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Abstract

This study carries forward the line of enquiry that seeks to char-

acterize precisely which security policies are enforceable by runtime

monitors. In this regard, Basin et al. recently refined the structure

that helps distinguish between those actions that the monitor can

potentially suppress or insert in the execution, from those that the

monitor can only observe. In this paper, we generalize this model by

organizing the universe of possible actions in a lattice that naturally

corresponds to the levels of monitor control. We then delineate the

set of properties that are enforceable under this paradigm and relate

our results to previous work in the field. Finally, we explore the set

of security policies that are enforceable if the monitor is given greater

latitude to alter the execution of its target, which allows us to reflect

on the capabilities of different types of monitors.

1 Introduction

Runtime monitoring is an approach to enforcing security policies that seeks to
allow untrusted code to run safely by observing its execution and reacting as
needed to prevent a violation of a user-supplied security policy. This method
of ensuring the security of code is rapidly gaining acceptance in practice and
several implementations exist [17]. One question seems to recur frequently
in multiple studies: exactly which set of properties are monitorable, in the
sense that they are enforceable by monitors. Previous research has identi-
fied several factors that can affect the set of security policies enforceable by
monitors. These include the means at the disposal of monitors to react to
a potential violation of the security policy [3], the availability of statically
gathered data about the target program’s possible executions [9, 3], memory
and computability constraints [13, 14] etc.

One specific aspect that can have a considerable impact on the monitor’s
expressiveness is its ability to either suppress certain actions performed by
the target program from occurring during the execution (while allowing the
remainder of the execution to continue unaffected) or to insert additional
events in an ongoing execution. These abilities, when available, extend the
monitor’s enforcement power considerably. Indeed, a lower bound on the
enforcement power of monitors is given by Schneider [25] who shows that the
set of properties enforceable by a monitor whose only possible reaction to
a potential violation of the desired security policy is to abort the execution
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coincides with the set of safety properties. Conversely, Ligatti et al. [22]
consider the case of a monitor with an unlimited ability to delay any event
performed by the target program until it has ascertained that its occurrence
in the execution would not violate the security policy. In effect, the monitor is
simulating the execution of the program until it is certain that the behaviour
it has so far witnessed is correct. When behaving in this manner, the monitor
can enforce a vast range of security properties, termed the set of infinite
renewal properties, which includes all safety policies, some liveness policies
and some policies that are neither safety nor liveness.

Yet, it may not be realistic to assume that the monitor has an unlimited
ability to simulate the execution of the target program. Indeed, as Ligatti
et al. [22] point out: “[O]ur model assumes that security automata have the
same computational capabilities as the system that observes the monitor’s
output. If an action violates this assumption by requiring an outside system
in order to be executed, it cannot be feigned (i.e., suppressed) by the monitor.
For example, it would be impossible for a monitor to feign sending email, wait
for the target to receive a response to the email, test whether the target does
something invalid with the response, and then decide to undo sending email in
the first place. Here, the action for sending email has to be made observable
to systems outside of the monitor’s control in order to be executed, so this
is an unsuppressible action. [...] Similarly, a system may contain actions
uninsertable by monitors because, for example, the monitors [...] lack access
to secret keys that must be passed as parameters to the actions. In general,
environmental factors beyond the control of the monitor may give rise to
actions that are unsuppressible or uninsertable.” The set of infinite renewal
should thus be seen as an upper bound to the enforcement power of monitors.

To this end, Basin et al. propose a middle ground [2]. They partition the
set of possible program actions in two disjoint subsets: a set of controllable
actions, which the monitor may freely suppress from the execution, and a set
of observable actions, whose occurrence the monitor can only observe. This
allows for a more precise characterization to the set of monitorable properties.
Section 2 will discuss these concepts in more detail.

In Section 3, we further generalize this analysis by organizing the set
of possible actions along a lattice that distinguishes between four types of
atomic actions, namely controllable actions (which a monitor can insert or
block from an execution), insertable actions (which a monitor can add to the
execution but not suppress), suppressible actions (the converse) and observ-
able actions (which the monitor can only observe). We then delineate the set
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of properties that are enforceable under this paradigm and relate our results
to previous work in the field.

Finally, we explore in Section 4 the set of security policies that are en-
forceable if the monitor is given greater latitude to alter the execution of its
target, rather than be bounded to return a syntactically identical execution
sequence if the original execution is valid. In particular, we consider a mon-
itor which can add any action into the execution, but cannot prevent any
action from occurring if the target program requests it. We also consider a
monitor can remove potentially malicious actions performed by the target
program but cannot add any action to the execution. We show how both
can be handled by our model by simply considering a different equivalence
relation between traces.

2 Preliminaries

2.1 Executions

Executions are modelled as sequences of atomic actions taken from a finite
or countably infinite set of actions Σ. The empty sequence is noted ǫ, the set
of all finite length sequences is noted Σ∗, that of all infinite length sequences
is noted Σω, and the set of all possible sequences is noted Σ∞ = Σω ∪ Σ∗.
Let τ ∈ Σ∗ and σ ∈ Σ∞ be two sequences of actions. We write τ ; σ for the
concatenation of τ and σ. We say that τ is a prefix of σ noted τ � σ, or
equivalently σ � τ iff there exists a sequence σ′ such that τ ; σ′ = σ. Let
τ, σ ∈ Σ∞ be a sequence, we write acts (σ) for the set of actions present in
σ. We write res

P̂
(σ) for the residual of P̂ with regard to σ, i.e. the set of

sequence S ⊆ Σ∞ s.t. ∀τ ∈ S : σ; τ ∈ P̂ . Finally, let τ, σ ∈ Σ∞, τ is said to
be a suffix of σ iff there exists a σ′ ∈ Σ∗ such that σ = σ′; τ .

Following [22], if σ has already been quantified, we freely write ∀τ � σ
(resp. ∃τ � σ) as an abbreviation to ∀τ ∈ Σ∗ : τ � σ (resp. ∃τ ∈ Σ∗ :
τ � σ). Likewise, if τ has already been quantified, ∀σ ∈ Σ∞ : σ � τ (resp.
∃σ ∈ Σ∞ : σ � τ) can be abbreviated as ∀σ � τ (resp. ∃σ � τ).

Let τ be a sequence and a be an action, we write τ\a for the left cancella-
tion of a from τ , which is defined as the removal from τ of the first occurrence
of a. Formally:
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a; τ\a′ =

{

τ if a = a′;

a; (τ\a′) otherwise

Observe that ǫ\a = ǫ. Abusing the notation, we write τ\τ ′ to denote the
sequence obtained by left cancellation of each action of τ ′ from τ . Formally,
τ\a; τ ′ = (τ\a)\τ ′. For example, abcada\daa = bca.

A finite word τ ∈ Σ∗ is said to be a subword of a word ω, noted τ ⊳Σ σ, iff
τ = a0a1a2a3...ak and ω = σ0a0σ1a1σ2a2σ3a3...σkakυ with σ0, σ1, σ2... ∈ Σ∗

and υ ∈ Σ∞. Let τ, σ be sequences form Σ∗. We write csτ (σ) to denote the
longest subword of τ which is also a subword of σ. For any τ 6= ǫ, τ.last
denotes the last action of sequence τ .

2.2 Security Policies and Security Properties

A security policy P is a property iff it can be characterized as a set of
sequences for which there exists a decidable predicate P̂ over the executions
of Σ∞ : P̂ (σ) iff σ is in the policy [25]. In other words, a property is a policy
for which the membership of any sequence can be determined by examining
only the sequence itself 1. Such a sequence is said to be valid or to respect
the property. Since, by definition, all policies enforceable by monitors are
properties, P and P̂ are used interchangeably in our context. Additionally,
since the properties of interest represent subsets of Σ∞, we follow the common
usage in the literature and freely use P̂ to refer to these sets.

A number of classes of properties have been defined in the literature and
are of special interest in the study of monitoring. First are safety properties
[20], which proscribe the occurrence of a certain “bad thing” during the
execution. Formally, let Σ be a set of actions and P̂ be a property. P̂ is a
safety property iff

∀σ ∈ Σ∞ : ¬P̂ (σ) ⇒ ∃σ′ � σ : ∀τ � σ′ : ¬P̂ (τ) (safety)

Informally, this states that any sequence does not respect the security
property if there exists a prefix of that sequence from which any possible
extension does not respect the security policy. This implies that a violation
of a safety property is irremediable: once a violation occurs, nothing can be
done to correct the situation.

1Security policies whose enforcement necessitates the examination of multiples execu-

tion sequences, such as noninterference policies, are not generally enforceable by monitors.
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Alternatively, a liveness property [1] is a property prescribing that a cer-
tain “good thing” must occur in any valid execution. Formally, for an action
set Σ and a property P̂ , P̂ is a liveness property iff

∀σ ∈ Σ∗ : ∃τ ∈ Σ∞ : τ � σ ∧ P̂ (τ) (liveness)

Informally, the definition states that a property is a liveness property if
any finite sequence can be extended into a valid sequence.

Another class of security properties that are of interest is that of renewal
properties[22]. A property is in renewal if every infinite valid sequence has
infinitely many valid prefixes, while every infinite invalid sequence has only
finitely many such prefixes. Observe that every property over finite sequences
is in infinite renewal. The set of renewal properties is equivalent to the set
of response properties in the safety-progress classification [10].

∀P̂ ⊆ Σω : P̂ (σ) ⇔ ∃σ′ � σ : ∃τ � ω : τ � σ′ ∧ P̂ (τ). (renewal)

It is often useful to restrict our analysis to properties for which the empty
sequence ǫ is valid. Such properties are said to be reasonable [22]. Formally,

∀P̂ ⊆ Σ∞ : P̂ (ǫ) ⇔ P̂ is reasonable (reasonable)

In the remainder of this paper, we will only consider reasonable proper-
ties. Furthermore, in order to avoid having the main topic of this paper be
sidestepped by decidability issues, will consider that P̂ (σ) is decidable for all
properties and all execution sequences. Likewise, we also consider that other
predicates or functions over sequences are decidable.

2.3 Security Property Enforcement

Finally, we need to provide a definition of what it means to “enforce” a
security property P̂ . A number of possible definitions have been suggested.
The most widely used is effective∼= enforcement [3]. Under this definition, a
property is effectively∼= enforced iff the following two criterion are respected.

1. Soundness: All observable behaviours of the target program respect
the desired property, i.e. every output sequence is present in the set of
executions defined by P̂ .
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2. Transparency: The semantics of valid executions is preserved, i.e. if
the execution of the unmonitored program already respects the security
property, the monitor must output an equivalent sequence, with respect
to an equivalence relation ∼=⊆ Σ∞ × Σ∞.

Syntactic equality is the most straightforward equivalence relation, and
the one that has been the most studied in the literature. It models the be-
haviour of a monitor that enforces the desired property by suppressing (or
simulating) part of the execution, only allowing it to be output when it has
ascertained that the execution up to that point is valid. In section 4, we
consider two alternative notions of equivalences, which can be used to char-
acterize alternative behaviours on the part of the enforcement mechanism.

2.4 Related Work

Initial work on the question of delineating which security policies are or are
not enforceable by monitor was performed by Schneider [25]. He considered
the capabilities of a monitor that observes the execution of its target, with no
knowledge of its possible future behaviour and no means to affect the target
except by aborting the execution. Each time the target program attempts to
perform an action, the monitor has to either accept it immediately, or abort
the execution. Under these constraints, the set of properties enforceable by
monitors coincides with the set of safety properties.

Ligatti et al. [21] extend Schneider’s modelling of monitors along three
axes:

1. According to the means at the disposal of the monitor to react to a
potential violation of the security policy. These include truncating the
execution, inserting new actions into the execution, suppressing some
part of the executions or both inserting and suppressing actions

2. According to the availability of statically gathered data describing the
target program possible execution paths

3. According to how much latitude the monitor is given to alter executions
that already respect the security policy.

By combining these three criteria, they build a rich taxonomy of enforceable
properties, and contrast the enforcement power of different types of monitors.
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Basin et al. [2] generalize Schneider’s model by distinguishing between
observable actions, whose occurrence the monitor cannot prevent, and con-
trollable actions, which the monitor can prevent from occurring by aborting
the execution.

The enforcement power of monitor operating with memory constraints is
studied in [13], [26, 27, 28] and [4].

The computability constraints that can further restrict a monitor’s en-
forcement power are discussed in [14, 19]; that of monitors relying upon an a
priori model of the program’s possible behaviour is discussed in [9] and [21].

Falcone et al. [12, 11] show that the set of infinite renewal properties
coincides with the union of four of the 6 classes of the safety-progress classi-
fication of security properties [10]. Khoury and Tawbi [15, 16] and Bielova et
al. [7, 5, 6] further refine the notion of enforcement by suggesting alternative
definitions of enforcement. In [23] Ligatti and Reddy introduced an alter-
native model, the mandatory-result automaton. This model distinguishes
between the action set of the target and that of the system with which it
interacts. This distinction makes it easier to study the interaction between
the target program, the monitor and the system. A thorough survey of the
question of enforceable properties by monitors is provided in [17].

3 Monitoring With Partial Control

The previous works each consider monitors where actions belong to partic-
ular sets. For example, Schneider’s model assumes that all actions can be
suppressed by the monitor; conversely, Ligatti et al. assume that all actions
can be indefinitely delayed. Basin et al. propose a middle ground where ev-
ery action can either be freely suppressed, or can only be observed. In this
section, we define a generalized model of actions where each of these works
becomes a particular case. We then study what properties are enforceable in
this generalized model.

3.1 A Lattice of Actions

We organize the set of possible actions along a lattice that distinguishes
between four types of atomic actions : namely controllable actions (C), in-
sertable actions (I), suppressible actions (D —for delete) and observable
actions (O), as is shown in Figure 1.
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C

I D

O

Figure 1: The lattice of possible actions

• Controllable actions (C) are the basic actions such as opening a file
or sending data on the network, which the monitor can either insert
into the execution or prevent from occurring if they violate the security
policy. In Ligatti’s model, all actions are controllable.

• Insertable actions (I) can be added into the execution but not sup-
pressed if they are present. An example of an insertable action is an
additional delay before processing a request to bring it unto compliance
with a resource usage policy. The monitor may add such actions to the
execution sequence but cannot remove them if the target program ex-
ecutes them.

• Suppressible actions (D —for delete) are those actions that the monitor
can prevent from occurring, but cannot insert in the execution if the
target program does not request them. Sending an email, decrypting
a file or receiving a user input are all examples of suppressible actions.
In Schneider’s model, all actions are suppressible.

• Observable actions O can only be observed by the monitor, which can
neither insert them in the execution when they are not present nor
suppress them if they occur. In Basin et al.’s model, all actions are
either suppressible or observable.

As the examples above illustrate, we believe that the lattice model we pro-
pose is a more realistic description of the reality encountered by the monitor,
and will thus allow a more precise characterization of the set of enforceable
properties. Observe than the monitor may only abort the execution if the
next action is in C ∪ D. Moreover, the sets C, I,D,O are disjoint and that
the universe of possible program actions is Σ = C ∪ I ∪ D ∪O.

The following notation is useful for comparing different enforcement mech-
anisms. Let Σ be a universe of actions and let L be a lattice over the set
Σ as described in section 2. Let S ⊆ Σ∞ stand for a subset of possible
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execution sequences and let ∼=⊆ Σ∞ × Σ∞ be an equivalence relation. We
write LS-enforceable∼= to denote the set of proprieties that are enforceable∼=
by a monitor when the set of possible sequences is S and the set of possible
actions is organized alongside lattice L.

Let L be a lattice as described above. We write LO (resp. LI , LD, LC) for
the set O (resp. I, D, C) in L. We write L = 〈Σ1,Σ2,Σ3,Σ4〉 for the lattice
where LO = Σ1, LI = Σ2, LD = Σ3 and LC = Σ4. Let A,B ∈ {O, I,D, C}
and let a ∈ Σ, we write L

A
a−→B

to indicate the lattice L′ defined such that
L′

A = LA\{a},L
′
B = LB ∪ {a} and ∀C ∈ {O, I,D, C} : C /∈ {A,B} ⇒

L′
C = LC . In other words, L

A
a−→B

is the lattice built by moving only element
a from set A to another B, leaving all other sets unchanged.

3.2 Enforceable Properties

We begin by reflecting on the set of properties that are LΣ∞

-enforceable=,
i.e. properties that are enforceable if the monitor is bounded to output any
valid sequence exactly as it occurs (with syntactic equality as the equivalence
relation between valid inputs and the monitor’s output). This is the enforce-
ment paradigm that has been the most studied in the literature. A monitor
that seeks to enforce a property in this manner may take any one of three
strategies, depending on the desired property and the ongoing execution,
and the set of LΣ∞

-enforceable= properties can be derived by combining the
three.

First, using a model in which every action is controllable, Ligatti et al.
argued that a monitor can enforce any reasonable renewal property by sup-
pressing the execution until a valid prefix is reached at which point the mon-
itor can output the suffix of the execution it has previously suppressed. We
generalized the definition of renewal as follows:

∀σ ∈ Σ∞ : P̂ (σ) ⇔ ∀σ′ � σ : (∃τ � σ : σ′ � τ ∧ P̂ (τ)∧

∀τ ′ � τ : τ ′ � σ′ ⇒ τ ′.last ∈ C). (L-Renewal)

Observe that the definition now applies to all sequences in Σ∞, rather
than just to infinite sequences. The second half of the equation always eval-
uates to true if all the actions are controllable (Ligatti’s model) and always
evaluates to false if all the actions are suppressible or observable (Schneider
or Basin’s models).
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Second, Ligatti et al. observe that a property is enforceable if there exists
a prefix beyond which there is only one valid extension. In that case, the
monitor can abort the execution and output that sequence. This allows some
nonsafety properties to be monitored. Ligatti et al. refer to this case as the
“corner case” of effective enforcement. We generalize this case as follows:

∀σ ∈ Σ∞ : P̂ (σ) ∨ ∃σ′ � σ : ∀σ′; τ � σ′ : P̂ (σ′; τ) ⇒ σ′; τ = σ∧

σ′.last ∈ D ∪ C ∧ acts(τ) ⊆ I ∪ C. (L-Corner case)

Once again, observe that the equation restricts all sequences, rather than
only infinite ones. This equation always evaluates to false in the Schneider-
Basin model and the second conjunct always evaluates to true in Ligatti’s
model.

Finally, the monitor can simply abort the execution if it is irremedia-
bly invalid. This is a generalization of the set of safety properties to our
framework.

∀σ ∈ Σ∞ : ¬P̂ (σ) ⇒ ∃τ ; a � σ : P̂ (τ) ∧ a ∈ D ∪ C

∧ ¬∃τ ′ � τ : P̂ (τ ′). (L-Safety)

The set of LΣ∞

-enforceable= properties can now be stated. The definition
is not simply the conjunction of the tree preceding set as it must take into
account the possibility that enforcement might begin by suppressing and
reinserting part of the execution, and then abort the execution using of one
of the other methods.

Theorem 1.

P̂ ∈ LΣ∞

− enforceable= ⇔ ∀σ ∈ Σ∞ :

(P̂ (σ) ⇔ ∀σ′ � σ : ∃τ � σ : σ′ � τ∧P̂ (τ)∧(∀τ ′ � τ : ¬P̂ (τ ′) ⇒ τ ′.last ∈ C)∨

(∃τ ; a � σ : a ∈ D∪C∧∀τ ′ � τ ; a : ¬P̂ (τ ′) ⇒ τ ′.last ∈ C∧(∀τ ′ � τ ; a : P̂ (τ ′) ⇒

τ ′ = σ ∨ (P̂ (τ) ∧ ¬∃τ ′ � τ : P̂ (τ ′) ∧ acts(σ\τ ′; a) ∈ C ∪ I))))

Proof. See Appendix A for all proofs to theorems and corollaries.

This definition narrows the set of monitorable properties somewhat, com-
pared with previous work. For example, bounded availability is given in [22]
as an example of a monitorable policy. In fact, it is monitorable only if every
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action that occurs between the acquisition and release of a protected re-
source is controllable. Likewise, the “no send after read” property described
in [25] is only enforceable if every action which might violate the property is
deletable or controllable.

While the set-theoretic characterization of enforceable property is some-
what involved, an LTL property can characterize such properties.

Theorem 2. Let valid be a predicate identifying a valid sequence:

valid(σ) ⇔ P̂ (σ)

Let cc be a predicate that identifies a sequence in the L-corner case:

cc(σ) ⇔ P̂ (σ) ∧ ∃σ′ � σ : ∀σ′; τ � σ′ : P̂ (σ′; τ) ⇒

σ′; τ = σ ∧ σ′.last ∈ D ∪ C ∧ acts(τ) ⊆ I ∪ C

Let C be a predicate identifying a sequence ending on a controllable action,
and D a predicate that identifies a sequence ending on a deletable action:

C(σ) ⇔ σ.last ∈ C

D(σ) ⇔ σ.last ∈ D

Then we have:

P̂ ∈ LΣ∞

-enforceable= ⇔ ∀σ ∈ Σ∞ :

G (C W valid) ∨ (C W valid ∨X ((D ∨ C) ∧ (G¬valid ∨ cc)))

In this theorem, we assume that any execution sequence from Σ∞ is
possible. In other words, at each step of the execution, the monitor must
assume that any action from Σ is a possible next action, or that the execution
of the target program could stop. This is called the uniform enforcement
context. The monitor often operates in a context where it knows that certain
executions are impossible (the nonuniform context). This situation occurs
when the monitor benefits from a static analysis of its target, that provides
it with a model of the target’s possible behaviour. We can adapt the above
theorem to take into account the fact that the monitor could operate in a
nonuniform context.
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Theorem 3.

P̂ ∈ LS-enforceable= ⇔ ∀σ ∈ S :

(P̂ (σ) ⇔ ∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂ (τ) ∧ (∀τ ′ � τ : ¬P̂ (τ ′) ⇒

(τ ′.last ∈ C ∧ τ ∈ S))∨

(∃τ ; a � σ : a ∈ D ∪ C ∧ ∀τ ′ � τ ; a : (¬P̂ (τ ′) ∧ τ ′ ∈ S) ⇒ τ ′.last ∈ C∧

(∀τ ′ � τ ; a : P̂ (τ ′) ⇒ τ ′ = σ ∨ (P̂ (τ) ∧ ¬∃τ ′ � τ :

P̂ (τ ′) ∧ τ ′ ∈ S ∧ acts(σ\τ ′; a) ∈ C ∪ I))))

We can now restate the results of previous research in our new formalism.

Theorem 4. (from [25]) If L = 〈∅, ∅,Σ, ∅〉 then LΣ∞

enforceable= is Safety.

Theorem 5. (from [22]) If L = 〈∅, ∅, ∅,Σ〉 then LΣ∞

enforceable= is the
union of Infinite Renewal and the corner case.

3.3 Additional Results

Corollary 1. Let L be a lattice over a set of actions Σ as described above
and let Σ1,Σ2 ∈ {O,D, I, C} and Σ1 ⊑ Σ2. ∀a ∈ Σ : LΣ1

-enforceable=
⊆ L

Σ1

a−→Σ2

-enforceable.

Corollary 1 indicates that the set of enforceable properties increases mono-
tonically with the capabilities of the monitor. Thus, any effort made to im-
prove the capabilities of the monitor to control its target is rewarded by a
augmented set of enforceable security properties. Conversely, if every action
from the set Σ is in O, only the inviolable property is enforceable.

Corollary 2. Let L = 〈Σ, ∅, ∅, ∅〉, P̂ ∈ LΣ-enforceable ⇔ P̂ = Σ∞.

4 Alternative Equivalence Relations

The above results apply only to the case of effective= enforcement. This
corresponds to the enforcement power of a monitor that sometimes delays
the occurrence of actions in its target, or abort its execution, but does not add
additional actions or permanently suppress part of the execution sequence,
allowing the remainder of the execution to continue. Syntactic equality (and
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subclasses of that relation) is the only equivalence relation that has been
extensively studied in the literature. This naturally does not exhaust the
enforcement capabilities of monitors. In this section, we explore alternative
equivalence relations (that characterize alternative enforcement mechanisms)
and determine the set of enforceable properties for each.

4.1 Subword Equivalence and Insertion enforcement

The first alternative equivalence relation that we examine is subword equiv-
alence, noted ∼=⊳. This corresponds to the enforcement power of a monitor
which can add any action into the execution, but cannot prevent any action
from occurring if the target program requests it. For example, the monitor
can enforce a property stating that any opened file is eventually closed by
adding the missing close file action before the end of the program’s execution.
This model is interesting to understand the capabilities of certain types of
inline monitors, that are injected into the program in the form of guards or
run in parallel with their target, such as those based upon the aspect-oriented
programming paradigm [18, 8, 24].

Let σ, σ′, τ ∈ Σ∗, we write στ
∼=⊳ σ′ ⇔ (σ ⊳Σ τ ∧ σ′ ⊳Σ τ), and designate

by enforceable∼=⊳
the set of properties that are enforceable when τ

∼=⊳ σ′ is
the equivalence relation and τ is the original input. This is a very permissive
equivalence relation, which in effect allows the monitor to insert any action or
actions into the execution, and consider the transformed execution equivalent
to the original execution (τ) if all actions performed by the target program
are still present. While this equivalence relation may be too permissive to
be realistic, it does allow us to deduce an upper bound to the set of policies
enforceable under this paradigm.

We begin by considering the cases that occur when the monitor has only
limited control over the action set. When the monitor can only suppress
actions or abort the execution, the set of enforceable∼=⊳

properties coincides
with that of safety properties, since the the monitor is unable to take advan-
tage of the permissiveness of the equivalence relation.

Theorem 6. Let L = 〈∅, ∅,Σ, ∅〉. LΣ∞

-enforceable∼=⊳
is the set of safety

properties.

Another interesting case occurs when the monitor cannot delay the occur-
rence of the actions present in the execution sequence, but can only react to
them by inserting additional actions afterwards. In other words, any action
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output by the target program must be immediately accepted, but can be
followed by other actions inserted by the monitor. An intuitive lower bound
to the set of enforceable properties in this context is the intersection of re-
newal properties and liveness properties. That is, properties for which any
invalid sequence can be corrected into a valid sequence with a finite number
of corrective steps. Additionally, some safety properties and some persistence
properties are also enforceable. For example, the property P̂¬aa imposing that
no two ‘a’ actions occur consecutively is a safety property since an invalid
sequence cannot be corrected by the insertion of any subsequent actions.
However, the policy is LΣ∞

-enforceable∼=⊳
since the monitor can insert any

action other than ’a’ after the occurrence of each ‘a’ action to ensure the
respect of the security property. What characterizes properties outside the
intersection of renewal and liveness that are nonetheless LΣ∞

-enforceable∼=⊳

is that there exists a property P̂ ′ in renewal ∩ liveness such that the property
of interest includes P̂ ′. In the case of the example above, the property “any
a action is immediately followed by some action different from a (or the end
of sequence token)” is a renewal property included in P̂¬aa. The monitor can
enforce the property P̂¬aa by enforcing P̂ ′.

Theorem 7. Let P̂ ⊆ P(Σ∞) and let L = 〈∅,Σ, ∅, ∅〉. If the monitor cannot
delay the occurrence of actions performed by the target program, then P̂ ∈
LΣ∞

-enforceable∼=⊳
⇔ ∃P̂ ′ : P̂ ′ ⊆ P̂ and P̂ ′ is infinite renewal ∩ liveness.

Allowing the monitor to insert a finite number of actions before or after
an action taken by the target program increases the set of enforceable prop-
erties further. Consider for example the property P̂ os stating that a write
action only be performed on a previously opened file. The property is a safety
property, and falls outside the set of P̂ ∈ LΣ∞

-enforceable∼=⊳
properties de-

fined in theorem 7 if the number of files is infinite. The property can be
LΣ∞

-enforced∼=⊳
by a monitor that inserts the corresponding open file action

anytime the target program attempts to write to a file that has not yet been
opened. More generally, if all actions are in the set C, then a property P̂
is enforceable iff there exists a property P̂ ′ ⊆ P̂ , s.t. P̂ ′ is in renewal and
Liveness and for any action a ∈ Σ, and for any sequence σ in P̂ ′, there is a
sequence τ in the residual of P̂ ′ with regard to σ s.t. a ∈ acts(σ). In other
words, if for any sequence in the subproperty P̂ ′ and for any possible action a,
there is a continuation τ s.t. τ contains a. The monitor can LΣ∞

-enforces∼=⊳

such a property by appending a sequence from the residual containing any
action requested by the target program.
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Theorem 8. Let L = 〈∅,Σ, ∅, ∅〈. LΣ∞

-enforceable∼=⊳
iff there exists a prop-

erty P̂ ′ ⊆ P̂ ∩ Liveness ∩ Renewal : ∀σ ∈ P̂ ′ :
⋃

σ′∈res
P̂ ′(σ)

acts(σ′) = Σ.

The upper bound naturally occurs when all actions are controllable. We
found it harder to give a specific upper bound to the set of enforceable∼=⊳

properties. Indeed, this set seems to include almost every properties, with the
exception of a number of hard to define special cases. Observe that because
the subword relation is reflexive, a monitor that enforces= the property also
enforces∼=⊳

it. This equivalence relation is so permissive that only a few very
particular cases seem unenforceable.

Observe that while this result indicates that the security properties that
are LΣ∞

-enforceable∼=⊳
are largely the same as those that are LΣ∞

-enforceable=,
the manner of enforcement is quite different. LΣ∞

-enforcement= guarantees
that any valid sequence is output as is, without any modification by the mon-
itor. For invalid sequences, LΣ∞

-enforceable= ensures that the longest valid
prefix is always output [5]. LΣ∞

-enforcement∼=⊳
does not provide these guar-

antees. Instead, as seen above, for non-safety properties LΣ∞

-enforcement∼=⊳

can ensure that any action present in the original program is eventually out-
put, whether the execution sequence is valid or not. LΣ∞

-enforcement∼=⊳

also evidently has a much reduced memory overhead, since this enforcement
paradigm does not impose on the monitor that it keep in memory an in-
definitely long segment of the execution trace, as LΣ∞

-enforcement= does.
Since memory constraints were showed in [13] to significantly affect the set
of enforceable properties it is certain that once such constraints are taken
into account, some properties will be found to be LΣ∞

-enforceable∼=⊳
but not

LΣ∞

-enforceable=.

4.2 Suppression Enforcement

Another interesting enforcement paradigm is suppression enforcement [3],
which occurs when the monitor can remove potentially malicious actions
performed by the target program but cannot add any action to the execution.
In that case, the monitor’s enforcement is bounded by the reverse subword
equivalence, meaning that the monitor’s output is a subword of the original
sequence. This enforcement paradigm is similar to the one described in [23],
where the monitor is interposed between the target program and the system.
Any action requested by the target program is intercepted by the monitor
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which must accept or reject it, and allows us to pose an upper bound to this
enforcement paradigm.

Let σ, σ′, τ ∈ Σ∗,we write στ
∼=⊲ σ

′ ⇔ (τ ⊳Σσ∧τ ⊳Σσ
′). As was the case in

section 4.1, this is a very permissive equivalence relation, which characterizes
the behaviour of a monitor that can potentially suppress any action or actions
from the execution. We write ∼=⊲ for this equivalence relation where τ is the
original input.

We begin by determining an upper bound to the set, which occurs when
every action is suppressible. In that case, every reasonable property is en-
forceable, simply by always outputting the empty sequence (or possibly the
longest valid prefix). While this may not be a particularly useful enforcement,
it does however serve as a useful upper bound to begin reflecting about the
capabilities of different types of monitors. It also argues for a stronger no-
tion of transparency, as discussed in[16], which allows us to reason about the
capabilities of monitor in a context that is more similar to that of a real-life
monitor. Such monitors would normally be bounded with respect to the al-
terations that they are allowed to performed on valid and invalid executions
alike.

Theorem 9. If L = 〈∅, ∅,Σ, ∅〉 then LΣ∞

-enforceable∼=⊲
= P(Σ∞).

Corollary 3. Let L = 〈∅, ∅,Σ, ∅〉. ∀a ∈ LD : LΣ∞

-enforceable∼=⊲
= LS

D
a−→C

-

enforceable∼=⊲
.

Corollary 4. Let L = 〈∅, ∅,Σ, ∅〉. ∀S ⊆ Σ∞ : LΣ∞

-enforceable∼=⊲
= LΣ∞

-
enforceable∼=⊲

.

A more interesting characterization occurs when we consider that some
subset of Σ is unsuppressible. These may be actions that the monitor lacks
the ability to suppress (such as internal system computations) or actions that
cannot be deleted without affecting the functionality of the target program.
When that is the case, a property is enforceable iff every invalid sequence
has a valid prefix ending on an action in D. In that case, the property of
interest includes a safety property that can be enforced by truncation.

Theorem 10. If L = 〈O, ∅,D, ∅〉 then ∀σ ∈ Σ∞ : P̂ (σ) ∈ LΣ∞

-enforceable∼=⊲
⇔

∃P̂ ′ ⊆ P̂ : P̂ ′ ∈ L-safety.
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5 Conclusion

In this paper, we reexamined the delimitation of enforceable properties by
monitors, and proposed a finer characterization that distinguishes between
actions that are only observable, actions which the monitor can delete but
not insert into the execution, actions which the monitor can insert in the
execution but not suppress if they are already present and completely con-
trollable actions. Our study is a generalization of previous work on the same
topic, and provides a finer characterization of the set of security properties
that are enforceable by monitors in different contexts.

Additionally, we explored the set of properties that are enforceable by
the monitor is given broader latitude to transform valid sequences, rather
than be bounded to return a syntactically identical execution sequence if the
original execution is valid. We argue that our results point to the need for
an alternative definition of enforcement.

Part of the reason the sets of LΣ∞

−enforceable∼=⊲
and LΣ∞

−enforceable∼=⊲

properties are so large is that, in the definition of effective∼= enforcement, the
transparency requirement is so weak. This leads to monitors with unusu-
ally broad licence to alter invalid sequences in order to correct them. For
monitors with broad capabilities to add and remove actions from the execu-
tion sequence, the desired behaviour of real-life security policy enforcement
mechanism would be more accurately characterized by a more constrain-
ing definition of enforcement. For example, a practical suppression monitor
should be bounded to remove from an invalid execution sequence only those
actions that violate the security policy. Any valid behaviour present in an
otherwise invalid sequence should be preserved.

In the future, we would like to consider that the cost of inserting or
deleting an action may not be the same for all actions. This would allow us
to contrast different enforcement strategies for the same security property.
A lattice-based framework is well-suited to model such a restriction.
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A Proofs

Theorem 1.

P̂ ∈ LΣ∞

− enforceable= ⇔ ∀σ ∈ Σ∞ :

(P̂ (σ) ⇔ ∀σ′ � σ : ∃τ � σ : σ′ � τ∧P̂ (τ)∧(∀τ ′ � τ : ¬P̂ (τ ′) ⇒ τ ′.last ∈ C)∨

(∃τ ; a � σ : a ∈ 〈D∪C〉∧∀τ ′ � τ ; a : ¬P̂ (τ ′) ⇒ τ ′.last ∈ C∧(∀τ ′ � τ ; a : P̂ (τ ′) ⇒

τ ′ = σ ∨ (P̂ (τ) ∧ ¬∃τ ′ � τ : P̂ (τ ′) ∧ acts(σ\τ ′; a) ∈ 〈C ∪ I〉))))

Proof. (if direction) We construct an edit-automaton A = 〈Q, q0, δ〉 that
effectively= enforces the property P̂ . This automata is defined as follows:

• Q = Σ∗ × Σ∗, i.e., each state consists in a pair of finite sequences, the
sequence output so far and the suffix of the input currently suppressed.

• q0 = (ǫ, ǫ),

• the transition function δ : Q× Σ×Q is defined as

δ((σo, σs), a) =







(σo, σs; a), if ¬P̂ (σo; σs; a) ∧ γ(σo; σs; a) = ⊥

(σo; σs; a, ǫ), P̂ (σo; σs; a)

(σo; a
′, ǫ), ¬P̂ (σo; σs; a) ∧ γ(σo; σs; a) = a′.

where γ : Σ∗ × Σ ∪ ⊥ is a function defined as follows

γ(σ) =

{

a, ∃a; τ ∈ Σ∞ : ∀σ′ � σ : P̂ σ′ ⇒ σ′ = a; τ ∧ acts(τ) ∈ {I, C};
⊥, otherwise.

Informally, this transition function states that the monitor suppresses
the execution until a valid prefix is encountered, at which point it out-
puts the suffix of the execution it has suppressed so far. Function γ
detects the occurrence of the corner case described above.

Let σ ∈ Σ∞ be the input sequence and let σ[..i] be the prefix of the input
sequence processed at step i, and let q = 〈σi

o, σ
i
s〉 be the state of A reached

after processing σ[..i]. The automaton maintains the following invariants.
At step i, (1) σo has been output and this output is valid, (2) the output is
transparent, i.e. σ[..i] ∈ P̂ ⇒ σ[..i] ∈ σ ∨ ∃σ′ � σ : ∀σ′; τ � σ′ : P̂ (σ′; τ) ⇒
σ′; τ = σ (3)γ(σ[..i]) = ⊥ ⇒ σ[..i] = σi

o
; σi

s
and (4) the automaton A never

manipulates and action in a disallowed manner. The third invariant ensures
that the automata does not, for instance, suppress an unsuppressible action,
or abort the execution on an observable action.
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The invariants hold initially since σ[..0] = ǫ and the automaton is in state
〈ǫ, ǫ〉. Let us assume that INV(i) holds and let a be the next input action.
We show that INV(i+1) holds where σi+1 = σ[..1]; a.

There are three cases to consider.

1. σ[..i]; a is invalid, and there are multiple valid extensions. In this case
the automaton suppresses the input sequence. The automaton enters
state 〈σi+1

o , σi+1
s 〉 where σi+1

o = σi
o and σi+1

s = σi
s; a. That σi+1

o ∈
P̂ holds from the induction hypothesis. Likewise, the transparency
requirement holds trivially since ¬P̂ (σ[..i]; a). The first conjunct of
theorem 1 ensures that a is controllable.

2. P̂ (σ[..i]; a). In this case the automaton outputs σi
o
; a. By induction

we have that σi
o; σ

i
s; a = σ[..i]; a and thus P̂ (σi+1

o ; ). σi
s = ǫ;, which

means the third part of the invariant holds trivially. Finally, since for
in previous states, an action could only have been suppressed if it was
controllable, we have that every action in σi

o is controllable.

3. σ[..i]; a has a single valid extension. This includes the case where the
only valid extension is ǫ and the execution is aborted. In this case the
automaton enters a loop in which it outputs the actions of the only
valid extension one by one. By the theorem 1 we have that the output
of the monitor is valid and insertable or controlable. Such an action
in known to exist by the final conjunct of the theorem 1. INV(i+1)(3)
holds trivially since γ(σ[..i]) 6= ⊥.

Since the invariant INV holds at each step, the output is valid, trans-
parent and the monitor does not behave in a manner inconsistent with the
limitations on its capabilities.
(else-if direction)
By negation of theorem 1, we have that a property is unenforceable iff it
contains at least one valid sequence σ meeting the following two properties

1. ∃σ′ � σ : ¬P̂ (σ′) ∧ σ′.last /∈ C

2. ∃σ′ � σ : ∃τ ∈ Property : τ � σ′ ∧ τ 6= σ ∨ ∃a ∈ acts(τ) : a /∈ 〈I ∪ C〉
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Informally, the property is unenforceable iff there exists a valid sequence with
an invalid prefix that is not in the controllable set, that that valid sequence
either is not in the corner case described in section 3 or is not comprised
of insertable of controllable actions. When the monitor encounters such a
prefix, it cannot accept it since it may be the end of an invalid sequence, but
it cannot suppress it since, the input may have a valid continuation, which
the monitor would be unable to re-insert.

Theorem 4. (from [25]) If L = 〈∅, ∅,Σ, ∅〉 then LΣ∞

enforceable= is Safety.

Proof. P̂ ∈ LΣ∞

-enforceable= ⇔ ∀σ ∈ Σ∞ :
(P̂ (σ) ⇔ ∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂ (τ) ∧ (∀τ ′ � τ : ¬P̂ (τ ′) ⇒ τ ′.last ∈
C) ∨
(∃τ ; a � σ : a ∈ 〈D ∪ C〉 ∧ ∀τ ′ � τ ; a : ¬P̂ (τ ′) ⇒ τ ′.last ∈ C ∧
(∀τ ′ � τ ; a : P̂ (τ ′) ⇒ τ ′ = σ ∨ (P̂ (τ) ∧ ¬∃τ ′ � τ : P̂ (τ ′)))))

〈∀a ∈ Σ : a ∈ D〉

P̂ ∈ LΣ∞

-enforceable= ⇔ ∀σ ∈ Σ∞ :
(P̂ (σ) ⇔ ∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂ (τ) ∧ (∀τ ′ � τ : P̂ (τ) ∨
(∃τ ; a � σ : ∀τ ′ � τ ; a : ¬P̂ (τ ′) ⇒ ⊥∧
(∀τ ′ � τ ; a : P̂ (τ ′) ⇒ τ ′ = σ ∨ (P̂ (τ) ∧ ¬∃τ ′ � τ : P̂ (τ ′)))))

〈⊥ ∧A = ⊥〉

P̂ ∈ LΣ∞

-enforceable= ⇔ ∀σ ∈ Σ∞ :
(P̂ (σ) ⇔ ∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ (∀τ ′ � τ : P̂ (τ) ∨
(∃τ ; a � σ : ∀τ ′ � τ ; a : P̂ (τ ′)
∨ (P̂ (τ) ∧ ¬∃τ ′ � τ : P̂ (τ ′)))))

P̂ ∈ LΣ∞

-enforceable= ⇔ ∀σ ∈ Σ∞ :
(P̂ (σ) ⇔ ∀σ′ � σ : P̂ (σ)))

〈 definition of Safety 〉

P̂ ∈ LΣ∞

-enforceable= ⇔ P̂ ∈ safety

Theorem 5. (from [22]) If L = 〈∅, ∅, ∅,Σ〉 then LΣ∞

enforceable= is Infinite
Renewal or the corner case.
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Proof. P̂ ∈ LΣ∞

-enforceable= ⇔ ∀σ ∈ Σ∞ :
(P̂ (σ) ⇔ ∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂ (τ) ∧ (∀τ ′ � τ : ¬P̂ (τ ′) ⇒ τ ′.last ∈
C) ∨
(∃τ ; a � σ : a ∈ 〈D ∪ C〉 ∧ ∀τ ′ � τ ; a : ¬P̂ (τ ′) ⇒ τ ′.last ∈ C ∧
(∀τ ′ � τ ; a : P̂ (τ ′) ⇒ τ ′ = σ ∨ (P̂ (τ) ∧ ¬∃τ ′ � τ : P̂ (τ ′)))))

〈∀a ∈ Σ : a ∈ C〉

P̂ ∈ LΣ∞

-enforceable= ⇔ ∀σ ∈ Σ∞ :
(P̂ (σ) ⇔ ∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂ (τ) ∧ ⊤) ∨
(∃τ ; a � σ : ∀τ ′ � τ ; a : ¬P̂ (τ ′) ⇒ ⊤∧
(∀τ ′ � τ ; a : P̂ (τ ′) ⇒ τ ′ = σ ∨ (P̂ (τ) ∧ ¬∃τ ′ � τ : P̂ (τ ′)))))

〈⊤ ∧A = A〉

P̂ ∈ LΣ∞

-enforceable= ⇔ ∀σ ∈ Σ∞ :
(P̂ (σ) ⇔ ∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂ (τ)) ∨
(∃τ ; a � σ : ∀τ ′ � τ ; a :
(∀τ ′ � τ ; a : P̂ (τ ′) ⇒ τ ′ = σ ∨ (P̂ (τ) ∧ ¬∃τ ′ � τ : P̂ (τ ′)))))

〈∀σ ∈ Σ∞ : P̂ (σ) ⇔ (∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂ (τ)) ⇒ ∃τ ; a � σ :
∀τ ′ � τ ; a : ¬P̂ (τ ′) ⇒ (P̂ (τ) ∧ ¬∃τ ′ � τ : P̂ (τ ′))〉

P̂ ∈ LΣ∞

-enforceable= ⇔ ∀σ ∈ Σ∞ :
(P̂ (σ) ⇔ ∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂ (τ)) ∨
(∃τ ; a � σ : ∀τ ′ � τ ; a :
(∀τ ′ � τ ; a : P̂ (τ ′) ⇒ τ ′ = σ)))

〈 definition of renewal and of the corner case 〉

P̂ ∈ LΣ∞

-enforceable= ⇔ P̂ ∈ renewal or the corner case

Corollary 1. Let L be a lattice over a set of actions Σ as described above
and let Σ1,Σ2 ∈ {O,D, I, C} and Σ1 ⊑ Σ2. ∀a ∈ Σ : LΣ1

-enforceable=
⊆ L

Σ1

a−→Σ2

-enforceable.

Proof. Any property that is LΣ1
-enforceable is trivially L

Σ1

a−→Σ2

-enforceable.
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Let Σ1 = O and Σ2 ∈ {I, C}. The property P̂ (σ) ⇔ ∃τ ∈ Σ∞ : σ =
a; tau, which states that any valid execution must begin with a distinguished
action a is not LΣ1

-enforceable since the monitor cannot correct an invalid
sequence by adding the missing initial action. It is L

Σ1

a−→Σ2

-enforceable.

Let Σ1 = D and Σ2 = C. The property P̂ (σ) ⇔ σ = aa is not LΣ1
-

enforceable since when faced with a single a, the monitor can neither sup-
press it (which would make it impossible to return a valid syntactically equal
sequence if the next action is also a), nor output it, since the execution
would be then be irremediably invalid in all other cases. The property is
L

Σ1

a−→Σ2

-enforceable.

Let Σ1 = O and Σ2 = D or Σ1 = I and Σ2 = C. The property P̂ (σ) ⇔
a /∈ acts(σ) is not LΣ1

-enforceable since the monitor lacks the ability to
suppress invalid a actions. It is L

Σ1

a−→Σ2

-enforceable by simple suppression

of these actions.

Corollary 2. Let L = 〈Σ, ∅, ∅, ∅〉, P̂ ∈ LΣ-enforceable ⇔ P̂ = Σ∞.

Proof. Corollary 2 follows immediately from Theorem 1.

Theorem 6. Let L = 〈∅, ∅,Σ, ∅〉. LΣ∞

-enforceable∼=⊳
is the set of safety

properties.

Proof. Trivial. Since the monitor lacks the ability to insert any action into
the execution, it behaves like a suppression automaton [3]. The equivalence
relation imposes that any action present in the input must also be present
in the output. Since the monitor can only allow an action or terminate the
execution, any enforceable property is necessarily prefix closed.

Theorem 7. Let P̂ ⊆ P(Σ∞) and let L = 〈∅,Σ, ∅, ∅〉. If the monitor cannot
delay the occurrence of actions performed by the target program, then P̂ ∈
LΣ∞

-enforceable∼=⊳
⇔ ∃P̂ ′ : P̂ ′ ⊆ P̂ and P̂ ′ is infinite renewal ∩ liveness.

Proof. (if direction) Let P̂ ’ be property in Renewal ∩ Liveness s.t. P̂ ’ ⊆ P̂
and let L = 〈∅,Σ, ∅, ∅〉. A monitor can LΣ∞

∼=⊳
-enforce P̂ ’ as follows: let τ ∈ Σ∗

be the current output so far and let a ∈ Σ be the next program action in
the execution. Since P̂ ’ is in Renewal ∩ Liveness there necessarily exists a
finite sequence τ ′ ∈ σ∗ s.t. τ ; a; τ ′ ∈ P̂ ′, and the monitor can LΣ∞

∼=⊳
-enforce P̂ ’

by outputting this sequence. Since P̂ ’ ⊆ P̂ , the monitor’s output is correct
w.r.t. P̂ and since τ ; a; τ ′ ⊳Σ a the output is transparent.

25



(else-if direction) A P̂ not in the intersection of Renewal ∩ Liveness can be
safety properties or persistence properties. Safety properties are properties
for which a violation of the security policy is irremediable. As such, no
suffix can be added by the monitor to the invalid sequence to correct it, thus
LΣ∞

∼=⊳
-enforcing the property. Likewise, persistence properties include infinite

invalid sequence with infinitely many valid prefixes, and infinite valid prefixes
with only finitely many valid prefixes. In the former case, the monitor cannot
enforce the property because even though its output will continuously be
valid, the overall execution will violate the property. In the latter case, the
monitor will eventually reach a finite execution σ which has no finite valid
extension. If the monitor outputs a valid infinite extension, subsequent action
output by the program will not be present in the monitor’s output, violating
the transparency requirement. Since there does not exists a property P̂ ’ ⊆
P̂ s.t. P̂ ’ is in Renewal ∩ Liveness, the monitor cannot avoid reaching one
of the three cases described above.

Theorem 8. Let L = 〈∅,Σ, ∅, ∅〉. LΣ∞

-enforceable∼=⊳
iff there exists a prop-

erty P̂ ′ ⊆ P̂ ∩ Liveness ∩ Renewal : ∀σ ∈ P̂ ′ :
⋃

σ′∈res
P̂ ′(σ)

acts(σ′) = Σ.

Proof. (if direction) Let P̂ and P̂ ’ be a properties as described above. Let
σ ∈ Σ∗ be the input sequence so far and let a ∈ Σ be the next program action
in the execution. By definition, there exists a sequence τ s.t. σ; τ ∈ P̂ ′ (sat-
isfying correctness since P̂ ’ ⊆ P̂ ) and a ∈ acts(τ) (satisfying transparency).
(else-if direction) If the condition above does no hold, then by definition there
exists a sequence τ ∈ Σ∗ such that τ and an action a ∈ Σ such that τ has no
valid finite extension containing a. This makes it impossible to enforce for a
monitor to enforce the property in a correct and transparent manner if τ is
the input sequence.

Theorem 9. If L = 〈∅, ∅,Σ, ∅〉 then LΣ∞

-enforceable∼=⊲
= P(Σ∞).

Proof. Since the empty sequence ǫ is always valid, and equivalent to every
possible sequence, the monitor can LΣ∞

-enforce∼=⊲
any property by always

outputting that sequence.

Corollary 3. Let L = 〈∅, ∅,Σ, ∅〉. ∀a ∈ LD : LΣ∞

-enforceable∼=⊲
= LS

D
a−→C

-

enforceable∼=⊲
.

Proof. Immediate from theorem 9.
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Corollary 4. Let L = 〈∅, ∅,Σ, ∅〉. ∀S ⊆ Σ∞ : LΣ∞

-enforceable∼=⊲
= LΣ∞

-
enforceable∼=⊲

.

Proof. Immediate from theorem 9.

Theorem 10. If L = 〈O, ∅,D, ∅〉 then ∀σ ∈ Σ∞ : P̂ (σ) ∈ LΣ∞

-enforceable∼=⊲
⇔

∃P̂ ′ ⊆ P̂ : P̂ ′ ∈ L-safety.

Proof. (if direction)The property P̂ can be enforced by enforcing the property
P̂ ′ ⊆ P̂ . Since P̂ ’ is a safety property, it can be enforced by truncation.
Since P̂ ’ is a subset of P̂ , enforcing P̂ ’ satisfy the correctness requirement for
P̂ . Enforcing the property by truncation guarantees that the transparency
requirement is respected.

(else-if direction)Let P̂ be a property for which there does not exist a
property P̂ ’ such that P̂ ′ ⊆ P̂ and P̂ ’ ∈ L-safety. There must exist a sequence
σ /∈ P̂ such that 6= ∃τ � σ : τ ∈ P̂ ∧ τ.last ∈ {D∪C}∧ 6= ∃τ ′ � τ : P̂ (τ ′) . If
τ this is the input sequence, the monitor cannot enforce the property since
there is no valid prefix upon which it can abort the execution.
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