Skip to main content

A First Analysis of Multipath TCP on Smartphones

  • Conference paper
  • First Online:
Passive and Active Measurement (PAM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9631))

Included in the following conference series:

Abstract

Multipath TCP is a recent TCP extension that enables multihomed hosts like smartphones to send and receive data over multiple interfaces. Despite the growing interest in this new TCP extension, little is known about its behavior with real applications in wireless networks. This paper analyzes a trace from a SOCKS proxy serving smartphones using Multipath TCP. This first detailed study of real Multipath TCP smartphone traffic reveals several interesting points about its behavior in the wild. It confirms the heterogeneity of wireless and cellular networks which influences the scheduling of Multipath TCP. The analysis shows that most of the additional subflows are never used to send data. The amount of reinjections is also quantified and shows that they are not a major issue for the deployment of Multipath TCP. With our methodology to detect handovers, around a quarter of the connections using several subflows experience data handovers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://shadowsocks.org.

  2. 2.

    Anonymized traces available: http://crawdad.org/uclouvain/mptcp_smartphone.

References

  1. Chen, Y.-C., et al.: A measurement-based study of MultiPath TCP performance over wireless networks. In: IMC 2013, pp. 455–468. ACM, New York (2013). http://doi.acm.org/10.1145/2504730.2504751

  2. De Coninck, Q., Baerts, M.: Analysis scripts (2015). http://github.com/multipath-tcp/mptcp-analysis-scripts

  3. De Coninck, Q., et al.: Poster: evaluating android applications with Multipath TCP. In: MOBICOM 2015, pp. 230–232. ACM (2015). http://dx.doi.org/10.1145/2789168.2795165

  4. Deng, S., et al.: WiFi, LTE, or both?: measuring multi-homed wireless internet performance. In: IMC 2014, pp. 181–194. ACM, New York (2014). http://doi.acm.org/10.1145/2663716.2663727

  5. Eardley, P.: Survey of MPTCP Implementations. Internet-Draft draft-eardley-mptcp-implementations-survey-02, IETF Secretariat, July 2013. http://tools.ietf.org/html/draft-eardley-mptcp-implementations-survey-02

  6. Falaki, H., et al.: A first look at traffic on smartphones. In: IMC 2010, pp. 281–287. ACM, Melbourne (2010). http://dx.doi.org/10.1145/1879141.1879176

  7. Ferlin, S., Dreibholz, T., Alay, Ö.: Multi-path transport over heterogeneous wireless networks: does it really pay off? In: Proceedings of the IEEE GLOBECOM. IEEE, Austin, December 2014. http://dx.doi.org/10.1109/GLOCOM.2014.7037567

  8. Ferlin-Oliveira, S., et al.: Tackling the challenge of bufferbloat in multi-path transport over heterogeneous wireless networks. In: 2014 IEEE 22nd International Symposium of Quality of Service (IWQoS), pp. 123–128, May 2014. http://dx.doi.org/10.1109/IWQoS.2014.6914310

  9. Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP Extensions for Multipath Operation with Multiple Addresses. RFC 6824, January 2013. http://www.rfc-editor.org/rfc/rfc6824.txt

  10. Hesmans, B., Bonaventure, O.: Tracing Multipath TCP connections. SIGCOMM Comput. Commun. Rev. 44(4), 361–362 (2014). http://doi.acm.org/10.1145/2740070.2631453

    Article  Google Scholar 

  11. Hesmans, B., Tran-Viet, H., Sadre, R., Bonaventure, O.: A first look at real multipath TCP traffic. In: Steiner, M., Barlet-Ros, P., Bonaventure, O. (eds.) TMA 2015. LNCS, vol. 9053, pp. 233–246. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-319-17172-2_16

    Google Scholar 

  12. Huang, J., et al.: Anatomizing application performance differences on smartphones. In: MobiSys 2010, pp. 165–178. ACM (2010). http://dx.doi.org/10.1145/1814433.1814452

  13. Mellia, M., Carpani, A., Cigno, R.L.: TStat: TCP statistic and analysis tool. In: Ajmone Marsan, M., Listanti, G.C.M., Roveri, A. (eds.) QoS-IP 2003. LNCS, vol. 2601, pp. 145–157. Springer, Heidelberg (2003). http://www.tlc-networks.polito.it/mellia/papers/Tstat_QoSIP.ps

    Chapter  Google Scholar 

  14. Paasch, C., Barre, S., et al.: Multipath TCP in the Linux Kernel. http://www.multipath-tcp.org

  15. Paasch, C., et al.: Exploring Mobile/WiFi handover with Multipath TCP. In: ACM SIGCOMM CellNet Workshop, pp. 31–36 (2012). http://doi.acm.org/10.1145/2342468.2342476

  16. Paasch, C., et al.: Experimental evaluation of Multipath TCP schedulers. In: CSWS 2014, pp. 27–32. ACM, New York. http://doi.acm.org/10.1145/2630088.2631977

  17. Paasch, C., et al.: On the benefits of applying experimental design to improve Multipath TCP. In: CoNEXT 2013, pp. 393–398. ACM, New York (2013). http://inl.info.ucl.ac.be/publications/benefits-applying-experimental-design-improve-multipath-tcp

  18. Peng, Q., et al.: Energy efficient Multipath TCP for mobile devices. In: MobiHoc 2014, pp. 257–266. ACM, New York (2014). http://doi.acm.org/10.1145/2632951.2632971

  19. Raiciu, C., et al.: Opportunistic mobility with Multipath TCP. In: MobiArch 2011, pp. 7–12. ACM, New York (2011). http://doi.acm.org/10.1145/1999916.1999919

  20. Raiciu, C., et al.: How hard can it be? designing and implementing a deployable Multipath TCP. In: NSDI 2012, pp. 29–29. USENIX Assoc., Berkeley (2012). http://inl.info.ucl.ac.be/publications/how-hard-can-it-be-designing-and-implementing-deployable-multipath-tcp

  21. Sup Lim, Y., et al.: Cross-layer path management in multi-path transport protocol for mobile devices. In: INFOCOM 2014, pp. 1815–1823. IEEE, April 2014. http://dx.doi.org/10.1109/INFOCOM.2014.6848120

Download references

Acknowledgements

This work was partially supported by the EC within the FP7 Trilogy2 project. We would like to thank Gregory Detal and Sébastien Barré for the port of the latest Multipath TCP Linux kernel on the Nexus 5 and Patrick Delcoigne and his team for the cellular measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin De Coninck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

De Coninck, Q., Baerts, M., Hesmans, B., Bonaventure, O. (2016). A First Analysis of Multipath TCP on Smartphones. In: Karagiannis, T., Dimitropoulos, X. (eds) Passive and Active Measurement. PAM 2016. Lecture Notes in Computer Science(), vol 9631. Springer, Cham. https://doi.org/10.1007/978-3-319-30505-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30505-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30504-2

  • Online ISBN: 978-3-319-30505-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics