Skip to main content

Feature Selection and Recognition of Muzzle Point Image Pattern of Cattle by Using Hybrid Chaos BFO and PSO Algorithms

  • Chapter
  • First Online:

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 337))

Abstract

Recognition of cattle based on muzzle point image pattern (nose print) is a well study problem in the field of animal biometrics, computer vision, pattern recognition and various application domains. Missed cattle, false insurance claims and relocation at slaughter houses are major problems throughout the world. Muzzle pattern of cattle is a suitable biometric trait to recognize them by extracted features from muzzle pattern by using computer vision and pattern recognition approaches. It is similar to human’s fingerprint recognition. However, the accuracy of animal biometric recognition systems is affected due to problems of low illumination condition, pose and recognition of animal at given distance. Feature selection is known to be a critical step in the design of pattern recognition and classifier for several reasons. It selects a discriminant feature vector set or pre-specified number of features from muzzle pattern database that leads to the best possible performance of the entire classifier in muzzle recognition of cattle. This book chapter presents a novel method of feature selection by using Hybrid Chaos Particle Swarm Optimization (PSO) and Bacterial Foraging Optimization (BFO) techniques. It has two parts: first, two types of chaotic mappings are introduced in different phase of hybrid algorithms which preserve the diversity of population and improve the global searching capability; (2) this book chapter exploited holistic feature approaches: Principal Component Analysis (PCA), Local Discriminant Analysis (LDA) and Discrete Cosine Transform (DCT) [28, 85] extract feature from the muzzle pattern images of cattle. Then, feature (eigenvector), fisher face and DCT feature vector are selected by applying hybrid PSO and BFO metaheuristic approach; it quickly find out the subspace of feature that is most beneficial to classification and recognition of muzzle pattern of cattle. This chapter provides with the stepping stone for future researches to unveil how swarm intelligence algorithms can solve the complex optimization problems and feature selection with helps to improve the cattle identification accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abbass HA (2001) MBO: marriage in honey bees optimization-A haplometrosis polygynous swarming approach. Proc IEEE Congr Evol Comput 1:207–214

    Google Scholar 

  2. Aihara K, Takabe T, Toyoda M (1990) Chaotic neural networks. Phys Lett A 144(6):333–340

    Article  MathSciNet  Google Scholar 

  3. Anderssen RS, Jennings LS, Ryan DM (1972) Optimization. Cvijovic’, St. Lucia, Australia

    MATH  Google Scholar 

  4. Angeline PJ (1998) Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In: Evolutionary programming VII. Springer, Berlin, Heidelberg, pp 601–610

    Google Scholar 

  5. Angeline PJ (1998) Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In: Evolutionary programming VII. Springer, pp 601–610

    Google Scholar 

  6. Azar AT, Banu PKN, Inbarani HH (2013) PSORR—an unsupervised feature selection technique for fetal heart rate. In: 5th International conference on modelling, identification and control (ICMIC 2013), 31 Aug, 1–2 Sept 2013, Egypt

    Google Scholar 

  7. Azar AT, Hassanien AE (2015) Dimensionality reduction of medical big data using neural-fuzzy classifier. Soft Comput 19(4):1115–1127. doi:10.1007/s00500-014-1327-4

    Google Scholar 

  8. Azar AT (2014) Neuro-fuzzy feature selection approach based on linguistic hedges for medical diagnosis. Int J Modell Ident Control (IJMIC) 22(3):195–206. doi:10.1504/IJMIC.2014.065338

    Google Scholar 

  9. Azar AT, Vaidyanathan S (2015) Handbook of research on advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR) book series. IGI Global, USA

    Google Scholar 

  10. Azar AT, Vaidyanathan S (eds) (2015) Chaos modeling and control systems design. Springer International Publishing

    Google Scholar 

  11. Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comput 6(4):467–484

    Article  MathSciNet  MATH  Google Scholar 

  12. Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7(1):109–124

    Article  MathSciNet  MATH  Google Scholar 

  13. Baranov AS, Graml R, Pirchner F, Schmid DO (1993) Breed differences and intrabreed genetic variability of dermatoglyphic pattern of cattle. J Anim Breed Genet 110(1–6):385–392

    Article  Google Scholar 

  14. Blackwell T (2007) Particle swarm optimization in dynamic environments. In: Evolutionary computation in dynamic and uncertain environments. Springer, Berlin, Heidelberg, pp 29–49

    Google Scholar 

  15. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    Article  MathSciNet  MATH  Google Scholar 

  16. Castillo O, Melin P (2012) Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf Sci Elsevier 205:1–19

    Article  Google Scholar 

  17. Clerc M (2006) Particle swarm optimization. ISTE, London, UK

    Book  MATH  Google Scholar 

  18. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  19. Cover Thomas M, Hart Peter E (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  MATH  Google Scholar 

  20. Cvijovic D, Klinowski J (1995) Taboo search: an approach to the multiple-minima problem. Science 267:664–666 (University of Queensland Press)

    Google Scholar 

  21. Das S et al (2009) Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Foundations of computational intelligence, vol 3. Springer, Berlin, Heidelberg, pp 23–55

    Google Scholar 

  22. de Oca MAM, Stutzle T, Birattari M, Dorigo M (2009) Frankenstein’s PSO: a composite particle swarm optimization algorithm. IEEE Trans Evol Comput 13:1120–1132

    Article  Google Scholar 

  23. Dekkers A, Aarts E (1991) Global optimizations and simulated annealing. Math Program 50:367–93

    Article  MathSciNet  MATH  Google Scholar 

  24. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B: Cybern 26(1):29–41

    Article  Google Scholar 

  25. dos Santos Coelho L, Mariani VC (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34:1905–1913

    Article  Google Scholar 

  26. Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 congress on evolutionary computation, vol 1, pp 84–88

    Google Scholar 

  27. Eberhart RC, Shi Y (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of congress on evolutionary computation, Seoul, Korea, pp 81–86

    Google Scholar 

  28. Er MJ, Chen W, Wu S (2005) High-speed face recognition based on discrete cosine transform and RBF neural networks. IEEE Trans Neural Netw 16(3):679–691

    Article  Google Scholar 

  29. Erol Osman K, Eksin I (2006) A new optimization method: big bang-big crunch. Adv Eng Softw 37(2):106–111

    Article  Google Scholar 

  30. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  31. Goldberg DE (1998) Genetic algorithms in search, optimization, and machine learning. Addison Wesley, MA

    Google Scholar 

  32. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Google Scholar 

  33. Grosan C, Abraham A, Chis M (2006) Swarm intelligence in data mining. Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  34. Hafed ZM, Levine MD (2001) Face recognition using discrete cosine transform. Int J Comput Vision 43(3):167–188

    Article  MATH  Google Scholar 

  35. Hassanien AE, Azar AT, Snasel V, Kacprzyk J, Abawajy JH (2015) Big data in complex systems: challenges and opportunities. Studies in big data, vol 9. Springer-Verlag GmbH, Berlin/Heidelberg. ISBN: 978-3-319-11055-4

    Google Scholar 

  36. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  37. Ho S-Y, Lin H-S, Liauh W-H, Ho S-J (2008) OPSO: orthogonal particle swarm optimization and its application to task assignment problems. IEEE Trans Syst Man Cybern Part A: Syst Hum 38:288–298

    Google Scholar 

  38. Inbarani HH, Bagyamathi M, Azar AT (2015) A novel hybrid feature selection method based on rough set and improved harmony search. Neural Comput Appl 1–22. doi:10.1007/s00521-015-1840-0

    Google Scholar 

  39. Inbarani HH, Banu PKN, Azar AT (2014) Feature selection using swarm-based relative reduct technique for fetal heart rate. Neural Comput Appl 25(3–4):793–806. doi:10.1007/s00521-014-1552-x

    Google Scholar 

  40. Jain AK, Flynn P, Ross AA (2008) Handbook of biometrics. Springer Publication, New York. ISBN-13: 978-0-387-71040-2

    Google Scholar 

  41. Jain AK, Pankanti S, Prabhakar S, Hong L, Ross A (2004). Biometrics: a grand challenge. In Proceedings of the 17th IEEE International Conference on Pattern Recognition (ICPR, 2004), vol 2, pp 935–942

    Google Scholar 

  42. Jakhar R, Kaur N, Singh R (2011) Face recognition using bacteria foraging optimization-based selected features. Int J Adv Comput Sci Appl 1(3)

    Google Scholar 

  43. Jothi G, Inbarani HH, Azar AT (2013) Hybrid tolerance-PSO based supervised feature selection for digital mammogram images. Int J Fuzzy Syst Appl (IJFSA) 3(4):15–30

    Article  Google Scholar 

  44. Kao Y-T, Zahara E, Kao IW (2008) A hybridized approach to data clustering. Expert Syst Appl 34:1754–1762

    Article  Google Scholar 

  45. Kao Y-T, Zahara E (2008) A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl Soft Comput 8:849–857

    Article  Google Scholar 

  46. Kapitaniak T (1995) Continuous control and synchronization in chaotic systems. Chaos Solitons Fractals 6:237–244

    Article  MathSciNet  MATH  Google Scholar 

  47. Kennedy J (2010) Particle swarm optimization. In: Encyclopaedia of machine learning. Springer, US, pp 760–766

    Google Scholar 

  48. Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  49. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4(1995):1942–1948

    Article  Google Scholar 

  50. Kirby M, Sirovich L (1990) Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans Pattern Anal Mach Intell 12(1):103–108

    Article  Google Scholar 

  51. Kirkpatrick S (1984) Optimization by simulated annealing: quantitative studies. J Stat Phys 34(5–6):975–986

    Article  MathSciNet  Google Scholar 

  52. Kumar S, Datta D, Singh SK (2015) Black hole algorithm and its applications. In: Computational intelligence applications in modeling and control. Springer International Publishing, pp 147–170

    Google Scholar 

  53. Kumar S, Datta D, Singh SK (2015) Swarm intelligence for biometric feature optimization. Handbook of research on swarm intelligence in engineering, vol 147

    Google Scholar 

  54. Kumar S, Sadhya D, Singh D, Singh SK (2014) Cloud security using face recognition. Handbook of research on securing cloud-based databases with biometric applications, vol 298

    Google Scholar 

  55. Lian Z, Gu X, Jiao B (2008) A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan. Chaos Solitons Fractals 35:851–861

    Article  MATH  Google Scholar 

  56. Li B, Jiang WS (1998) Optimizing complex functions by chaos search. Cybern Syst 29:409–419

    Google Scholar 

  57. Lu Z, Shieh LS, Chen GR (2003) On robust control of uncertain chaotic systems: a sliding-mode synthesis via chaotic optimization. Chaos Solitons Fractals 18:819–827

    Article  MathSciNet  MATH  Google Scholar 

  58. Matos FM, Batista LV, Poel J (2008) Face recognition using OCT coefficients selection. In: Proceedings of the ACM symposium on applied computing, pp 1753–1757

    Google Scholar 

  59. May R (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–67

    Article  Google Scholar 

  60. Minagawa H, Fujimura T, Ichiyanagi M, Tanaka K (2002) Identification of beef cattle by analysing images of their muzzle patterns lifted on paper. Publ Japan Soc Agric Inf 8:596–600

    Google Scholar 

  61. Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  62. Mirzayans T, Parimi N, Pilarski P, Backhouse C, Wyard-Scott L, Musilek P (2005) A swarm-based system for object recognition. Neural Netw World 15(3):243–255

    Google Scholar 

  63. Mpiperis I, Malassiotis S, Petridis V, Strintzis MG (2008) 3D facial expression recognition using swarm intelligence. In: IEEE International Conference on Acoustics, speech and signal processing, 2008. ICASSP 2008. IEEE, pp 2133–2136

    Google Scholar 

  64. Ozcan E, Mohan CK (1999) Particle swarm optimization: surfing the waves. In: Proceedings of the 1999 IEEE congress on evolutionary computation (CEC 99), vol 3

    Google Scholar 

  65. Pant M, Thangaraj R, Abraham A (2009) Particle swarm optimization: performance tuning and empirical analysis. Foundations of computational intelligence, vol 3. Springer, Berlin, Heidelberg, pp 101–128

    Google Scholar 

  66. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22:52–67

    Article  Google Scholar 

  67. Pecora L, Carroll T (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–4

    Article  MathSciNet  MATH  Google Scholar 

  68. Qian W, Yang Y, Yang N, Li C (2008) Particle swarm optimization for SNP haplotype reconstruction problem. Appl Math Comput 196:266–272

    Google Scholar 

  69. Samra AS, El Taweel Gad Allah S, Ibrahim RM (2003) Face recognition using wavelet transform, fast Fourier transform and discrete cosine transform. In: IEEE 46th midwest symposium on circuits and systems, vol 1, pp 272–275

    Google Scholar 

  70. Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings of IEEE international conference on evolutionary computation. Anchorage, USA, pp 69–73

    Google Scholar 

  71. Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of IEEE international congress on evolutionary computation, Washington, DC, pp 1945–50

    Google Scholar 

  72. Teodorović D (2009) Bee colony optimization (BCO). In: Innovations in swarm intelligence. Springer, Berlin, Heidelberg, pp 39–60

    Google Scholar 

  73. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Proceedings IEEE computer society conference on computer vision and pattern recognition (CVPR, 91), pp 586–591

    Google Scholar 

  74. Vaidyanathan S, Azar AT (2015) Analysis and control of a 4-D novel hyperchaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design. Studies in computational intelligence, vol 581. Springer-Verlag GmbH, Berlin/Heidelberg, pp 19–38. doi:10.1007/978-3-319-13132-0

    Google Scholar 

  75. Vaidyanathan S, Azar AT (2015) Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design. Studies in computational intelligence, vol 581, Springer-Verlag GmbH, Berlin/Heidelberg, pp 3–17. doi:10.1007/978-3-319-13132-0_1

    Google Scholar 

  76. Vaidyanathan S, Azar AT (2015) Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan-Madhavan chaotic systems. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems. Studies in computational intelligence book series, vol 576. Springer-Verlag GmbH, Berlin/Heidelberg, pp 527–547. doi:10.1007/978-3-319-11173-5_19

    Google Scholar 

  77. Vaidyanathan S, Azar AT (2015) Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan Chaotic systems. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems. Studies in computational intelligence book series, vol 576. Springer-Verlag GmbH, Berlin/Heidelberg, pp 549–569. doi:10.1007/978-3-319-11173-5_20

    Google Scholar 

  78. Vaidyanathan S, Idowu BA, Azar AT (2015) Backstepping controller design for the global chaos synchronization of Sprott’s Jerk systems. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design. Studies in computational intelligence, vol 581. Springer-Verlag GmbH, Berlin/Heidelberg, pp 39–58. doi:10.1007/978-3-319-13132-0_3

    Google Scholar 

  79. Wang L, Zheng DZ, Lin QS (2001) Survey on chaotic optimization methods. Comput Technol Autom 20:1–5

    Google Scholar 

  80. Wang L (2001) Intelligent optimization algorithms with applications. Tsinghua University & Springer Press, Beijing

    Google Scholar 

  81. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, Heidelberg, pp 65–74

    Google Scholar 

  82. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput. 2(2):78–84

    Google Scholar 

  83. Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 1(4):330–343

    Google Scholar 

  84. Yang XS (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation. Springer, Berlin, Heidelberg, pp 240–249

    Google Scholar 

  85. Yu M, Yan G, Zhu QW (2006) New face recognition method based on dwt/dct combined feature selection. In: Proceedings of IEEE international conference on machine learning and cybernetics, pp 3233–3236

    Google Scholar 

  86. Zhan ZH, Zhang J, Li Y, Chung HS (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B: Cybern 39:1362–1381

    Article  Google Scholar 

  87. Zhang H, Sun G (2002) Feature selection using tabu search method. Pattern Recogn 35:701–711

    Google Scholar 

  88. Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv (CSUR) 35(4):399–458

    Article  Google Scholar 

  89. Zhu Q, Azar AT (2015) Complex system modelling and control through intelligent soft computations. Studies in fuzziness and soft computing, vol 319. Springer-Verlag, Germany. ISBN: 978-3-319-12882-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, S., Singh, S.K. (2016). Feature Selection and Recognition of Muzzle Point Image Pattern of Cattle by Using Hybrid Chaos BFO and PSO Algorithms. In: Azar, A., Vaidyanathan, S. (eds) Advances in Chaos Theory and Intelligent Control. Studies in Fuzziness and Soft Computing, vol 337. Springer, Cham. https://doi.org/10.1007/978-3-319-30340-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30340-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30338-3

  • Online ISBN: 978-3-319-30340-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics