1705.11097v1 [cs.LO] 30 May 2017

arXiv

A Logic for Non-Deterministic Parallel Abstract
State Machines™*

Flavio Ferrarotti', Klaus-Dieter Schewe!, Loredana Tec!, and Qing Wang?

1 Software Competence Center Hagenberg, A-4232 Hagenberg, Austria
{flavio.ferrarotti,klaus-dieter.schewe, loredana.tec}@scch.at
2 Research School of Computer Science, The Australian National University
qing.wang@anu.edu.au

Abstract. We develop a logic which enables reasoning about single
steps of non-deterministic parallel Abstract State Machines (ASMs). Our
logic builds upon the unifying logic introduced by Nanchen and Stéark
for reasoning about hierarchical (parallel) ASMs. Our main contribution
to this regard is the handling of non-determinism (both bounded and
unbounded) within the logical formalism. Moreover, we do this without
sacrificing the completeness of the logic for statements about single steps
of non-deterministic parallel ASMs, such as invariants of rules, consis-
tency conditions for rules, or step-by-step equivalence of rules.

1 Introduction

Gurevich’s Abstract State Machines (ASMs) provide not only a formal theory
of algorithms, but also are the basis for a general software engineering method
based in the specification of higher-level ground models and step-by-step refine-
ment. Chapter 9 in the book [5] gives a summary of many application projects
that have developed complex systems solutions on the grounds of ASMs. A ma-
jor advantage of the ASM method and a key for its success resides in the fact
that it provides, not only a simple and precise framework to communicate and
document design ideas, but also an accurate and checkable overall understanding
of complex systems. In this context, formal verification of dynamic properties
for given ASMs is a fundamentally important task, in particular in the case of
modelling safety critical systems, where there is a need to ensure the integrity
and reliability of the system. Clearly, a logical calculi appropriate for the for-
malisation and reasoning about dynamic properties of ASMs is an essential and
valuable tool for this endeavour.

Numerous logics have been developed to deal with specific features of ASM
verification such as correctness and deadlock-freeness (see Section 9.4.3 in the
book [B]) for detailed references), but a complete logic for ASMs was only devel-
oped in [I3] by Nanchen and Stérk. The logic formalizes properties of a single

* Work supported by the Austrian Science Fund (FWF: [P26452-N15]). Project:
Behavioural Theory and Logics for Distributed Adaptive Systems. The final publica-
tion is available at Springer via http://dx.doi.org/10.1007/978-3-319-30024-5_
18

http://dx.doi.org/10.1007/978-3-319-30024-5_18
http://dx.doi.org/10.1007/978-3-319-30024-5_18

step of an ASM, which permits to define Hilbert-style proof theory and to show
its completeness. In this work the treatment of non-determinism was deliberately
left out. Same as parallelism, which is on the other hand captured by the logic for
ASMs of Nanchen and Stérk, non-determinism is also a prevalent concept in the
design and implementation of software systems, and consequently a constitutive
part of the ASM method for systems development [5]. Indeed, nondeterminism
arises in the specification of many well known algorithms and software applica-
tions. Examples range from graph algorithms, such as minimum spanning tree
and shortest path, to search techniques whose objective is to arrive at some ad-
missible goal state (as in the n-queens and combinatorial-assignment problems
[7]), and learning strategies such as converging on some classifier that labels
all data instances correctly [14]. Non-deterministic behavior is also common in
cutting edge fields of software systems. Distributed systems frequently need to
address non-deterministic behaviour such as changing role (if possible) as strate-
gic response to observed problems concerning load, input, throughput, etc. Also,
many cyber-physical systems and hybrid systems such as railway transporta-
tion control systems [2] and systems used in high-confidence medical healthcare
devices exhibit highly non-deterministic behaviour.

Notice that although we could say that there is a kind of latent parallelism in
non-determinism, they represent completely different behaviours and thus both
are needed to faithfully model the behaviour of complex systems, more so in the
case of the ASM method where the ability to model systems at every level of
abstraction is one of its main defining features. For instance, while a nondeter-
ministic action can evaluate to multiple behaviors, only if at least one of these
behaviors does not conflict with concurrent tasks, then there is an admissible
execution of the action in parallel with these tasks.

The ASM method allows for two different, but complementary, approaches
to non-determinism. The first approach assumes that choices are made by the
environment via monitored functions that can be viewed as external oracles.
In this case, non-deterministic ASMs are just interactive ASMs. The second
approach assumes the ASMs themselves rather than the environment, to have the
power of making non-deterministic choices. In this case the one-step transition
function of the ASMs is no longer a function but a binary relation. This is also
the approach followed by non-deterministic Turing machines. However, in the
case of non-deterministic Turing machines the choice is always bounded by the
transition relation. For ASMs the non-determinism can also be unbounded, i.e.,
we can choose among an infinite number of possibilities. Clearly, unbounded non-
determinism should also be allowed if we want our ASMs to be able to faithfully
model algorithms at any level of abstraction.

In this work we develop a logic which enables reasoning about single steps
of non-deterministic parallel ASMs, i.e., ASMs which include the well known
choose and forall rules [5]. This builds upon the complete logic introduced in
the work of Nanchen and Stérk [13] for reasoning about single steps of hierarchi-
cal ASMs. Hierarchical ASMs capture the class of synchronous and deterministic
parallel algorithms in the precise sense of the ASM thesis of Blass and Gure-

vich [34] (see also [6]). Our main contribution to this regard is the handling
of non-determinism (both bounded and unbounded) within the logical formal-
ism. More importantly, this is done without sacrificing the completeness of the
logic. As highlighted by Nanchen and Stérk [I3], non-deterministic transitions
manifest themselves as a difficult task in the logical formalisation for ASMs.

The paper is organized as follows. The next section introduces the required
background from ASMs. Section [3] formalises the model of non-deterministic
parallel ASM used through this work. In Section [4 we introduce the syntax and
semantics of the proposed logic for non-deterministic parallel ASMs. Section
presents a detailed discussion regarding consistency and update sets, and the
formalisation of a proof system. In Section [f] we use the proof system to derive
some interesting properties of our logic, including known properties of the ASM
logic in [I3]. In Section E we present our main result, namely that the proposed
logic is complete for statements about single steps of non-deterministic parallel
ASMs, such as invariants of rules, consistency conditions for rules, or step-by-
step equivalence of rules. We conclude our work in Section

2 Preliminaries

The concept of Abstract State Machines (ASMs) is well known [5]. In its simplest
form an ASM is a finite set of so-called transition rules of the form if Condition
then Updates endif which transforms abstract states. The condition or guard
under which a rule is applied is an arbitrary first-order logic sentence. Updates
is a finite set of assignments of the form f(t¢1,...,t,) := to which are executed in
parallel. The execution of f(t1,...,t,) := o in a given state proceeds as follows:
first all parameters tg,%1,...t, are evaluated to their values, say ag, a1,...,an,
then the value of f(aq,...,a,) is updated to ag, which represents the value of
f(a1,...,a,) in the next state. Such pairs of a function name f, which is fixed by
the signature, and optional argument (ay,...,a,) of dynamic parameters values
a;, are called locations. They represent the abstract ASM concept of memory
units which abstracts from particular memory addressing. Location value pairs
(¢,a), where ¢ is a location and a a value, are called updates and represent the
basic units of state change.

The notion of ASM state is the classical notion of first-order structure in
mathematical logic. For the evaluation of first-order terms and formulae in an
ASM state, the standard interpretation of function symbols by the corresponding
functions in that state is used. As usually in this setting and w.l.o.g., we treat
predicates as characteristic functions and constants as 0-ary functions.

The notion of the ASM run is an instance of the classical notion of the
computation of transition systems. An ASM computation step in a given state
consists in executing simultaneously all updates of all transition rules whose
guard is true in the state, if these updates are consistent, in which case the
result of their execution yields a next state. In the case of inconsistency, the
computation does not yield a next state. A set of updates is consistent if it
contains no pairs (¢,a), (¢,b) of updates to a same location £ with a # b.

Simultaneous execution, as obtained in one step through the execution of a set
of updates, provides a useful instrument for high-level design to locally describe
a global state change. This synchronous parallelism is further enhanced by the
transition rule forall with ¢ do r enddo which expresses the simultaneous
execution of a rule r for each x satisfying a given condition .

Similarly, non-determinism as a convenient way of abstracting from details
of scheduling of rule executions can be expressed by the rule choose = with ¢
do r enddo, which means that r should be executed with an arbitrary x chosen
among those satisfying the property ¢.

The following example borrowed from [5] clearly illustrates the power of the
choose and forall rules.

Example 1. The following ASM generates all and only the pairs vw € A* of
different words v, w of same length (i.e., v # w and |v| = |w]).

choose n,7 with 7 <n do
choose a,b with a € ANbE ANa#Db do
v(i) == a
w(i):=b
forall j with j<nAj#1i do
choose a,b with a € AANbE A do

v(j) =a
w(j) = b
enddo
enddo
enddo
enddo

When all possible choices are realized, the set of reachable states of this ASM is
the set of all “vw” states with v # w and |v] = |w].

3 Non-Deterministic Parallel ASMs

It is key for the completeness of our logic to make sure that the ASMs do not
produce infinite update sets. For that we formally define ASM states as simple
metafinite structures [§] instead of classical first-order structures, and restrict the
variables in the forall rules to range over the finite part of such metafinite states.
Nevertheless, the class of algorithms that are captured by these ASM machines
coincides with the class of parallel algorithms that satisfy the postulates of the
parallel ASM thesis of Blass and Gurevich [B4] (see [6] for details).

A metafinite structure S consists of: a finite first-order structure S; —the
primary part of S; a possibly infinite first-order structure Sy —the secondary
part of S; and a finite set of functions which map elements of S; to elements
of Sy —the bridge functions. A signature 7 of metafinite structures comprises
a sub-signature 77 for the primary part, a sub-signature 15 for the secondary
part and a finite set F, of bridge function names. The base set of a state S is a
nonempty set of values B = By U By, where Bj is the finite domain of Sy, and

B> is the possibly infinite domain of S3. Function symbols f in 77 and 15 are
interpreted as functions f° over B; and Bs, respectively. The interpretation of
a n-ary function symbol f € F; defines a function f° from B} to B,. As usual,
we distinguish between updatable dynamic functions and static functions.

Let T = 77 UT5 U Fp be a signature of metafinite states. Fix a countable
set X = X1 U X, of first-order variables. Variables in X, denoted with standard

lowercase letters x,v, z, ..., range over the primary part of a meta-finite state
(i.e., the finite set B;), whereas variables in X5, denoted with typewriter-style
lowercase letters x,y,z,..., range over By. The set of first-order terms 7r x

of vocabulary 7" is defined in a similar way than in meta-finite model theory
[8]. That is, Trx is constituted by the set T, of point terms and the set 7T,
of algorithmic terms. The set of point terms 7, is the closure of the set & of
variables under the application of function symbols in 77. The set of algorithmic
terms 7, is defined inductively: Every variable in X5 is an algorithmic term in
Ta; I ti, ..., t, are point terms in 7, and f is an n-ary bridge function symbol in
Fb, then f(t1,...,t,) is an algorithmic term in Tg; if ¢q, ..., ¢, are algorithmic
terms in 7, and f is an n-ary function symbol in 15, then f(¢1,...,t,) is an
algorithmic term in 7,; nothing else is an algorithmic term in 7y.

Let S be a meta finite state of signature 1. A valuation or variable assignment
¢ is a function that assigns to every variable in X; a value in the base set By of
the primary part of S and to every variable in A5 a value in the base set By of
the secondary part of S. The value valg¢(t) of a term ¢ € Trx in the state S
under the valuation (is defined as usual in first-order logic. The first-order logic
of metafinite structures (states) is defined as the first-order logic with equality
which is built up from equations between terms in 7y x by using the standard
connectives and first-order quantifiers. Its semantics is defined in the standard
way. The truth value of a first-order formula of meta finite structures ¢ in S
under the valuation (is denoted as [¢] s ¢.

In our definition of ASM rule, we use the fact that function arguments can
be read as tuples. Thus, if f is an n-ary function and ¢4,...,%, are arguments
for f, we write f(t) where ¢ is a term which evaluates to the tuple (¢1,...,t,),
instead of f(t1,...,t,). This is not strictly necessary, but it greatly simplifies
the presentation of the technical details in this paper. Let ¢ and s denote terms
in 7,, let t and s denote terms in 7, and let ¢ denote a first-order formula of
metafinite structures of vocabulary 7. The set of ASM rules over 7 is inductively
defined as follows:

— update rule 1: f(t) := s (where f € 11);

— update rule 2: f(t) :=s (where f € 13);

— update rule 3: f(t) := s (where f € Fp);

— conditional rule: if ¢ then r endif

— forall rule: forall x with ¢ do r enddo

— bounded choice rule: choose x with ¢ do r enddo

— unbounded choice rule: choose x with ¢ do r enddo

— parallel rule: par r1 ro endpar (execute the rules 7y and 7o in parallel);
— sequence rule: seq r1 o endseq (first execute rule r; and then rule r3).

If r is an ASM rule of signature 7" and S is a state of 7", then we associate to
them a set A(r, S, () of update sets which depends on the variable assignment
¢. Let ([x + a] denote the variable assignment which coincides with ¢ except
that it assigns the value a to z. We formally define in Figure [I] the sets of
update sets yielded by the ASM rules. Items 1-3 in Figure [I] correspond to the
update rules 1-3, respectively. Each update rules yields a set which contains a
single update set, which in turns contains a single update to a function of S.
Depending on whether the function name f belongs to 73, 15 or F;, the produced
update corresponds to a function in the primary or secondary part of S or to a
bridge function, respectively. The choice rules introduce non-determinism. The
bounded choice rule yields a finite set of update sets, since x range over the
(finite) primary part of S (see item 6 in Figure . The unbounded choice rule
yields a possibly infinite set of update sets (see item 7 in Figure . In this latter
case, x range over the (possible infinite) secondary part of S and it might happen
that there are infinite valuations for x that satisfy the condition ¢, each resulting
in a different update set. All other rules only rearrange updates into different
update sets. Update sets are explained in more detail in Section [5.2

Remark 1. For every state S, ASM rule r and variable assignment (, we have
that every A € A(r,S,() is a finite set of updates. This is a straightforward
consequence of the fact that the variable x in the definition of the forall rule
ranges over the (finite) primary part of S, and it is also the case in the ASM thesis
for parallel algorithms of Blass and Gurevich [3/4] where it is implicitly assumed
that the forall rule in the parallel ASMs range over finite hereditary multisets.
See our work in [6] for a detailed explanation. Regarding the set A(r,S,() of
update sets, we note that it might be infinite since the unbounded choice rule
can potentially produce infinitely many update sets. In fact, this is the case if
we consider the first unbounded choice rule in Example

Formally, a non-deterministic parallel ASM M over a signature 1" of metafi-
nite states consists of: (a) a set S of metafinite states over 7", (b) non-empty
subsets S; C S of initial states and Sp C S of final states, and (c) a closed ASM
rule 7 over 7', i.e., a rule r in which all free variables in the first-order formulae
of the rule are bounded by forall or choose constructs.

Every non-deterministic parallel ASM M defines a corresponding successor
relation § over S which is determined by the main rule r of M. A pair of states
(S1, S2) belongs to ¢ iff there is a consistent update set A € A(r, S) (the valuation
¢ is omitted from A(r, S, () since r is closed) such that Sy is the unique state
resulting from updating S; with A. A run of an ASM M is a finite sequence
Soy ..., Sy of states with Sy € Sr, S, € Sp, S; ¢ Sp for 0 < i < n, and
(Si;Si+1) e€dforalli=0,...,n—1.

The following example, adapted from [I0], illustrates a parallel ASMs with
bounded non-determinism.

Ezample 2. We consider metafinite states with: (a) a primary part formed by a
connected weighted graph G = (V, E), (b) a secondary part formed by the set of
natural numbers N, and (c¢) a bridge function weight from the set of edges in E to

1. A(f(t) :==s,5,¢) ={{([, (a),b)}} for a = vals¢(t) € B1 and b = vals(s) € Bx
2. A(f(t) :==s,5,¢) = {{(f, (a),b)}} for a = vals,(t) € B2 and b = vals,¢(s) € B
3. A(f(t) :=5,5,¢) = {{([, (a),b)}} for a = vals(t) € By and b = vals(s) € B

A(r,S,¢) if [¢]s,c = true
{0} otherwise
5. A(forall with ¢ do r enddo, S, ()=
{Al U---ua, | A; € A(’I‘, S7<['T — a’iD}7
where {a1,...,an} = {a;i € B1 | [¢ls clorsra;] = true}

4. A(f ¢ then r endif, S, () = {

6. A(choose z with ¢ do r enddo, S,() =
gB {A(r, S, [z = ai]) | [Pls.carsa,) = true}
aj 1
7. A(choose x with ¢ do r enddo, S,¢) =
U {A(r S ¢z = ail) [[¢ls ciarsa,) = true}
a;€By
8. A(par 71 r2 endpar, S,() =
{A1UA | Ay € A(r1,5,¢) and Az € A(r2, S, ()}

9. A(seq 11 r2 endseq, S, () =
{A1 @ Az | Ay € A(rq, S, ¢) is consistent and Ay € A(r2, S + A1, () }U
{A1 € A(r1,5,¢) | A1 is inconsistent},
where A1 @ Ay = Ay U{(¢,a) € Ay | £#£ L for all (¢';a") € Az}

Fig. 1. Sets of update sets of non-deterministic parallel ASMs

N. Apart from the static (Boolean) function symbols V and E, the vocabulary of
the primary part of the states also includes dynamic function symbols label and
T, and static function symbols first and second, the last two for extracting the
first and second element of an ordered pair, respectively. Since G is an undirected
graph, we have that (x,y) € F iff (y,2) € E.

The non-deterministic parallel ASM in this example, which we denote as M,
formally expresses Kruskal’s algorithm [12] for computing the minimum spanning
tree in a connected, weighted graph. Recall that a spanning tree T" of a graph G
is a tree such that every pair of nodes in G are connected via edges in T'. We say
that T is minimum if the sum of the weights of all its edges is the least among
all spanning trees of G. We assume that in every initial state of M, label(x) = x
for every x € V and that T((x,y)) = false for every (z,y) € E.

The condition in the first choose rule is simply ensuring that the chosen
edge z is eligible, i.e., that the nodes first(xz) and second(z) that make up the
endpoints of the edge x have different labels, and that x has minimal weight
among the set of eligible edges. The following two update rules simply add the

edge x to the tree T'. The second choose rule reflects the fact that from the point
of view of the correctness of the algorithm, it does not matter which endpoint y
of the edge = we choose at this stage. Finally, the forall rule simply relabels (as
expected) every node with the same label than the endpoint y of = (including
the node y itself) with the label of the opposite endpoint of x.

choose z with E(z) A label(first(z)) # label(second(x))A
Yy (E(y) A label(first(y)) # label(second(y)) — weight(y) > weight(z)) do
T(x) := true
T ((second(x), first(x))) := true
choose y with y = first(z) V y = second(z) do
forall z with label(z) = label(y) do
if label(y) = label(first(z)) then label(z) := label(second(x)) endif
if label(y) = label(second(x)) then label(z) := label(first(x)) endif
enddo
enddo
enddo

4 A Logic for Non-Deterministic Parallel ASMs

The logic for non-deterministic parallel ASMs (denoted £) is a dynamic first-
order logic extended with membership predicates over finite sets, an update set
predicate and a multi-modal operator. £ is defined over many sorted first-order
structures which have:

— a finite individual sort with variables x1,xs,... which range over a finite

domain D1,

— an indwidual sort with variables xi,x%s,..., which range over a (possibly
infinite) domain Dy, and

— a predicate sort with variables x1,z3, ..., which range over the domain Py
formed by all finite subsets (relations) on Fgyp, % (D1 U Dg) X (D1 U Dy).

— a predicate sort with variables x2, 23, ..., which range over the domain P,

formed by all finite subsets (relations) on Fgy, X (D1 UDg) x (D1UD3) X D1.

A signature X of the logic £ comprises a finite set F} of names for functions on
D1, a finite set Fy of names for functions on D5, and a finite set F} of names for
functions which take arguments from D; and return values on Ds.

We define terms of £ by induction. Variables z1,z9,... and x1,xs,... are
terms of the first and second individual sort, respectively. Variables x1, a1, ...
and 22, 73,... are terms of the first and second predicate sort, respectively. If f
is an m-ary function name in F; and tq,...,t, are terms of the first individual
sort, then f(¢1,...,t,) is a term of the first individual sort. If f is an n-ary
function name in F5 and tq,...,t, are terms of the second individual sort, then
f(t1,...,t,) is a term of the second individual sort. If f is an n-ary function
name in Fy and ¢, .. ., t, are terms of the first individual sort, then f(tq,...,%,)
is a term of the second individual sort.

The formulae of £ are those generated by the following grammar:

Q) n=s=1|5,=ta |~ | AU |VE(p) | Vx(p) | V' (@) | V2> () |
61($1’ f7t0a50) |€2(l‘2, fa th‘SO;S) | upd({rv‘rl) | [331]50

where s and ¢ denote terms of the first individual sort, s, and ¢, denote terms
of the second individual sort, f is a dynamic function symbol, r is an ASM rule
and, tg and sg denote terms of either the first or the second individual sort.

The interpretation of terms and the semantics of the first-order formulae is
defined in the standard way. This includes equality which is used under a fixed
interpretation and only between terms of a same individual sort.

The update set predicate upd(r, ') states that the finite update set repre-
sented by z! is generated by the rule . Let S be a state of some signature X of
the logic L. Let ¢ be a variable assignment over S which maps each variable of
the first and second individual sort to a value in Dy and Ds, respectively, and
maps each variable of the first and second predicate sort to a value in P; and Ps,
respectively. The truth value of upd(r,z') is defined by [upd(r,z')]sc = true
iff valg c(zt) € A(r, S, C).

The set membership predicate €!(xl, f, ¢, so) indicates that (f,to,so) is an
update in the update set represented by ! while the auxiliary set membership
predicate €2 (22 f,to,s0,s) is used to keep track of which parallel branch pro-
duced each update in 2. Their truth values are formally defined as follows:
[el(a?, f,to, s0)]s,c = true iff (f,valg(to), vals,c(so)) € valsc(x!)

[€%(22 f,to, s0, 8)]s,c = true iff(f, vals ¢ (to), vals,c(so), vals,c(s)) € valgc(x?)

Finally, we use [z!]¢ to express the evaluation of ¢ over the successor state
obtained by applying the updates in ' to the current state. Its truth value is
defined by: [[z']p]s,c = true iff A = ((x!) is inconsistent or [¢]sia,c = true
for ¢(x') = A € A(r,S,¢). That is, when A = ((z!) is inconsistent, successor
states for the current state S do not exist and thus S + A is undefined. In this
case, [z!]y is interpreted as true. With the use of the modal operator [] for an
update set A = ((x!) (i.e., [z!]), £ is empowered to be a multi-modal logic.

We say that a formula ¢ of L is static if all the function symbols which
appear in @ are static and say that it is pure if it is generated by the following
grammar: @, == s=1t]|8, =1t | 7@ | o A | Vz(p) | V().

Since metafinite states are just a special kind of two sorted first-order struc-
tures in which one of the sorts is finite, we can identify every metafinite state S
of £ with a corresponding many sorted first-order structure S” of the class used
in definition of £. This can be done by taking the domains D; and Ds of the
individual sorts of S’ to be the base sets By and B of S, respectively, the sets
Fy, Fy and F;, of function names of the signature X of S’ to be the sets 17, 1%
and Fy of the signature 1" of S, respectively, and the interpretation in S’ of the
function names in X to coincide with the interpretation in S of the correspond-
ing function symbols in 7. Following this transformation we have that for every
state S, every corresponding pair of many sorted first-order structure S’ and S”
are isomorphic by an isomorphism which is the identity among elements of the
individual sorts. Thus, we can talk of the many sorted structure S corresponding

to a state S and, when it is clear from the context, we can even talk of the state
S meaning the many sorted structure S.

In what follows, we use the somehow clearer and more usual syntax of second-
order logic to denote the set membership predicates and the quantification over
the predicate sorts. Thus we use upper case letters X,Y,... and X,),... to
denote variables z1, 23, ... and 2%, 23, ... of the first and second predicate sorts,
respectively, and we write VX (¢), VX (), [X]e, X(f,to,50), X(f,to,s0,s) and
upd(r, X) instead of V! (p), Va2 (p), [zt]p, €l (2!, f,to,s0), €' (2% f, 10, S0,)
and upd(r, x!), respectively. Furthermore, in our formulae we use disjunction
V, implication —, double implication < and existential quantification 3. All of
them are defined as abbreviations in the usual way.

Ezample 3. L can express properties of the ASM in Example [2] such as:

— If r yields in the current state S an update set A with an update (T, x, true),
then in the successor state S + A the vertices of x have a same label.

VX (upd(r, X) — Va(X (T, z, true) — [X|(label(first(x)) = label(second(x)))))

— Each update set yielded by r updates T" in no more than one location.

VX (upd(r, X) = = (Fey(X(T, z, true) AN X (T, y, true) Az # y)))

— If an edge x meets in a state .S the criteria of the first choose rule in r, then
there is an update set A € A(r, S) such that T(x) = true holds in S + A.

Vo (E(x) A label(first(z)) # label(second(x))A
Vy(E(y) A label(first(y)) # label(second(y)) — weight(y) > weight(x))
— 3X (upd(r, X) A [X|(T(x) = true)))

5 A Proof System

In this section we develop a proof system for the logic £ for non-deterministic
parallel ASMs.

Definition 1. We say that a state S is a model of a formula ¢ (denoted as
S E @) iff [¢ls,c = true holds for every variable assignment ¢. If ¥ is a set of
formulae, we say that S models ¥ (denoted as S |= W) iff S |= ¢ for each ¢ € .
A formula ¢ is said to be a logical consequence of a set ¥ of formulae (denoted
as W = @) if for every state S, if S |E W, then S = ¢. A formula ¢ is said to
be valid (denoted as |= @) if [p]s,c = true in every state S for every variable
assignment (. A formula ¢ is said to be derivable from a set W of formulae
(denoted as W b,) if there is a deduction from formulae in ¥ to ¢ by using a
set R of axioms and inference rules.

We will define such a set R of axioms and rules in Subsection [5.3] Then we
simply write F instead of Fg;. We also define equivalence between two ASM rules.
Two equivalent rules r; and ro are either both defined or both undefined.

Definition 2. Let ry and ro be two ASM rules. Then r1 and ro are equivalent
(denoted as 11 = ro) if for every state S it holds that S = VX (upd(ry, X) <
upd(rg, X)).

5.1 Consistency

In [I3] Nanchen and Stérk use a predicate Con(r) as an abbreviation for the
statement that the rule r is consistent. As every rule r in their work is determin-
istic, there is no ambiguity with the reference to the update set associated with
r, i.e., each deterministic rule r generates exactly one (possibly empty) update
set. Thus a deterministic rule r is consistent iff the update set generated by r is
consistent. However, in our logic £, the presence of non-determinism makes the
situation less straightforward.

Let r be an ASM rule and A be an update set. Then the consistency of an
update set A, denoted by the formula conUSet(X) (where X represents A), can
be expressed as:

conUSet(X) = /\ Voyz(X(f,z,y) NX(f,2,2)) =y =2) (1)
fe€Fayn

Then con(r, X) is an abbreviation of the following formula which expresses that
an update set A (represented by the variable X) generated by the rule r is
consistent.

con(r, X) = upd(r, X) A conUSet(X) (2)

As the rule » may be non-deterministic, it is possible that r yields several
update sets. Thus, we develop the consistency of ASM rules in two versions:

— A rule r is weakly consistent (denoted as wcon(r)) if at least one update set
generated by r is consistent. This can be expressed as follows:

weon(r) = 3X (con(r, X)) (3)

— A rule r is strongly consistent (denoted as scon(r)) if every update set gen-
erated by r is consistent. This can be expressed as follows:

scon(r) = VX (upd(r, X) = con(r, X)) (4)

In the case that a rule r is deterministic, the weak notion of consistency
coincides with the strong notion of consistency, i.e., weon(r) > scon(r).

5.2 Update Sets

We present the axioms for the predicate upd(r, X) in Figure [2| To simplify the
presentation, we give the formulae only for the case in which all the function
symbols in Fg,, correspond to functions on the primary part (finite individual
sort) of the state. To deal with dynamic function symbols corresponding to

Ul. upd(f(t) :=s,X) < X(f, t,8) A\Vay(X(f,z,y) 2z =t Ay =3s)A

AN Vey(=X(fz,y))
FAL E€Faym

U2. upd(if p thenrendif, X) < (¢ Aupd(r, X))V (me A A Vay(=X(f,z,y))
f€EFayn

U3. upd(forall x with p dor enddo, X) +

3X (VY ((¢ — 3Y (upd(r,Y) A feé\ Vyry2 (Y (f,y1,92) < X(f, 91,92,))))A

(_'50_> /\ Vyly?(_‘X(fvyhy?:x))))/\

fE€Fayn

/\ VII'l.’I'Q(X(f,l’l,iL‘Q) <_>EI:I"3(/Y(f7I17‘11,27'113))))
f€Fayn

U4. upd(par r1 r2 endpar, X) < 3Y1Y2(upd(ri, Y1) A upd(rz, Y2)A

fe]/:\ me(X(f,:v,y) A (Y1(f,.%',y)\/}/2(f,$,y)))

US5. upd(choose z with ¢ dor enddo, X) <> Jz(¢ A upd(r, X))
U6. upd(choose x with ¢ dor enddo, X) <> Ix(p A upd(r, X))

U7. upd(seqry r2 endseq, X) <> (upd(ri, X) A —con(X))V
(3Y1Yz2(upd(r1, Y1) A con(Y1) A [Yi]upd(rz, Y2)A

fe_{-'\ VCL‘y(X(f, Z, y) Ans ((Yl(f7 z, y) A VZ(_'YQ(f7 z, Z))) N YQ(f7 €z, y)))))

Fig. 2. Axioms for predicate upd(r,X)

function of the secondary part and to bridge functions, we only need to slightly
change the formulae by replacing some of the first-order variables in X} by first-
order variables in Xs. For instance, if f is a bridge function symbol, we should
write Voy(X (f,x,y) = © = t Ay = s) instead of Vay(X (f, z,y) = 2 = tAy = s).

In the following we explain Axioms U1-U7 in turn. We assume a state S of
some signature 7" and base set B = By U Bs, where B; is the base set of the
finite primary part of S. We also assume a variable assignment (.

As in our case an ASM rule may be non-deterministic, a straightforward
extension from the formalisation of the forall and par rules used in the logic for
ASMs in [I3] would not work for Axioms U3 and U4. The axioms correspond
to the definition of update sets in Figure

— Axiom U1 says that X is an update yielded by the assignment rule f(t) := s
iff it contains exactly one update which is (f,t, s).

— Axiom U2 asserts that, if the formula ¢ evaluates to true, then X is an
update set yielded by the conditional rule if ¢ then r endif iff X is an
update set yielded by the rule r. Otherwise, the conditional rule yields only
an empty update set.

— Axiom U3 states that X is an update set yielded by the rule forall x with
¢ do r enddo iff X coincides with A,, U---U A, , where {a1,...,a,} =
{a; € By | valg ¢jzmsa;)(¢) = true} and A,, (for 1 < i < n) is an update set
yielded by the rule r under the variable assignment [z + a;]. Note that the
update sets A,,, ..., A,, are encoded into X.

— Axiom U4 states that X is an update set yielded by the parallel rule par
r1 19 endpar iff it corresponds to the union of an update set yielded by 71
and an update set yielded by 7.

— Axioms U5 asserts that X is an update set yielded by the rule choose =
with ¢ do r enddo iff it is an update set yielded by the rule r under a
variable assignment [z — a] which satisfies ¢.

— Axiom U6 is similar to Axiom U5, but for the case of the choose x with
¢ do r enddo rule.

— Axiom UT asserts that X is an update set yielded by a sequence rule seq
r1 ro endseq iff it corresponds to either an inconsistent update set yielded
by rule 71, or to an update set formed by the updates in an update set Y5
yielded by rule 79 in a successor state S 4 Y7, where Y7 encodes a consistent
set of updates produced by rule ry, plus the updates in Y7 that correspond
to locations other than the locations updated by Y5.

The following lemma is an easy consequence of the axioms in Figure [2|

Lemma 1. Every formula in the logic L can be replaced by an equivalent formula
not containing any subformulae of the form upd(r, X).

Remark 2. The inclusion of the parameter X in the predicate upd(r, X) is impor-
tant because a rule r in a non-deterministic parallel ASM rule may be associated
with multiple update sets, and thus we need a way to specify which update set
yielded by rule r is meant.

5.3 Axioms and Inference Rules

Now we can present a set of axioms and inference rules which constitute a proof
system for the logic £. To avoid unnecessary repetitions of almost identical ax-
ioms and rules, we describe them only considering variables of the first individual
sort, but the exact same axioms and inference rules are implicitly assumed for
the case of variables of the second individual sort as well as for variables of the
predicate sorts. In the definition of the set of axioms and rules, we sometimes
use @[t/x] to denote the substitution of a term ¢ for a variable x in a formula ¢.
That is, [t/x] is the result of replacing all free instances of by ¢ in ¢ provided
that no free variable of ¢ becomes bound after substitution.
Formally, the set SR of axioms and inference rules is formed by:

— The axioms U1-U7 in Fig. [2| which assert the properties of upd(r, X).

— Axiom M1 and Rules M2-M3 from the axiom system K of modal logic,
which is the weakest normal modal logic system [I1]. Axiom M1 is called
Distribution Aziom of K, Rule M2 is called Necessitation Rule of K and
Rule M3 is the inference rule called Modus Ponens in the classical logic.
By using these axiom and rules together, we are able to derive all modal
properties that are valid in Kripke frames.

M1 [X](¢ = ¢) = ([X]e = [X]¥)
M2 ok [X]e M3, =Y F o

— Axiom M4 asserts that, if an update set A is not consistent, then there is
no successor state obtained after applying A over the current state and thus
[X]e (for X interpreted by A) is interpreted as true for any formula . As
applying a consistent update set A over the current state is deterministic,
Axiom M5 describes the deterministic accessibility relation in terms of [X].
M4 —conUSet(X) — [X]p M5 —[X]p = [X]-¢

— Axiom M6 is called Barcan Axiom. It originates from the fact that all states
in a run of a non-deterministic parallel ASM have the same base set, and
thus the quantifiers in all states always range over the same set of elements.

M6 Vz([X]p) = [X]Vz(y)
— Axioms M7 and M8 assert that the interpretation of static or pure formulae

is the same in all states of non-deterministic parallel ASMs, since they are
not affected by the execution of any ASM rule 7.

M7 con(r, X) A ¢ — [X]p for static or pure ¢
MS8 con(r, X) A [X]p — ¢ for static or pure ¢

— Axiom A1 asserts that, if a consistent update set A (represented by X)
does not contain any update to the location (f,), then the content of (f,x)
in a successor state obtained after applying A is the same as its content in
the current state. Axiom A2 asserts that, if a consistent update set A does
contain an update which changes the content of the location (f, z) to y, then
the content of (f,z) in the successor state obtained after applying A is y.
A1l conUSet(X) AVz(=X(f,z,2)) A f(z) =y = [X]f(x) =y
A2 conUSet(X)AX(f,z,y) = [X]f(x) =y

— The following are axiom schemes from classical logic.
Pl o= (¥ —¢)
P2 (¢ = (¥ —=x) = (¢ =¢) = (¢ —=x)
P3 (—p = ~¢) = (¢ = ¢)

— The following four inference rules describe when the universal and existential
quantifiers can be added to or deleted from a statement. Rules UI, EG, UG

and EI are usually known as Universal Instantiation, Fxistential Generali-
sation, Universal Generalisation and Fxistential Instantiation, respectively.

UI Vx(p) F o[t/x] if ¢ is pure or ¢ is static.

EG o[t/x] F Jx(p) if ¢ is pure or t is static.

UG plta/z] - Va(p) if [ty /x] holds for every element a in the domain of x
and corresponding term ¢, representing a, and further ¢ is pure or every
t, 1s static.

EI 3x(p) b @[t/x] if t represents a valuation for x which satisfies ¢, and
further ¢ is pure or t is static.

— The following are the equality axioms from first-order logic with equality.
Axiom EQ]1 asserts the reflexivity property while Axiom EQ2 asserts the
substitutions for functions.

EQ1 t =t for static term ¢

EQ2 t, = tny1 A oo Nty = top — f(th...,tn) = f(tn+1,...,t2n) for any
function f and static terms ¢; (i = 1,...,2n).

— The following axiom is taken from dynamic logic, asserting that executing a
seq rule equals to executing rules sequentially.
DY1 3X(upd(seqr; re endseq, X) A [X]p) <
33X (upd(r1, X1) A [X1]3 X2 (upd(re, X2) A[X2]e))
— Axiom E is the extensionality axiom.
E ri =ry — 3X; Xo((upd(r1, X1) A [X1)e) < (upd(ra, X2) A [Xa]))

The following soundness theorem for the proof system is relatively straight-
forward, since the non-standard axioms and rules are just a formalisation of the
definitions of the semantics of rules, update sets and update multisets.

Theorem 1. Let ¢ be a formula from L and let @ be a set of formulae also from
L (all of them of the same vocabulary as ¢). If D+ ¢, then @ = .

6 Derivation

In this section we present some properties of the logic for non-deterministic
parallel ASMs which are implied by the axioms and rules from the previous
section. This includes properties known for the logic for ASMs [13]. In particular,
the logic for ASMs uses the modal expressions [r]e and (r)¢ with the following
semantics:

— [[rlels,c = trueiff [¢]s+a,c = true for all consistent A € A(r, S, ().
— [(r)¢ls,c = trueiff [p]s4a,c = true for at least one consistent A € A(r, S, ().

Instead of introducing modal operators [] and () for a non-deterministic
parallel ASM rule r, we use the modal expression [X]p for an update set yielded
by a possibly non-deterministic rule. The modal expressions [r]¢ and (r)¢ in the
logic for ASMs can be treated as the shortcuts for the following formulae in our
logic:

[l = VX (upd(r, X) — [X]p). (5)

(r)e = 3X (upd(r, X) A [X]p). (6)

Lemma 2. The following axioms and rules used in the logic for ASMs are deriv-
able in L, where the rule r in Azioms (¢) and (d) is assumed to be defined and de-
terministic: (a) ([rl(¢ = ¢) = [rl@) = [r]ib; (b) ¢ — [r]e; (¢) ~weon(r) — [r]e;
(d) [r]e < =lr]—p.

Proof. We prove each property in the following.

— (a): By Equation [5| we have that [r](¢ — ¥) A [r]e = VX (upd(r, X) —
[X](¢ = ¥)) AVX (upd(r, X) — [X]¢). By the axioms from classical logic,
this is in turn equivalent to VX (upd(r, X) — ([X](¢ —) A [X]¢)). Then
by Axiom M1 and axioms from the classical logic, we get VX (upd(r, X) —
([(XI(p = ¥) A [X]p)) = VX (upd(r, X) — [X]y)). Therefore, ([r](p — ¢) =
[r]¢) — [r]Y is derivable.

— (b): By Rule M2, we have that ¢ — [X;]¢. Since X is free in ¢ — [X]¢,
this holds for every possible valuation of X. Thus using Rule UG (applied
to the variable X of the first predicate sort) and the axioms from classical
logic, we can clearly derive o — VX (upd(r, X) — [X]p).

— (c): By Equation [3} we have —wcon(r) <> =3X (con(r, X). In turn, by Equa-
tion [2 we get ~wcon(r) <+ =3X (upd(r, X) A conUSet(X)). Since a rule r in
the logic for ASMs is deterministic, we get —wcon(r) +» —conUSet(X). By
Axiom M4, we get —wcon(r) — [r]ep.

— (d): By Equation[f] we have =[r]=¢ = 3X (upd(r, X) A—[X]|-¢). By applying
Axiom M5 to —[X]-p, we get —[r]-¢ = IX (upd(r, X) A [X]¢). When the
rule r is deterministic, the interpretation of VX (upd(r, X) — [X]¢) coincides
with he interpretation of 3X (upd(r, X)A[X]¢) and therefore [r|p < —[r]—¢.

Note that the formula Con(R) in Axiom 5 in [I3] (i.e., in =Con(R) — [R]y)
corresponds to the weak version of consistency (i.e., weon(r)) in the theory of L.

Lemma 3. The following properties are derivable in L: (e) con(r, X)A[X]f(z) =
y = X(f,2,9) Vv (V2(=X(f,2,2)) A f(2) = y); () con(r, X) A [X]p = =[X]p;
(9) [X]32(0) = 32([X]p); (h) [Xpr A X2 = [X] (01 A pa2).

Proof. (e) is derivable by applying Axioms A1l and A2. (f) is a straightforward
result of Axiom MS5. (g) can be derived by applying Axioms M5 and MS6.
Regarding (h), it is derivable by using Axioms M1-M3.

Lemma 4. For terms and variables of the appropriate types, the following prop-
erties in [9] are derivable in L.

—r=t—=(y=so [f(t)=s]fx)=y
—w#t— (y=fl2) < [f{t) = 5f(z) =)

Following the approach of defining the predicate joinable in [13], we define the
predicate joinable over two non-deterministic parallel ASMs rules. As we consider
non-deterministic parallel ASMs rules, the predicate joinable(r1,r2) means that
there exists a pair of update sets without conflicting updates, which are yielded

by rules r; and 79, respectively. Then, based on the use of predicate joinable,
the properties in Lemma [5] are all derivable.

joinable(ry,re) =3X7 Xo(upd(r1, X1) A upd(ra, X2)A

N Vay(Xa(fey) AXa(fiz2) vy =2) (D
fE€EFayn

Lemma 5. The following properties for weak consistency are derivable in L.

(i) weon(f(t) :=s) (j) weon(f(t) :=s) (k) weon(f(t) :=s)
(j) weon(ifyp thenr endif) <> —¢ V (p A weon(r))
(1) weon(forallz withp dor enddo) +»
V(o — weon(r) AVy(ely/x] — joinable(r, rly/x])))
(m) wecon(parri ro endpar) < weon(ry) A weon(rs) A joinable(ry,ra)
(n) wcon(choosex withy dor enddo) <> Jx(p A weon(r))
(o) wcon(choosex with o dor enddo) <> Ix(p A weon(r))
(p) wcon(seqry o endseq) <> 3X (con(ry, X) A [X]wcon(ra))

We omit the proof of the previous lemma as well as the proof of the remaining
lemmas in this section, since they are lengthy but relatively easy exercises.

Lemma 6. The following properties for the formula [r]¢ are derivable in L.

(@) [if, ¢, then,r, endifly) < (p A[r]Y) V (mo A9
(r) [choosex withy dor enddo|y < Vx(p — [r])
(s) [choosex withy dor enddoly < V(o — [r|y)

Lemma [7] states that a parallel composition is commutative and associative
while a sequential composition is associative.

Lemma 7. The following properties are derivable in L.

(t) par ri ro endpar = par ro 1 endpar
(u) par (parriy ro endpar)rs endpar = par ry (parry r3 endpar) endpar
(v) seq (seqri o endseq) r3 endseq = seq 1 (seqrs r3 endseq) endseq

Lemma 8. The extensionality axiom for transition rules in the logic for ASMs
is derivable in L: 1 = 1o — ([r1]p < [r2]p).

7 Completeness

We can prove the completeness of £ by using a similar strategy to that used
n [I3]. That is, we can show that £ is a definitional extension of a complete
logic. However, the logic for hierarchical ASMs in [I3] is a definitional extension
of first-order logic. In the case of the logic L, the proof is more complicated since
we have to deal with set membership predicates and corresponding predicate

sorts. The key idea is to show instead that L is a definitional extension of first-
order logic extended with two membership predicates with respect to finite sets,
which in turns constitutes itself a complete logic.

In the remaining of this section, we will use £ to denote the logic obtained
by restricting the formulae of £ to those produced by the following grammar:

P, = s=t]se=ta | @ | @AY | V() | Vx(p) | V2l () | V23 (p) |
Gl(xla f7t0780) ‘Ez(x% fathSO,s)'

Let us define the theory of L€ as the theory obtained by taking the union
of a sound and complete axiomatisation of first-order logic and the sound and
complete axiomatisation of the properties of finite sets introduced in [I]. Clearly,
such theory of L€ is a conservative extension of the first-order theory, in the sense
that if @ is a set of pure first-order formulae and ¢ is a pure first-order formula
(not containing subformulae of the form €™(z",¢1,...,t,)) and & F ¢ holds in
the theory of £, then there already exists a derivation using the axiomatisation
for first-order logic. Indeed, due to the soundness of the axioms and rules in
the theory of L€, we obtain @ = ¢, which is a pure statement about models for
first-order logic. Thus the known completeness for first-order logic gives @ F ¢ in
an axiomatisation for first-order logic, hence the claimed conservativism of the
extension. Since then the theory of L& proves no new theorems about first-order
logic, all the new theorems belong to the theory of properties of finite sets and
thus can be derived by using the axiomatisation in [I] (which also form part of
the axiomatisation of L), we get the following key result.

Theorem 2. Let ¢ be a formula and @ be a set of formulae in the language of
LE (all of the same vocabulary). If @ |= ¢, then @+ .

Finally, we need to show that all the formulae in £ which are not formulae of
L€ can be translated into formulae of L& based on derivable equivalences in the
theory of L. First, we reduce the general atomic formulae in £ to atomic formulae

of the form = = y, x =y, f(z) = v, f(x) =y, f(x) =y, € (a2} f,z,y), €'
(L f,2,y), €zl f,x,y), €2(23 f,2,y,2), €2(2?% f,,y,2) and €2(22 f,x,y, 2).
Let ¢, s and s’ denote point terms and let ¢, and s, denote algorithmic terms.
This can be done by using the following equivalences.
s=teJx(s=zhz=1t)
Sa =1tlg ¢ Ix(sqa =xAx=1,)
f(s)=y e Jx(s=z A flz) =y)
fs) =y dx(s=anflz)=y)
f(sa) =y Ix(sa =x A f(x) =)
ez f,t,8) & oyt =x As =y (!, f,2,7))
cl(al f,t,8q) & Txy(t = 2 Asq = yA €Nl f,2,y))
el(@h fota, 50) < Fxy(ta = x A sy = yA €N, f,x,y))
(2% fit,8,8") < Jayz(t =x As=yNs =2n E2(2? f,x,y,2))

€2(2% fit,84,8) & Jayz(t =x As, =y As' = 2N €222 f,x,7,2))
€2(2% fita,50,8) < Ixyz(ta = x N5, =y As' = 2N €422 f,x,y,2))

The translation of modal formulae into £€ distributes over negation, Boolean
connectives and quantifiers. We eliminate atomic formulae of the form upd(r, 1)
using Axioms U1-U7, and the modal operator in formulae of the form [z!]¢p,
where ¢ is already translated to £€, using the following derivable equivalences.

[#1]x =y <> (conUSet(a!) — 2 = y), [rl]x =y « (conUSet(D —sx=y);
[z']f(z) = y < (conUSet(z') — (), f’l‘,y)V(VZ(ﬂG (@ fyx,2)) A fz) = y))
[#']f(z) =y > (conUSet(z') — (!, f,2,y)V(V2(-€'(z], f,z,2)) A f(z) = ¥))
[#']f(x) =y < (conUSet(z') — €'(z', f,x,y)V(Vz(-e (2!, f,x,2)) A f(x) =¥));
[961]61(56 f,x y) > (conUSet(x)—>€1(x17 fix,y);

[#1]et(at, f,2,y) <> (conUSet(z!) — €*(a}, f,x v));

[#1]et(xY, f,%,y) ¢ (conUSet(z!) — el(a! f,x ¥));

[@1]€2(a2 f,2,y, 2) < (conUSet(a!) - €2(a? f, 7, , 2));

[z1]€?(@? f, 2.y, 2) ¢ (conUSet(z') — €*(2? f, 2,3, 2));

[z1€?(2? f,%,y,2) © (COHUSet(Cﬂl) — €%(a? f,X ¥, 2));

[#]=¢ ¢ (conUSet(z!) — =[z']yp); [z](@Aw) & ([2')p A fz']y);

[z V2(p) & Va([z']p); [z]Vx(p) > Vx([z']p);

[z1]¥y! () < vy ([2']e); [z1]Va? () ¢ Va2 ([21]p).

Our main technical result then follows from Theorem 2l and the fact that the
described translation from formulae ¢ of £ to formulae ¢’ of L€ satisfies the
properties required for £ to be a definitional extension of L€, i.e., (a) ¢ +> ¢’ is
derivable in £ and (b) ¢’ is derivable in L& whenever ¢ is derivable L.

Theorem 3. Let ¢ be a formula and @ a set of formulae in the language of L
(all of the same vocabulary). If & |= @, then ® F .

8 Conclusion

Non-deterministic transitions manifest themselves as a difficult task in the logical
formalisation for ASMs. Indeed, Nanchen and Stérk analysed potential problems
to several approaches they tried by taking non-determinism into consideration
and concluded [T3]:

Unfortunately, the formalisation of consistency cannot be applied di-
rectly to non-deterministic ASMs. The formula Con(r) (as defined in
Sect. 8.1.2 of [5]) expresses the property that the union of all possible
update sets of (an ASM rule) r in a given state is consistent. This is
clearly not what is meant by consistency. Therefore, in a logic for ASMs
with choose one had to add Con(r) as an atomic formula to the logic.

However, we observe that this conclusion is not necessarily true, as finite
update sets can be made explicit in the formulae of a logic to capture non-
deterministic transitions. In doing so, the formalisation of consistency defined in

[13] can still be applied to such an explicitly specified update set A yielded by
a rule 7 in the form of the formula con(r, A) as discussed in Subsection We
thus solve this problem by the addition of the modal operator [A] for an update
set generated by a non-deterministic parallel ASM rule. The approach works
well, because in the parallel ASMs the number of possible parallel branches,
although unbounded, is still finite. Therefore the update sets produced by these
machines are restricted to be finite as well. This is implicitly assumed in the
parallel ASM thesis of Blass and Gurevich[3/4] and it is made explicit in the new
parallel ASM thesis that we propose in [6].

The proof systems that we develop in this work for the proposed logic for
non-deterministic parallel ASMs, extends the proof system developed in [I3] in
two different ways. First, an ASM rule may be associated with a set of different
update sets. Applying different update sets may lead to a set of different succes-
sor states to the current state. As the logic for non-deterministic parallel ASMs
includes formulae denoting explicit update sets and variables that are bounded
to update sets, our proof system allows us to reason about the interpretation of
a formula over all successor states or over some successor state after applying an
ASM rule over the current state. Secondly, in addition to capturing the consis-
tency of an update set yielded by an ASM rule, our proof system also develops
two notions of consistency (weak and strong consistency) w.r.t. a given rule.
When the rule is deterministic, these two notions coincide.

We plan as future work to embed our one-step logic into a complex dynamic
logic and demonstrate how desirable properties of ASM runs can be formalised
in such a logic. Of course, there is no chance of obtaining a complete proof theory
for full ASM runs, but there is clearly many potential practical benefits from
the perspective of the ASM method for systems development [5].

References

1. Agotnes, T., Walicki, M.: Complete axiomatisations of properties of finite sets.
Logic Journal of the IGPL 16(3), 293-313 (2008)

2. Alur, R.: Principles of Cyber-Physical Systems. MIT Press (2015)

3. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM
Trans. on Comp. Logic 4(4), 578-651 (October 2003)

4. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms: Cor-
rection and extension. ACM Trans. on Comp. Logic 9(3), 1-32 (06 2008)

5. Borger, E., Stark, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag New York, Inc. (2003)

6. Ferrarotti, F., Schewe, K., Tec, L., Wang, Q.: A new thesis concerning synchronised
parallel computing - simplified parallel ASM thesis. CoRR abs/1504.06203 (2015),
http://arxiv.org/abs/1504.06203

7. Floyd, R.W.: Nondeterministic algorithms. J. ACM 14(4), 636-644 (Oct 1967),
http://doi.acm.org/10.1145/321420.321422

8. Gradel, E., Gurevich, Y.: Metafinite model theory. Information and Computation
140(1), 26-81 (1998)

9. Groenboom, R., Renardel de Lavalette, G.: A formalization of evolving algebras.
In: Proceedings of Accolade95. Dutch Research School in Logic (1995)

http://arxiv.org/abs/1504.06203
http://doi.acm.org/10.1145/321420.321422

10.

11.

12.

13.

14.

Huggins, J.K., Wallace, C.: An abstract state machine primer. Tech. Rep. 02-04,
Computer Science Department, Michigan Technological University (2002)
Hughes, G., Cresswell, M.: A new introduction to modal logic. Burns & Oates
(1996)

Kruskal, J.B.: On the shortest spanning subtree of a graph and the travelling
salesman problem. Proc. Amer. Math. Soc. 2, 48-50 (1956)

Stark, R., Nanchen, S.: A logic for abstract state machines. Journal of Universal
Computer Science 7(11) (2001)

Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., New York, NY, USA (1995)

	Lecture Notes in Computer Science

