complex event processing over
xml streams. In Proceedings of the 2012 ACM SIGMOD International Conference on Man-
agement of Data, pages 253-264. ACM, 2012.

[55] A. S. Murawski and I. Walukiewicz. Third-order idealized algol with iteration is decidable.
In Foundations of Software Science and Computational Structures, pages 202-218. Springer,
2005.

[56] L. Pitt and M. Warmuth. The minimum consistent dfa problem cannot be approximated
within any polynomial. Journal of the ACM (JACM), 40(1):95-142, 1993.

[57] A. Poularikas. Transforms and applications handbook. CRC press, 2010.

[68] L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142,
1984.

14



	1 Introduction and Background
	1.1 Weighted Automata for Words and Nested Words
	1.2 Hankel Matrices and Weighted Word Automata
	1.3 Our Contribution

	2 Preliminaries
	2.1 Well-Nested Words
	2.2 Nested Hankel Matrices
	2.3 Weighted Visibly Pushdown Automata

	3 Applications in Computational Learning Theory
	3.1 Learning Weighted Visibly Pushdown Automata

	4 Extension to Semirings
	5 The Characterization of WVPA-Recognizability
	5.1 Recognizability Implies Finite Rank of Nested Hankel Matrix

	6 Finite Rank of Nested Hankel Matrix Implies Recognizability
	6.0.1 The Components of the Automaton
	6.0.2 Putting the Automaton Together


