Skip to main content

The Missing Case in Chomsky-Schützenberger Theorem

  • Conference paper
  • First Online:
Book cover Language and Automata Theory and Applications (LATA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9618))

Included in the following conference series:

Abstract

The theorem by Chomsky and Schützenberger (CST) says that every context-free language L over alphabet \(\varSigma \) is representable as \(h(D_k \cap R)\) where \(D_k\) is the Dyck language over k pairs of brackets, R is a local (i.e., 2-strictly-locally-testable language) regular language, and h is an alphabetic homomorphism that may erase symbols; the Dyck alphabet size depends on the size of the grammar generating L. In the Stanley variant, the Dyck alphabet size only depends on the size of \(\varSigma \), but the homomorphism has to erase many more symbols than in the previous version. Berstel found that the number of erasures in CST can be linearly limited if the grammar is in Greibach normal form, and recently Okhotin proved a non-erasing variant of CST for grammars in Double Greibach normal form. In both statements the Dyck alphabet depends on the grammar size. We present a new non-erasing variant of CST that uses a Dyck alphabet independent from the grammar size and a regular language that is strictly-locally-testable, similarly to a recent generalization of Medvedev theorem for regular languages.

Work partially supported by MIUR project PRIN 2010LYA9RH and by CNR-IEIIT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berstel, J.: Transductions and Context-Free Languages. Teubner, Stuttgart (1979)

    Book  MATH  Google Scholar 

  2. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages. In: Brafford, H. (ed.) Computer Programming and Formal Systems, pp. 118–161. North-Holland, Amsterdam (1963)

    Chapter  Google Scholar 

  3. Crespi Reghizzi, S., San Pietro, P.: From regular to strictly locally testable languages. Int. J. Found. Comput. Sci. 23(8), 1711–1728 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Engelfriet, J.: An elementary proof of double Greibach normal form. Inf. Process. Lett. 44(6), 291–293 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ginsburg, S.: The Mathematical Theory of Context-free Languages. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  6. Harrison, M.: Introduction to Formal Language Theory. Addison Wesley, Reading (1978)

    MATH  Google Scholar 

  7. McNaughton, R., Papert, S.: Counter-free Automata. MIT Press, Cambridge (1971)

    MATH  Google Scholar 

  8. Medvedev, Y.T.: On the class of events representable in a finite automaton. In: Moore, E.F. (ed.) Sequential machines - Selected papers (translated from Russian), pp. 215–227. Addison-Wesley, New York, NY, USA (1964)

    Google Scholar 

  9. Okhotin, A.: Non-erasing variants of the Chomsky–Schützenberger theorem. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Orlando (1974)

    MATH  Google Scholar 

  11. Stanley, R.J.: Finite state representations of context-free languages. M.I.T. Res. Lab. Electron. Quart. Progr. Rept. 76(1), 276–279 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi San Pietro .

Editor information

Editors and Affiliations

Appendix: An Example

Appendix: An Example

The example illustrates the crucial part of our constructions, namely the homomorphism \(\tau \) defined by formulas (4) and (5). Consider language \(L= \{a^{2n+4} b^{6n} \mid n\ge 0\}\) (generated, e.g., by grammar \(\{S\rightarrow aaSb^6 \mid a^4\}\)), and choose the value \(m=2\) for Definition 3, meaning that the substrings of length two occurring in the language are mapped on the 2-tuples \(\langle a,a\rangle , \langle a,b\rangle , \langle b,b\rangle \), shortened as \(\langle aa\rangle \), etc. The following grammar in Double Greibach normal form, though constructed by hand, takes the place of grammar \(G'\) of Lemma 1:

\(1: S \rightarrow \langle aa\rangle \, S \,B\, \langle bb\rangle , \; 2: S\rightarrow \langle aa\rangle \,\langle aa\rangle , \; 3:B \rightarrow \langle bb\rangle \, \langle bb\rangle . \)

The sentence \(a^8 b^{12} \in L\) becomes \( \langle aa\rangle ^4 \langle bb\rangle ^6 \in L(G')\), with the syntax tree:

figure b

For Okhotin Theorem 1, this sentence is the image by homomorphism h of the following sequence \(\gamma \) of labeled parentheses, where the numbers identify the rules and the dash marks the root:

$$ \gamma = (^{-}_{1} \quad (^{1}_{1} \quad (^{1}_{2}\quad )^{1}_{2} \quad (^{1}_{3}\quad )^{1}_{3} \quad )^{1}_{1} \quad (^{1}_{3} \quad )^{1}_{3}\quad )^-_{1} $$

We choose to represent the labeled parentheses with \(m=2\) binary digits, defining \(\tau \) as:

$$ \begin{array}{c|c | c|c} \omega &{} \omega ' &{} \tau (\omega ) &{} \tau (\omega ')\\ \hline (^{-}_{1} &{} )^-_{1} &{} [_{a,b,0} \; [_{a,b,0} &{} ]_{b,a,0} \; ]_{b,a,0} \\ (^{1}_{1} &{} )^1_{1} &{} [_{a,b,0} \; [_{a,b,1} &{} ]_{b,a,1} \; ]_{b,a,0} \\ (^{1}_{2} &{} )^1_{2} &{} [_{a,a,1} \; [_{a,a,0} &{} ]_{a,a,0} \; ]_{a,a,1} \\ (^{1}_{3} &{} )^1_{3} &{} [_{b,b,1} \; [_{b,b,1} &{} ]_{b,b,1} \; ]_{b,b,1} \end{array} $$

Hence \(\tau \left( \pi (h(\gamma ))\right) \) is

\( \overbrace{[_{a,b,0}\; [_{a,b,0}}^{(^{-}_{1}}\; \overbrace{[_{a,b,0} \; [_{a,b,1}}^{(^{1}_{1}} \overbrace{[_{a,a,1} \; [_{a,a,0}}^{(^{1}_{2}} \; \overbrace{]_{a,a,0} \; ]_{a,a,1}}^{)^{1}_{2}} \; \overbrace{[_{b,b,1} \; [_{b,b,1}}^{(^{1}_{3}} \overbrace{]_{b,b,1} \; ]_{b,b,1}}^{)^{1}_{3}} \)

\( \overbrace{]_{b,a,1} \; ]_{b,a,0}}^{)^{1}_{1}} \overbrace{[_{b,b,1} \; [_{b,b,1}}^{(^{1}_{3}} \overbrace{]_{b,b,1} \; ]_{b,b,1}}^{)^{1}_{3}} \overbrace{]_{b,a,0}\; ]_{b,a,0}}^{)^-_{1}} \)

Notice that the 2-SLT language of the classical CST (applied to language L) is now replaced by an SLT language of higher width.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Crespi Reghizzi, S., San Pietro, P. (2016). The Missing Case in Chomsky-Schützenberger Theorem. In: Dediu, AH., Janoušek, J., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2016. Lecture Notes in Computer Science(), vol 9618. Springer, Cham. https://doi.org/10.1007/978-3-319-30000-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30000-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29999-0

  • Online ISBN: 978-3-319-30000-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics