Skip to main content

Discovering Overlapping Quantitative Associations by Density-Based Mining of Relevant Attributes

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9616))

Included in the following conference series:

Abstract

Association rule mining is an often used method to find relationships in the data and has been extensively studied in the literature. Unfortunately, most of these methods do not work well for numerical attributes. State-of-the-art quantitative association rule mining algorithms follow a common routine: (1) discretize the data and (2) mine for association rules. Unfortunately, this two-step approach can be rather inaccurate as discretization partitions the data space. This misses rules that are present in overlapping intervals.

In this paper, we explore the data for quantitative association rules hidden in overlapping regions of numeric data. Our method works without the need for a discretization step, and thus, prevents information loss in partitioning numeric attributes prior to the mining step. It exploits a statistical test for selecting relevant attributes, detects relationships of dense intervals in these attributes, and finally combines them into quantitative association rules. We evaluate our method on synthetic and real data to show its efficiency and quality improvement compared to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. ACM SIGMOD 22(2), 207–216 (1993)

    Article  Google Scholar 

  2. Altay Guvenir, H., Uysal, I.: Bilkent university function approximation repository (2000). http://funapp.cs.bilkent.edu.tr

  3. Aumann, Y., Lindell, Y.: A statistical theory for quantitative association rules. In: ACM SIGKDD, pp. 261–270 (1999)

    Google Scholar 

  4. Bay, S.D.: Multivariate discretization for set mining. Knowl. Inf. Syst. 3(4), 491–512 (2001)

    Article  MATH  Google Scholar 

  5. Brin, S., Rastogi, R., Shim, K.: Mining optimized gain rules for numeric attributes. IEEE Trans. Knowl. Data Eng. 15(2), 324–338 (2003)

    Article  Google Scholar 

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: ACM SIGKDD, pp. 226–231 (1996)

    Google Scholar 

  7. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Mining optimized association rules for numeric attributes. J. Comput. Syst. Sci. 58(1), 1–12 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grzymała-Busse, J.W.: Three strategies to rule induction from data with numerical attributes. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 54–62. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining with formal concept analysis. International Joint Conference on Artificial Intelligence (IJCAI) arXiv preprint arxiv:1111.5689 (2011)

  10. Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis. Inf. Sci. 181(10), 1989–2001 (2011)

    Article  MathSciNet  Google Scholar 

  11. Ke, Y., Cheng, J., Ng, W.: Mic framework: an information-theoretic approach to quantitative association rule mining. In: IEEE ICDE, pp. 112–112 (2006)

    Google Scholar 

  12. Kriegel, H.P., Kröger, P., Renz, M., Wurst, S.H.R.: A generic framework for efficient subspace clustering of high-dimensional data. In: IEEE ICDM, pp. 250–257 (2005)

    Google Scholar 

  13. Kröger, P., Kriegel, H.P., Kailing, K.: Density-connected subspace clustering for high-dimensional data. In: SIAM SDM, pp. 246–256 (2004)

    Google Scholar 

  14. Mata, J., Alvarez, J.L., Riquelme, J.C.: An evolutionary algorithm to discover numeric association rules. In: ACM SAC, pp. 590–594 (2002)

    Google Scholar 

  15. Miller, R.J., Yang, Y.: Association rules over interval data. ACM SIGMOD 26(2), 452–461 (1997)

    Article  Google Scholar 

  16. Müller, E., Assent, I., Günnemann, S., Seidl, T.: Scalable density-based subspace clustering. In: ACM CIKM, pp. 1077–1086 (2011)

    Google Scholar 

  17. Müller, E., Assent, I., Krieger, R., Günnemann, S., Seidl, T.: DensEst: Density estimation for data mining in high dimensional spaces. In: SIAM SDM, pp. 175–186 (2009)

    Google Scholar 

  18. Müller, E., Günnemann, S., Assent, I., Seidl, T.: Evaluating clustering in subspace projections of high dimensional data. PVLDB 2(1), 1270–1281 (2009)

    Google Scholar 

  19. Salleb-Aouissi, A., Vrain, C., Nortet, C., Kong, X., Rathod, V., Cassard, D.: Quantminer for mining quantitative association rules. J. Mach. Learn. Res. 14(1), 3153–3157 (2013)

    MATH  Google Scholar 

  20. Serrurier, M., Dubois, D., Prade, H., Sudkamp, T.: Learning fuzzy rules with their implication operators. Data Knowl. Eng. 60(1), 71–89 (2007). http://dx.doi.org/10.1016/j.datak.2006.01.007

    Article  Google Scholar 

  21. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In: ACM SIGMOD. pp. 1–12 (1996)

    Google Scholar 

  22. Tatti, N.: Itemsets for real-valued datasets. In: IEEE ICDM, pp. 717–726 (2013)

    Google Scholar 

  23. Vannucci, M., Colla, V.: Meaningful discretization of continuous features for association rules mining by means of a som. In: ESANN, pp. 489–494 (2004)

    Google Scholar 

  24. Washio, T., Mitsunaga, Y., Motoda, H.: Mining quantitative frequent itemsets using adaptive density-based subspace clustering. In: IEEE ICDM, pp. 793–796 (2005)

    Google Scholar 

  25. Webb, G.I.: Discovering associations with numeric variables. In: ACM SIGKDD, pp. 383–388 (2001)

    Google Scholar 

  26. Wijsen, J., Meersman, R.: On the complexity of mining quantitative association rules. Data Min. Knowl. Discov. 2(3), 263–281 (1998)

    Article  Google Scholar 

  27. Zhu, F., Yan, X., Han, J., Yu, P.S., Cheng, H.: Mining colossal frequent patterns by core pattern fusion. In: IEEE ICDE, pp. 706–715 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Van Brussel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Van Brussel, T., Müller, E., Goethals, B. (2016). Discovering Overlapping Quantitative Associations by Density-Based Mining of Relevant Attributes. In: Gyssens, M., Simari, G. (eds) Foundations of Information and Knowledge Systems. FoIKS 2016. Lecture Notes in Computer Science(), vol 9616. Springer, Cham. https://doi.org/10.1007/978-3-319-30024-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30024-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30023-8

  • Online ISBN: 978-3-319-30024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics