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Abstract This paper introduces a novel ranking system for competitive sports based
around the notion of subgraphs. Although the system is targeted specifically to pro-
fessional tennis it could be applied to any dominance network due to its generality.
The results of about 140,000 tennis matches played between Top-100 players are
used to create a colored directed network where colors represent different surfaces
and edge direction depends on head-to-read results between players. The main con-
tribution of this work is a ranking system which relies on the occurrences of 4-node
directed subgraphs and the positions (or orbits) where the players appear on them.
Since the concept of orbit is intrinsically connected with node dominance, appearing
frequently in dominant orbits indicates that the player himself is dominant. Even in
a very sparse network and without any background knowledge on the tournaments
or stages of the matches, our proposal is able to extract meaningful rankings which
capture the intricate competitive relationships between players from different eras.

1 Introduction

Debating who is the best player (or team) is one of the most discussed topics in any
competitive sport and it can stir heated arguments between fans. Objectively quan-
tifying player achievements is not straightforward, even when personal preferences
are set aside, since multiple criteria can be used to compare players and the sports
themselves evolve throughout the years. Nevertheless, competitive sports require a
system that is able to rank players (or teams) according to their performance.

Most existing ranking systems focus on some set of numerical features, with dif-
ferent weights and time spans used depending on the sport under consideration [11].
Professional tennis in particular is governed by the Association of Tennis Profes-
sionals (ATP) which ranks players based on their results in official ATP tournaments.
The ATP ranking is updated on a weekly basis and aggregates the results from the
previous 52 weeks. Points are awarded to players according to the round of the tour-
nament that they reach and the ranking of the tournament itself. Recently, with the
emergence of network science, node centrality metrics have been applied to sports
datasets in order to derive rankings [5, 7, 9, 10]. The vast majority of these rank-
ing methods are adaptations of the PageRank algorithm [2]. In this work we take a
different perspective by instead considering the role of small subgraphs. Subgraph-
based metrics have been used to evaluate node importance in other fields such as
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biology [12]. Our goal is to provide a ranking system that truly captures the dynam-
ics of the network. For that purpose, we devise a ranking mechanism that considers
not only the subgraphs themselves but also the position (or orbit) of the players in
the subgraphs. Orbit information allows us to discover indirect dominance while at
the same time weighting both inward and outward edges. This method contrasts with
PageRank which essentially considers only one of the two possible edge directions,
giving importance to wins and almost disregarding losses, or vice-versa.

Our approach was tested on one of the most popular individual sports: men’s pro-
fessional tennis. Our results show that, even without any kind of prior knowledge,
the methodology put forward is able to produce consistent and meaningful results
using only the topology of the dominance network .

2 Network Description
In order to construct the dominance network we first collected the names of all ten-
nis players that have been ranked in the Top-100 of the ATP year-end rankings from
1974 until 2015 and then extracted their match information from Tennis Abstract1.
Going beyond the Top-100 introduces noise in the data and is not necessary for
our purposes since players below the Top-100 only enter a few major tournaments.
A total of 856 tennis players have been in the Top-100 throughout the years and they
have played about 140,000 matches between themselves. The amount of matches
played annually on each surface is presented in Figure 1 as well as the total number
(dotted line). This number increased significantly in the 1990s but has dropped in
recent years mostly due to changes in the ranking system that encourage players to
only participate in the most prestigious tournaments and also thanks to an increased
awareness of the sport’s physical demands. Nowadays, most tennis tournaments are
contested on either clay or hard courts, with only a handful of matches played on
grass each year. Carpet was a popular surface until the mid-1990s but it was dis-
continued from the ATP Tour in the late 2000s. The surface characteristics affect
the pace of the game, favouring different playing styles. Usually, grass is the fastest
surface to play on, followed by carpet, hard and finally clay.
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Fig. 1: Matches played by year on each surface.

Table 1: Global network statistics of the domi-
nance networks, discriminated by surface.

Surface ∣V∣ ∣E∣
∣E∣ ∣E⇒∣
∣V∣ ∣E∣

Hard 301 868 2.88 0.64

Clay 289 793 2.74 0.65

Grass 140 173 1.24 0.90

Carpet 97 188 1.94 0.72

Overall 585 3279 5.61 0.68
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Following data extraction, the information is processed in order to construct
6-tuples of the form (Player1,Player2,Sur f ace,Year,Matches,WinPercentage) for
each pair of players. Besides creating a tuple for each surface, an additional 6-tuple
is necessary to account for overall head-to-head. Using this data, a dominance
network is created where nodes are players and the orientation of the colored di-
rected edges between two players depends on their head-to-head on a given surface.
Consider tuple (pi, p j,s,t,m

s,t
i j ,w

s,t
i j ) and parameters δ and φ : a colored directed edge

(pi, p j) is created if player pi won at least δ% of the matches against p j on surface s
in a given year t (Equation 1) and they played a minimum φ matches in surface s
during their careers (Equation 2). Our networks were built with δ =

2
3 , meaning that

one player only dominates another if he has defeated him in more than 66% of the
matches. A minimum of 3 matches (φ = 3) is required to establish a dominance re-
lation between two players on grass courts, and 5 for the other surfaces. An overall
dominance relation that disregards playing surface also requires at least 5 matches.

ws,t
i j ≥ δ% (1)

⎛

⎝

2015

∑

t=1974
ms,t

i j
⎞

⎠

≥ φ (2)

An aggregated (or career) dominance network is assembled by calculating dom-
inances using the career win-percentage, instead of yearly results. The resulting
network has 585 vertices and 5,301 directed edges with 5 possible labels (or col-
ors): hard, clay, grass, carpet or overall. The number of overall edges is not simply
the sum of the edges from all surfaces since an overall dominance is established by
playing a minimum φ matches on any surface (for instance, one player can dominate
another in overall matches without having φ encounters with him in any particular
surface). Notice that only 585 of the original 856 players are represented in the net-
work since the others did not play the required φ matches against any other Top-100
player, and consequently have no edges. Requiring the win-percentage to be above a
certain threshold δ for a dominance relation to be established results in the creation
of bidirectional (or reciprocal) edges, meaning that two players met in at least φ

matches but neither one dominates the other. The dominant (unidirectional) edges
and non-dominant (bidirectional) edges are henceforth represented as E⇒ and E⇔,
respectively. Table 1 summarizes the networks’ global statistics. In regard to indi-
vidual players, Jimmy Connors dominates the most other players (63), followed by
Roger Federer (60) and Ivan Lendl (59). On hard courts Roger Federer leads with
46 out-edges, Guillermo Vilas on clay with 37, John McEnroe on carpet with 23 and
Roger Federer on grass with 17 out-edges.

Two visual representations of the network are presented in Figure 2. The gi-
ant component of the aggregate network is shown in Figure 2 (a). Each edge color
matches a surface: blue for hard, brown for clay, green for grass, pink for carpet and
black for overall dominances. Node size depends on the number of out-edges; Roger
Federer corresponds to the largest node since he has the most out-edges (132). Fig-
ure 2 (b) shows the relations between all 25 players that have been ranked as the ATP
Top-1 player. Edges are only relative to overall dominance and the line thickness re-
flects how unbalanced the relation is. It is interesting to notice that Jimmy Connors,
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(a)

(b)

Fig. 2: Player dominance networks: in (a) blue edges are drawn for dominances in hard courts,
brown for clay, green for grass and pink for carpet. The nodes’ size increases proportionally with
their out-degree. (b) shows the relations between all ATP Top-1 players, disregarding surface.

Fig. 3: In- and out-degree distribution of tennis players dominance networks (overall matches).
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one of the players with most out-edges, does not dominate any Top-1 player. The
fact that he faced the others when they were closer to their prime than himself might
be the main reason for this. It seems reasonable to expect younger players, which are
at their peak, to dominate players declining in form. However, that is generally only
the case for players of the same level: very good young players tend to dominate
very good older players, but average young players do not usually win against very
good older players. Furthermore, considering the players’ full history allows us to
capture the various stages of their careers. Comparing players from different eras
might seem unfair if one inspects only individual relations but what really makes a
player dominant is the global aspect of his career and the head-to-head results that
he had against players from his own era, players from the era preceding his and play-
ers from the subsequent era. Therefore, it is difficult to infer that a player pi from
one era dominates another player p j from a different era, however it is possible to
say that pi is generally more dominant than p j, and those are the relations that we
intend to capture using our ranking mechanism.

Figure 3 shows that the networks’ in- and out-degrees follow a power law. Results
are only presented for overall matches but the surface networks are also scale-free.

3 Subgraph-based Ranking System

Related Work

The discussion of who is the best tennis player of all-time is open for debate and
multiple criteria can be used. Ranking players simply by the number of matches
that they won unduly favours players that had very long careers, such as Jimmy
Connors, and ranking players by their win-ratio excessively benefits those that, like
Björn Borg, retired at the peak of their careers. Furthermore, these possibilities do
not take into account the intricate relations between the players. Grand Slam tourna-
ment victories (or grand slams for short) are often used to compare tennis players;
however, before the 1990s several top-ranked players willingly skipped some of the
annual Grand Slam tournaments since it was not yet the norm to evaluate players by
their number of grand slams.

The work by Radicchi et al. [9] proposes a PageRank-like ranking system for
male tennis players. Dingle et al [3] also used Radicchi’s ranking system to produce
a more up-to-date ranking of both male and female tennis players. The network that
Raddicchi et al. built is different from our own since a) their edges are weighted
(wi j: number of times that pi beats p j) while ours are simple directed edges reflect-
ing win-percentages, b) they used match information from 1969 until 2010 whilst
our networks are relative to matches from 1974 to 2015 and c) they only considered
matches played on either Grand Slam tournaments or ATP Masters 1000 whereas
we use information from all official ATP tournaments. Traditional PageRank does
not decrease the node’s rank with respect to its out-edges (in this case, meaning
loses against) and is therefore not suitable to determine player dominance relations.
The prestige score presented in [9] lowers the wi j according to p j’s out-degree (the
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number of times p j loses against someone); therefore, dominating a dominated node
gives less prestige than dominating a more dominant player. However, the pres-
tige score is not decreased according to pi’s out-edges, which may result in domi-
nated players having a high score as long as they dominate a few dominant players.
Our scoring system increases the players’ score in respect to the players that they
dominate and, likewise, decreases their score when they are themselves dominated.
Another approach was followed by Motegi and Masuda [7] where they use a dy-
namic win-loss score that takes into account temporal information and fluctuations
in the ranking. They not only consider direct wins and losses but also indirect ones,
namely those corresponding to directed paths of size 2. Our work differs because we
use subgraphs of size 4, which encapsulate more information than paths of size 2.
Furthermore, we consider global dominance relations to obtain an earned ranking,
while their work focuses on obtaining a temporal snapshot for a particular point in
time and use it for prediction purposes.

Methodology

A simple way to assess node dominance is to compare its out-degree (dominant)
with its in-degree (dominated). However, tennis players face a limited set of oppo-
nents due to their ranking (higher ranked players seldom play against lower ranked
players) and career span (players from different periods never face each other).
Moreover, requiring at least φ matches to be played for a relation to be established
further decreases the amount of direct relations, resulting in very sparse networks
(
∣E∣
∣N∣2 ≤ 0.05). Therefore, comparing players only by degree is not sufficient.

Another option is to consider richer structural units: subgraphs. Actually, the de-
gree of a vertex v ∈V(G) can be regarded as a 2-node subgraph where v occupies
one of its two possible positions. In this work, instead of looking only at the di-
rected degree (or subgraphs {v → u}, {u → v} and {v↔ u}), we analyse slightly
larger subgraphs and observe at which position vertex v appears in each occurrence.
As illustrated in Figure 4, this allows not only for direct dominances (a → b) or
equivalences (a↔ b) to be captured but also for indirect dominances (a→ b↔ c,
therefore a⇢ c) and super dominances (a→ b→ c, therefore a↠ c) due to graph
transitivity. This is particularly useful in the tennis players network since, as dis-
cussed previously, players have a very limited number of edges (direct dominances).
Another advantage lies in the fact that it enables dominance relations to be estab-
lished between players of different eras by following the path of the subgraph, such
as {Federer → Agassi → Becker → Connors}, which leads to the conclusion that
{Federer↠Connors}. However, there are many other possible paths from Federer
to Connors and in some of them Connors may actually indirectly dominate Fed-
erer. Therefore, all paths from one player to another must be enumerated in order to
assess indirect dominances.

Graphlets [8] are subgraphs that take the node position of the subgraph (or orbit)
into account. Graphlet usage is often restricted to analyzing only the set of 30 undi-
rected graphs of up to five nodes due to computational limitations. Using undirected
subgraphs would not produce meaningful results in dominance networks since edge
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Fig. 4: Graph transitivity translated to direct dominance (a→ b), super dominance (a↠ b) and
indirect dominance (a⇢ b).

direction is crucial. An extension of graphlets to directed networks was proposed
in [1]. Graphlets can be used, for instance, to compare the topology of networks
[4, 8] or nodes [6]. The key idea is to compute how many times a given node ap-
pears in an orbit and repeat that process for all possible orbits. Two nodes are more
or less alike depending on how similar their orbit frequencies are. For instance, two
nodes present at the center of multiple stars are more similar to each other than to
another node that appears more frequently at the stars’ periphery. Usually, graphlet
computation is not concerned with specific types of subgraphs (such as chains, stars
or cliques), but instead with all possible subgraphs of a given size. The results pre-
sented here are relative to all 199 possible directed subgraphs with 4 nodes.

In a first step, our subgraph-based ranking system receives as input a set of
graphlets and assigns scores to their orbits. Then, during subgraph enumeration, the
player’s score is increased or decreased according to the orbits that he appears in.
Orbit scores are calculated using the transitivity closure of the subgraph, as shown in
Figure 5, where di j is the path length between node ni and node n j. Notice that dif-
ferent nodes of a subgraph may be in the same orbit, and will always have the same
score (see orbit e from subgraph GB for instance). Looking at GB we identify orbit f
as dominant since it has 3 out-edges and no in-edges, while orbit e has no out-edges
and 2 in-edges, representing a dominated orbit. Orbits a, b, c and d from GA con-
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Fig. 5: Graph transitivity of 3 subgraphs. Nodes with the same shade are in the same orbit. Orbit
scores are assessed using the transitivity matrix: row values are positive points while column values
are negative. Higher cell values mean that the connection is less direct.
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stitute a 4-node chain where the orbits at its start are more dominant than the ones
at its end since they indirectly dominate more orbits. Orbits h, i and j of GC form
a cycle and are therefore equivalent. However, orbit j dominates k directly while h
and i dominate k indirectly. Also, orbit i dominates orbit k more directly than orbit
h does. These considerations are taken into account by our scoring mechanism.

Orbit scores are calculated as shown in Equation 3. The main idea is to sub-
tract the negative points (∑∣So∣

j=0 β
k−d(o j ,o)) from the positive ones (∑∣Io∣

i=0 β
k−d(o,oi)).

Set Io is formed by the orbits inferior to the orbit being computed while So is the
set of orbits superior to it. The distance between oi and o j is given by d(oi,o j) and
it can be at most k−1, where k is the size of the subgraph. Basically, direct dominant
connections give more points than indirected ones and, conversely, direct dominated
connections take more points away. Parameter β controls the relative importance of
the directedness, i.e. a small β (closer to 1) means that direct and indirect domi-
nances give roughly the same points while an high β means that direct dominances
are more important. Notice that if β is too big the score becomes almost equiva-
lent to the degree. A parameter λ ∈ [0,1] is also inserted to control the influence
of dominating versus being dominated. Using λ ≈ 1 means that a player is mostly
evaluated by how many players he dominates (out-edges) while the amount of times
that he himself is dominated (in-edges) does not have a big impact in the rankings,
and vice-versa when λ ≈ 0, i.e. the player is ranked higher if he is dominated by few
players. These considerations produce a flexible scoring mechanism with just two
parameters. The score of a player pi is obtained by summing his occurrences in all
orbits and multiplying them by their score, as shown in Equation 4. Finally, players
are ordered from the lowest to the highest score to produce the ranking.

S(o) =
⎛

⎝

λ ×

∣Io∣

∑

i=0
β

k−d(o,oi)
⎞

⎠

−

⎛

⎝

(1−λ)×

∣So∣

∑

j=0
β

k−d(o j ,o)
⎞

⎠

(3)

S(pi) =

∣O∣

∑

o=0
Fr(pi,o)×S(o) (4)

4 Results

Table 2 presents the 15 players with the highest scores depending on λ . In the mid-
dle column λ is 1

2 , meaning that dominating and not being dominated is equally
important for the players’ scores, and this value is used for comparison. When λ <

1
2

the ranking mechanism gives more importance to not being dominated that to domi-
nating other players. Players such as Björn Borg and Gustavo Kuerten benefit from
this parameter choice whereas Guillermo Vilas is penalized. If ones keeps decreas-
ing λ , Rafael Nadal eventually tops the ranking because very few players have a
positive win-loss ratio against him. However, making λ too small results in a mean-
ingless ranking since players that have few out-edges unrealistically climb in the
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rankings as long as they have very few (or none) in-edges. By contrast, when λ >
1
2 ,

players such as Carlos Moya and Guillermo Vilas climb in the rankings while Björn
Borg and Novak Djokovic drop some positions. Having λ ≈ 1 still produces mean-
ingful results since the ranking eventually stabilizes and ranks very highly players
that dominate many others. Nevertheless, it does not seem fitting to completely dis-
regard the dominated edges of the players when building a dominance based ranking
system. In the remaining results λ is set to 1

3 , hence giving a slight edge to players
that are not dominated by many others while still producing meaningful results.

Rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Player ⇕

I. Lendl 1 ▲
R. Federer 1 ▼
J. Connors
R. Nadal 1 ▲

N. Djokovic 1 ▲
B. Becker
A. Agassi 3 ▼
B. Borg 5 ▲

S. Edberg 1 ▼
P. Sampras 2 ▲
J. McEnroe 1 ▼
A. Murray 4 ▲
L. Hewitt 2 ▼

G. Kuerten 7 ▲
G. Vilas 6 ▼

Player ⇕

I. Lendl 1 ▲
R. Federer 1 ▼
J. Connors
A. Agassi
R. Nadal

N. Djokovic 1 ▲
B. Becker 1 ▼
S. Edberg

J. McEnroe 1 ▲
G. Vilas 1 ▼

L. Hewitt
P. Sampras

B. Borg
A. Murray 2 ▲
A. Roddick

Player

R. Federer
I. Lendl

J. Connors
A. Agassi
R. Nadal
B. Becker

N. Djokovic
S. Edberg
G. Vilas

J. McEnroe
L. Hewitt

P. Sampras
B. Borg

Y. Kafelnikov
A. Roddick

Player ⇕

R. Federer
I. Lendl

J. Connors
A. Agassi
R. Nadal
B. Becker
S. Edberg 1 ▲

N. Djokovic 1 ▼
G. Vilas

J. McEnroe
L. Hewitt

P. Sampras
Y. Kafelnikov 1 ▲

C. Moya 3 ▲
B. Borg 2 ▼

Player ⇕

R. Federer
I. Lendl

J. Connors
A. Agassi
R. Nadal
B. Becker
G. Vilas 2 ▲

S. Edberg
N. Djokovic 2 ▼
J. McEnroe
L. Hewitt

Y. Kafelnikov 2 ▲
P. Sampras 1 ▼
C. Moya 3 ▲
D. Ferrer 2 ▲

λ =
1
6 λ =

1
3 λ =

1
2 λ =

2
3 λ =

5
6

Table 2: Ranking obtained by varying λ : the relative weight between dominating (out-edges) and
being dominated (in-edges).

Table 3 shows the career rankings with β = 1.5. To illustrate the effect of β take
graph GA from Figure 5 as an example: if β = 1, S(a) = 1(4−1)

+1(4−2)
+1(4−3)

= 3,
S(b) = 1, S(c) = −1 and S(d) = −3; if β = 2, S(a) = 2(4−1)

+ 2(4−2)
+ 2(4−3)

= 14,
S(b) = 4, S(c) = −4 and S(d) = −14. In pratice, this means that orbits a and b, for
instance, are much more alike when β = 1 than when β = 2. A low β (≈ 1) does not
distinguish direct from indirect relations while a high β (≈ 2) penalizes indirect ones
too heavily, therefore an intermediate value for β (1.5) was chosen.

Roger Federer is the most dominant player since 1974 according to our ranking
system, followed by Jimmy Connors and Ivan Lendl. Evaluating if the results are
correct is not straightforward and highly subjective. Nonetheless, one of the most
commonly used criteria to judge the quality of a tennis player is the number of grand
slams that he won during his career. From Table 3 (a) it can be observed that winning
grand slams is correlated with a higher position in our ranking. From the Top-25
players only David Ferrer, Tim Henman and Robin Soderling failed to win any
grand slams. Table 3 (b) shows the Top-10 by surface and also the number of grand
slams contested on that surface that they won. Roger Federer is the most dominant
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player both on grass and hard courts, Guillermo Vilas is the best player on clay and
McEnroe is ranked first in carpet courts. Again, the number of grand slam victories
is correlated with the ranking. We point out that no grand slam tournament was ever
contested on carpet. Table 3 (c) gives a more in-depth look at all 25 players that
have been the Top-1 player in the ATP rankings from 1974 until 2015. A dash (–)
means that the player does not have a single connection on that particular surface,
i.e. he did not play the minimum φ matches against anyone. The position of the
player is presented in bold-face only if our system ranks him among the Top-25 of
that particular surface. As can be observed, most (76%) ATP Top-1 players are also
ranked as one of the Top-25 most dominant players by our system. The exceptions
are John Newcombe, Mats Wilander, Jim Courier, Marcelo Rios, Patrick Rafter and
Marat Safin. Patrick Rafter is a notable outlier since he is ranked at the bottom half
of the table (381th out of 585 players). Notice however that he was only ranked as
the ATP Top-1 for one week. Our ranking also detects surface specialists (such as
Wilander, Muster, Rios, Kuerten and Ferrero on clay, Courier, Agassi and Hewitt on
hard courts, and Newcombe and Rafter on grass), all-round players (such as Năstase,

Rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Player

R. Federer17

J. Connors8

I. Lendl8

A. Agassi8

R. Nadal14

J. McEnroe7

G. Vilas4

N. Djokovic10

B. Becker6

P. Sampras14

S. Edberg6

A. Roddick1

A. Murray2

L. Hewitt2

B. Borg11

T. Muster1

C. Moya1

I. Năstase2

D. Ferrer*
G. Kuerten3

Y. Kafelnikov2

A. Ashe3

JC. Ferrero1

T. Henman*
R. Soderling*

Rank

1
2
3
4
5
6
7
8
9

10

Player

R. Federer9

N. Djokovic7

A. Agassi6

A. Murray1

A. Roddick1

R. Nadal3

P. Sampras7

L. Hewitt1

T. Berdych
I. Lendl5

Player

G. Vilas2

R. Nadal9

T. Muster1

S. Bruguera2

G. Kuerten3

M. Orantes1

B. Borg6

M. Wilander3

I. Nătase1

I. Lendl3

Hard Clay

Rank

1
2
3
4
5
6
7
8
9

10

Player

R. Federer7

J. Connors4

Edmondson1

J. McEnroe3

R. Tanner1

B. Becker3

S. Edberg4

N. Djokovic3

P. Cash1

P. Sampras7

Player

J. McEnroe
B. Becker
I. Lendl

J. Connors
G. Ivanisevic
P. Sampras

B. Borg
A. Ashe

K. Rosewall
B. Walts

Grass Carpet

Player Overall Hard Clay Grass Carpet

I. Nătase 18 26 9 – 18
J. Newcombe 38 – – 128 38

J. Connors 2 11 27 2 4
B. Borg 15 31 7 12 7

J. McEnroe 6 27 297 4 1
I. Lendl 3 10 10 90 3

M. Wilander 27 234 8 96 78
S. Edberg 11 12 118 7 70
B. Becker 9 192 55 6 2
J. Courier 41 13 37 32 73
P. Sampras 10 7 66 11 6
A. Agassi 4 3 63 28 41
T. Muster 16 178 3 – –
M. Rios 33 252 20 – –
C. Moya 17 190 149 – –

Y. Kafelnikov 21 269 321 22 49
P. Rafter 381 243 193 20 –
M. Safin 46 298 31 167 –

G. Kuerten 20 21 5 – –
L. Hewitt 14 8 177 496 –

JC. Ferrero 23 231 16 – –
A. Roddick 12 5 76 63 –
R. Federer 1 1 14 1 –
R. Nadal 5 6 2 118 –

N. Djokovic 8 2 35 8 –

(a) (b) (c)

Table 3: Ranking of tennis players with λ =
1
3 and β = 2: (a) Top-25 players, (b) Top-10 players by

surface and (c) our rankings for all players ranked as Top-1 by the ATP.
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Connors and Federer) and players with an Achilles-heel on a specific surface (such
as Sampras and Djokovic on clay, Borg on hard, and Lendl and Nadal on grass). We
should note that, for instance, Rafael Nadal has a very low score on grass despite
having a ≈ 79% win-loss ratio in that surface and winning two grand slams on grass.
His very low score comes primarily from the fact that he is dominated by Roger
Federer on that surface and, because Federer is a hub-like node in grass, Nadal ends
up appearing in many different subgraphs with Federer and the other players that
Federer dominates. Since Nadal occupies a negative orbit in those subgraphs his
score is continuously decreased. This negative effect is primarily felt on small and
sparse networks such as the grass network where even a single connection has a
very high impact. A possible solution to reduce the influence of hubs would be to
ensure that each player only decreases the score of another player once.

5 Conclusion

The first contribution of this work is the distribution2 of a network summarizing
the complete match history between all male Top-100 ATP players since 1974. The
data is discriminated by year as well as playing surface. The constructed dominance
network models the relations between players: if a player wins against another one
more than φ times and wins at least δ% of the matches, a directed connection is
drawn between them. An exploratory analysis was performed in order to verify that
these choices are adequate and produce a meaningful representation. It was also ob-
served that, like many real-world networks, both its in- and out-degree distributions
follow a power-law, meaning that there are few very dominant players, few very
dominated players and many average players.

We present a ranking system based on the subgraph topology of the dominance
network that offers a different view than past approaches based on the PageRank
algorithm. A complete subgraph enumeration is performed in the original network
in order to compute the ranking. During the enumeration process, the position that
the player appears in the subgraph is stored and his score is updated: if the player
appears in a dominant orbit his ranking is increased, while if he appears in a domi-
nated orbit his ranking is decreased. The ranking system does not require any meta-
information about the network such as the tournament or the round that the players
faced each other to produce meaningful results, however it could easily be extended
to support it by adjusting the edge weights. The system is also flexible since it is
possible to control i) λ the importance of being dominant versus being dominated
and ii) β the importance of direct versus indirect dominances.

We assess which values of λ and β are better-suited for this particular tennis
network and present rankings for the best overall players since 1974 and the most
dominant players by surface. Our ranking system produces results that agree with
the ATP ranking while at same time offering a different perspective since wins are

2 http://www.dcc.fc.up.pt/∼daparicio/networks
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not discriminated by tournaments (which some are more valuable than others) nor
rounds (where a win in a later round gives more ATP points) and the intricate rela-
tions between players are also captured. This approach gives a better idea of actual
player dominance which is valuable when trying to assess who are the best tennis
players. Using our ranking system it was possible, for instance, to i) observe that
player performance is heavily influenced by the playing surface and ii) discover
which former ATP World Top-1 players were actually dominant players and which
ones were not. We also performed a yearly ranking not included here for space con-
cerns where we i) observed that the most dominant players are usually the ones that
reach more tournament finals, semi-finals and quarter-finals but they are not nec-
essarily the ones that win more tournaments due to the unbalanced nature of ATP
ranking system, ii) identified which seasons were most dominated by a single (or a
few) player(s), iii) pinpointed tennis transition-eras (1987-1989 and 1999-2003) and
iv) noticed that it is rare for a player be very dominant both on fast (hard or grass)
and slow courts (clay).
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