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Abstract. The study of meme propagation and the prediction of meme
trajectory are emerging areas of interest in the field of complex networks
research. In addition to the properties of the meme itself, the struc-
tural properties of the underlying network decides the speed and the
trajectory of the propagating meme. In this paper, we provide an ar-
tificial framework for studying the meme propagation patterns. Firstly,
the framework includes a synthetic network which simulates a real world
network and acts as a testbed for meme simulation. Secondly, we propose
a meme spreading model based on the diversity of edges in the network.
Through the experiments conducted, we show that the generated syn-
thetic network combined with the proposed spreading model is able to
simulate a real world meme spread. Our proposed model is validated by
the propagation of the Higgs boson meme on Twitter as well as many
real world social networks.

1 Introduction

“We ape, we mimic, we mock, we act” is a law universal to all human beings.
Imagine a lady in an elevator, heading to the fifth floor of her office. Suddenly,
one by one, every person in the elevator turns back, what does she do now?
According to Elevator Groupthink psycology experiment [1], most of us would
turn back in such a situation. Usually, most of us become followers of the crowd
when faced with our sense of conformity. If ants follow each other with the help
of the pheromone trail, humans too involuntarily imitate and follow each others’
behaviours and ideas. Behaviours like obesity, smoking and altruism are also seen
to spread through social networks [2]. Today, Online Social Networks(OSNs) like
Facebook and Twitter provide a platform to fulfill people’s penchant for informa-
tion sharing, arguing and mudslinging. Used by approximately 1.4 billion people
worldwide [3], Facebook’s “Read, Like and Share” tradition has today become a
way of living. Understanding these spreading phenomena can help us in diverse
ways such as accelerating the spread of useful information i.e. health related
advices or disaster management related announcements as well as for viral mar-
keting of products and memes. Predicting the trajectory of a meme’s propagation
in a network can also prevent the spread of malicious rumors and misinformation.
Social networks play an instrumental role in the spread of influence in today’s
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world. Hence, contagion prediction models are an extensively studied field in
complex networks research. Such models evolve frequently with time, aiming
to depict real world information propagation more accurately. Initially, meme
propagation models were inspired from compartmental epidemiological models
[4]. These models [5] were too simplistic and did not consider the role of edges
in the spreading of information. Later on, the advent of independent cascade [6]
and linear threshold models [7] proved seminal and these became the standard-
ised models for meme propagation. However, most of these models did not take
into consideration the network structure and the calculation of parameters for
these models also remained a challenge.

Consider an anecdote about a small child Bob who went to visit the theme
park, Six Flags Magic Mountain in California, with his parents. Bob got lost in
the Fright Fest, which is the biggest and most terrifying maze at the theme park
known for its complex spider-web like structure. Confused by the many turns the
maze took at every step, poor Bob could not find his way out of the Fright Fest.
When Bob did not return, his worried parents contacted the park authorities
for help. These authorities having complete knowledge about the structure of
the maze and the possible paths that could be traversed by the players, could
easily locate Bob. Similarly, real world networks also have a complex yet distinct
structure and if one could understand this structure and estimate the paths that
can be taken by the meme in its trajectory, could she also not behave like the
park authorities in the above analogy? In connection with the above anecdote,
the knowledge of a network’s structure is important for understanding meme
propagation. It is known that the real world social networks have a very well
defined structure. We employ this well known structure for the simulation of a
meme.
The major contributions of the paper are :

1. Generation of an artificial synthetic network that mimics a real world social
network in terms of network structure.

2. We propose a spreading model for meme propagation based on the structure
of the network. This model is based on the difference in spreading probabil-
ities of different edges which is recognised from the network itself.

The proposed synthetic network and spreading model give a synthetic simula-
tion environment which serves as a test-bed to study meme propagation patterns.
Further, it gives a way of organising the edges in an hierarchy based on vary-
ing probabilities of information transmission across these edges. We validate the
proposed spreading model against the real world spreading of the Higgs boson
meme on Twitter. If one could extract the structure of offline social networks,
our framework can be used for understanding a wide range of phenomena on
offline networks as well in addition to online networks. In addition to controlling
information flow on OSNs, we can decrease the increasing behavioral spreading
of obesity and depression in the world and promote altruism and positive move-
ments. Inspired from the diversity of edges in a social network, the paper lays
light on a novel aspect of looking at information propagation.



The rest of the paper is organised as follows: Section 2 describes the related
work. Section 3 explains the synthetic networks in addition to describing the
real world networks used for simulation. The network structure based spreading
model is proposed in Section 4. Section 5 is devoted to results and discussion.
Section 6 illustrates the extension of our model as well as future possibilities.
Finally, the paper is concluded in Section 7.

2 Related Work

An enormous amount of work has been done to study the information prop-
agation pattern on an online social network [8,9]. Initially, memes in a social
network were considered analogous to a virus in a biological network [4]. As a
result, most information spreading models were inspired from compartmental
epidemiological models like SIS and SIR models [5] introduced in 1989. However
these models assumed a homogenous mixing of people constituting the popula-
tion and did not take into account interactions between the individuals. Later,
independent cascade(IC) [6] and linear threshold(LT) [7] models were investi-
gated which are now used as the standard models for information propagation
[10]. However, these models did not consider factors like network structure and
model simulation parameters. There were some studies that predicted the pa-
rameters associated with the information propagation models [11], but these are
largely based on the utilisation of the past data, obtaining which is a difficult
process. Studying considering the impact of network structure on a meme’s prop-
agation provide a relative view of the meme spread. For example, the spread of
epidemics is faster on scale free networks as compared to the random networks
due to the presence of hubs [12]. Zhang et al. presents a stochastic model for
the information propagation phenomenon [13]. Studying the information prop-
agation may help the scientists in a number of ways like halting the spread of
misinformation [14] and accelerating useful information [15] through a network.

Meme Virality prediction is an active research area in social network analy-
sis [16,17] and meme propagation models can be used extensively in fields like
Viral Marketing. Viral Marketing can be done by targeting a set of nodes in
a network as done by Kleinberg et al in their paper on influence maximisation
[18,19]. Influential spreaders play a significant role in information propagation
as shown by Kitsak et al in their work [20]. Meme virality can not only depend
on network structure and nodes in a network, it seems to be intuitive that meme
content also has a role to play in the meme becoming viral [16,17]. Though most
studies consider nodes in their study of meme virality, we consider the property
of edges in the spread of information. An edge connecting a vulnerable node to
an influential node may have more impact as compared to a vulnerable node
to another. Our study takes the diversity of edges into consideration and then
probes into the meme pattern that can be formed.



3 Generation of Networks for Meme Simulation : SCCP
Networks

It has been observed that most of the social networks are scale free and can be
generated by the preferential attachment model. Further, these networks have
communities because of the phenomenon of homophily that leads to the for-
mation of dense clusters in the network. We also consider one more meso scale
characteristic in the formation of network- core-periphery structure. It has been
shown that the scale free networks possess an implicit core-periphery structure.
Considering these 3 characteristics, we have tried to simulate real world networks
via SCCP networks which show properties like Scale-free structure, presence of
Communities and Core-Periphery structure. We introduce a modification to the
algorithm [21] employed by Wu et al. to generate these synthetic networks.

The algorithm is described below:

Input:

1. k= Number of communities in the network
2. s= Initial number of nodes in each community
3. ti= Number of new nodes to be added in community i where 0 ≤ i ≤ k − 1
4. t = max(ti) ∀i
5. f= Fraction of edges each incoming node makes in its own community. 0.5 ≤
f ≤ 1

6. [r1, r2]= Range for the number of edges an incoming node can make. r1 and
r2 decides the density of a graph

Output:

1. G= The SCCP network formed from input parameters specified above

Algorithm 1 Algorithm for generating a SCCP network

1: We start the formation of the network G with k cliques each of size s.
2: We perform t iterations. In each iteration, we add one node to every community

except for the communities in which ti number of new nodes have already been
added. Following two steps are performed in order to add a new node.
– Each newly arriving node chooses a random number m in the range [r1, r2].

Then, it makes m edges with the already existing nodes.
– The newly arrived node makes fm edges with the nodes in its own community

and (1 − f)m edges with the nodes in other communities. All the edges are
created in a preferential attachment manner.

3: We detect core nodes in the generated graph by using k-shell decomposition algo-
rithm [30]. We declare the core nodes to form a separate community of their own.
So the total number of communities in the network now becomes k + 1.

In our algorithm, we relax the condition of every node making equal number
of edges on its arrival. It is because, when a new person joins a social network,



it is not compulsory for him/her to make a predefined number of friends. The
number of friendships vary from person to person. Moreover, the above algorithm
allows the formation of communities of different sizes.

Fig. 1: Generation of a SCCP network

One iteration of this algorithm is illustrated in figure 1, where k = 3, s = 4,
ti = 1 ∀i, r1 = 2, r2 = 6 , and f = 0.7. The network starts with 3 communities,
each of which is a clique of 4 nodes. Communities 1, 2 and 3 are represented by
red, blue and green colours respectively. Next, we add 3 nodes, one node to each
community.

– First node is added in community 1. It chooses a random number 4. Then it
makes 3 intra community edges and 1 inter community edge.

– Second node is added in community 2. It chooses random number 5. Then
it makes 3 intra community edges and 2 inter community edges.

– The last node is added in community 3. It chooses random number 3. Then
it makes 2 intra community edges and 1 inter community edge.

– Next, we detect core-periphery structure in the generated network by using
k-shell decomposition

4 Proposed Spreading Model

Meme propagation on a real world network follows the pattern of a complex con-
tagion. Unlike a simple contagion, the spreading pattern of a complex contagion
depends on factors like homophily and social reinforcement3. A simple contagion

3 Homophily is the name given to the tendency of similar people becoming friends
with each other. This leads to more number of ties between like minded people and



is like an infectious disease which spreads with equal probability across all the
edges, while a complex contagion spreads with different probabilities depending
on the factors like social reinforcement and homophily [17]. In addition, user
influence also plays a prominent role in meme propagation. We take into consid-
eration all these factors in modeling the diffusion of a meme permeating through
the ties in the network.

Our model is based on two key ideas :

1. Diversity in Tie Strength : “Birds of the same feather flock together”. We
are more engaged and connected with the people in our own community
as compared to people from other communities [23]. Hence, the probability
associated with the edges connecting people of the same community should
be higher than the edges connecting people of different communities. This
observation gains motivation from the theory of weak ties [24].

2. The social status of nodes : The social influence of a person in a network
plays a big role in acceptance of information propagated by that person. A
person’s social status also decides if that person is vulnerable to adopting
information. Simply stated, lower the status, higher the vulnerability and
vice versa. Higher the status, more the influence and vice versa.

Because of the presence of core-periphery structure in SCCP networks, there
are two kinds of nodes in a SCCP network: core nodes and periphery nodes
(periphery nodes are further divided into many communities). Initially, all the
nodes are uninfected and a node turns infected as soon as it adopts a meme. We
call an infected node u, the sender and an uninfected neighbour of u say v, the
receiver of an infection. The probability of infection transmission across an edge
depends on the types of both nodes - the sender and the receiver. In our model,
the probabilities of infection across edges are divided into five categories :

Pcc, Pcp, Ppc, Ppp0
, Ppp1

Here, ‘P’ represents probability. The type of edge is represented by the sub-
script. The subscript’s first alphabet denotes the type of sender node and sec-
ond alphabet denotes the type of receiver node. ‘c’ represents core, ‘p’ rep-
resents periphery. 0 in the subscript denotes same community membership of
sender and the receiver node, while 1 represents sender and receiver belong-
ing to different communities. We worked towards predicting the most plau-
sible order for these edge probabilities, which is initially proposed to be as :
Pcc > Pcp > Ppp0

> Ppp1
> Ppc.

Our model can be considered as an extension of the simple cascade model, with a
slight change in the definition in every iteration, each infected node tries infect-
ing its uninfected neighbours in accordance with the above probability hierarchy.

hence leads to the formation of communities in the network. Social reinforcement is
the phenomenon by which multiple exposures of an information to a person leads to
him adopting it. Social reinforcement and homophily tend to block the information
inside one community.



5 Datasets

We have used multiple SCCP networks, random graphs [29] and real world net-
works [31] in our study. We have considered the two most widely used online
social networks- Facebook and Twitter having approximately 1371 and 271 mil-
lion users. For comparing our complete framework, we use the Higgs boson meme
propagation information on Twitter (dataset1). The dataset 1 gives a complete
picture of a meme spreading on an online social network along with the infor-
mation “who infected whom at every step.The datasets’ specifications are given
below:

1. Dataset 1: Dataset 1(a): This dataset is an induced directed unweighted
subgraph on Twitter users who were involved in any of the activities(reply,
retweet, or mention) regarding the Higgs boson meme4 [26]. It is an undi-
rected unweighted graph containing 456631 nodes and 14855875 edges.
Dataset 1(b): This is a directed weighted graph between the Twitter users
who were involved in retweeting [27] of the Higgs Boson meme. There is an
edge from B to A if A retweets B. This graph contains 425008 nodes and
733647 edges. In datasets 1(a) and 1(b), the tweets posted in Twitter about
this discovery between 1st and 7th July 2012 are considered.

2. Dataset 2: This dataset is an undirected unweighted induced subgraph on
Facebook with 4039 nodes and 88234 edges [28].

3. Dataset 3: This dataset is an induced undirected unweighted subgraph on
Twitter with 81306 nodes and 1768149 edges [28].

4. Dataset 4: These datasets have been derived from the algorithm proposed
in the previous section.
Dataset 4(a): This is a SCCP network on 65800 nodes, 591750 edges and
11 communities.
Dataset 4(b): This is a SCCP network on 4000 nodes, 170314 edges and
11 communities.

5. Dataset 5: This is an Erdos-Renyi graph on 4000 nodes and 34650 edges.

We detect communities in datasets 1(a), 2 and 3 using fast greedy modu-
larity optimization algorithm. This algorithm is given by Newman et. al. [25]
and is used to detect community structure for very large graphs. We also find
out the core-periphery structure for all the above listed datasets using k-shell
decomposition algorithm. We assign a coreness value to each node equal to the
shell value assigned to it by the algorithm. Then, we pick top 10% of the nodes
having highest coreness values and call them the core nodes. The remainder of
the nodes are termed periphery nodes.

4 Higgs boson is one of the most elementary elusive particle in modern physics. A
meme in Twitter is considered to be a Higgs Boson meme if it contains at least one
of these keywords or tags: lhc, cern, boson, higgs



6 Experiments and Results

6.1 Spreading Model Validation

Our model was validated using datasets 1(a) and 1(b), where 1(a) gives us the
information about the structure of a social network and 1(b) is the cascading
pattern of a meme over 1(a). Let the dataset 1(a) be represented by G(V,E).
Based on the structure of G, we partition its nodes in two subsets C and P . C
is the set of core nodes and P is the set of periphery nodes such that C ∪P = V
and C ∩ P = ∅. We also associate a variable δij with each edge Eij . δij = 1 if
nodes i and j belong to the same community, else 0. We divide the edges in the
retweet network (dataset 1(b)) in four categories based on the types of users an
edge is connecting. These categories are as follows:-

1. Ecc = {Eij ∈ E : (i ∈ C) ∧ (j ∈ C)}
2. Ecp = {Eij ∈ E : (i ∈ C) ∧ (j ∈ P )}
3. Epc = {Eij ∈ E : (i ∈ P ) ∧ (j ∈ C)}
4. Epp = {Eij ∈ E : (i ∈ P ) ∧ (j ∈ P )}

– Epp0
= {Eij ∈ E : (i ∈ P ) ∧ (j ∈ P ) ∧ δij = 1}

– Epp1
= {Eij ∈ E : (i ∈ P ) ∧ (j ∈ P ) ∧ δij = 0}

The types of nodes for 1(b) are extracted from its main graph 1(a).

In retweet networks, the weight of an edge from A to B specifies the amount
of information flowing from A to B (number of times B retweeted a message from
A). Therefore, more the weight, higher the probability of information transmis-
sion across that edge. We calculate the following weights from the above graphs:-
Let W (Eij) be the weight of an edge from node i to node j and Nxy represent
the type of edges Exy where x and y are the types of nodes hence having the
possible values p and c. Then, we calculate Wxy ,the sum of weights of all the
edges from a node of type x to a node of type y.

1. Wcc =
∑

(W (Eij))/Ncc such that Eij ∈ Ecc

2. Wcp =
∑

(W (Eij))/Ncp such that Eij ∈ Ecp

3. Wpc =
∑

(W (Eij))/Npc such that Eij ∈ Epc

4. Wpp =
∑

(W (Eij))/Npp | such that Eij ∈ Epp

– Wpp0
=

∑
(W (Eij))/Npp0

such that Eij ∈ Epp0

– Wpp1
=

∑
(W (Eij))/Npp1

such that Eij ∈ Epp1

The weights obtained show that the observed order is the same as we have
proposed earlier thereby validating the ordering we proposed i.e. Wcc > Wcp >
Wpp0

> Wpp1
> Wpc.

6.2 Simulation Results

We introspect on the extent as well as rate of infection of the network, while
propagating a meme on it. We simulate EBH as well as uniform spreading model



on a number of datasets and report the results. For the simulation of our pro-
posed model, we use the following probabilities: Epc : 0.00001, Epp0

: 0.0003,
Epp0

: 0.0001, Ecc : 0.006, and Ecp : 0.004. For the simulation of uniform spread-
ing model, every edge is considered to have an equal probability of infection
i.e. Eij = 0.0002, where i and j are the endpoints of an edge. We have chosen
these probabilities such that we can visualise the spreading pattern of a meme
to the best possible extent. For all the figures in this section, X axis represents
the number of iterations and Y axis represents the cumulative number of nodes
infected up to that iteration. The results of this paper are structured in three
parts :

Fig. 2: Spreading patterns on different kinds of networks and its comparison to real world data - 1:
Spreading patterns on datasets 3 and 4(a) 2: Spreading pattern on dataset 1(a) 3: Actual spreading
pattern of Higgs boson meme(dataset 1(a) and 1(b)) 4: Comparison between the proposed spreading
model on datasets 2, 4(a), and 5 5: Spreading patterns for dataset 4(a) 6: Proposed and uniform
spreading models on dataset 3

Meme spreading patterns on different networks using the EBH and
uniform spreading models Figure 1.2 shows the actual spreading pattern
of the Higgs boson meme which indicates that in the real world, a meme does
not have a constant growth rate. The rate remains constant upto some point,
after which the popularity of a meme shoots up steeply and then slowly fades,
giving rise to a sigmoid curve which is characterised by the equation : F (x) =
1/(1 + e−kx) Figure 1.1 shows the simulation of our proposed spreading model
on the SCCP network and two real world networks of Facebook and Twitter.
It can be seen that in both these cases, the curve for the spreading pattern is
seen to be sigmoidal just like figure 1.2. Figure 1.4 shows the difference in the
spreading patterns when the simulation is done through an uniform spreading
model and our model respectively. It can be seen that the simulation through
an uniform spreading model is also a sigmoid function but has a lesser value of
parameter x. Figure 1.3 shows the simulation of the proposed spreading model
on 3 different kinds of networks. Despite simulating the EBH spreading model
on all the three graphs, the value of x is observed to be lower only in the case of



Fig. 3: Spreading patterns starting from different types of seed nodes and its comparison to real
world data -1 : Proposed spreading model on dataset 4(a) where spreading starts from periphery
nodes 2 : Proposed spreading model on dataset 4(a) where spreading starts from core nodes 3 : Actual
spreading pattern for the Higgs boson meme(from dataset 1(a) and 1(b)) 4 : Spreading patterns
starting from single community 5 :Spreading patterns starting from multiple communities 6 : Actual
spreading pattern for the Higgs boson meme(from dataset 1(a) and 1(b))



random networks5 Thus we can say that the sharp S shaped infection pattern
is observed only for the SCCP kind of networks. These graphs show that the
presence of both- a SCCP kind of network as well as EBH spreading model are
required to mimic a real world meme propagation. Some similar results have
been described in the attached appendix B.

Explanation of the plateau structure observed in the meme pattern
Figure 2.3 shows the pattern of infection of core nodes and periphery nodes
for the actual Higgs boson meme. As in the previous case, all iterations are
considered to be of equal length (10 timestamps). We observe the cumulative
number of core nodes and periphery nodes infected in every iteration. When
we started infection from periphery nodes(figure 2.1), the plateau structure of
the curve continues till a core node is infected and then the infection shoots
up suddenly. Figure 2.2 shows the plot when the infection is started only from
the core nodes. We can see that in this case, infection shoots up immediately
without the plateau structure. This solidifies the observation that the number of
periphery nodes infected increases sharply as soon as a sufficient fraction of the
core nodes gets infected.

Effect of communities and core nodes on meme virality In figure 2.4, we
start the infection from a single community and show that the infection spreads
in multiple communities only when the meme infects the core sufficiently and
gets viral. Figure 2.5 shows the spreading pattern when the infection starts from
multiple communities. But the meme becomes viral only after the infection of
core nodes. So, whether the infection starts from single community or multiple
communities, the infection of core nodes is sufficient to predict its virality. Figure
2.6 shows the actual spreading pattern of Higgs boson meme.

7 Conclusion and Future Work

A lot of researchers are working towards proposing the models that can predict
the pattern of meme spread in a real world network today. A number of models
have been proposed for this ranging from simple epidemiological models to the
standard models like Linear Threshold and Independent Cascade. Most of these
models do not give an approach to identify the parameters required to simu-
late them. Moreover, they are proposed for all kind of networks though they
can be improved upon and specialised for a particular kind of network. Hence,
improving these models to better simulate a meme propagation is possible. It
is shown that, together, SCCP and EBH models effectively simulate real world

5 In the case of random network, even though the declared 10% core nodes have a high
probability of infecting their neighbours, the connections between the core nodes are
not dense enough to result in an overshoot in the number of infected nodes. So,
absence of a distinct core-periphery structure in such networks make them invalid
for our framework



meme propagation. The sigmoid curve with a sharp slope is shown to be the
characteristic pattern of an internet meme. Furthermore, the importance of core
nodes in marking the virality of a meme is emphasised. It is also shown that in-
fecting multiple communities also require the infection of core nodes. The study
is validated with the Higgs boson meme spreading on Twitter in addition to var-
ious other real world networks. This study opens a new direction of considering
edge diversity in meme propagation models.
One can extend our problem to predict the exact values of the probabilities in-
fluencing the meme propagation. This can greatly help in prediction of a future
cascade pattern. If such cascades could be predetermined then we could exert a
control on our otherwise ever changing social networks. Not only could preven-
tive checkpoints be placed in the network but also useful information could be
accelerated through the network by using the predicted meme trajectory.
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16. M. Guerini, C. Strapparava, and G. Özbal, “Exploring text virality in social net-
works.” in ICWSM, 2011.

17. L. Weng, F. Menczer, and Y.-Y. Ahn, “Virality prediction and community struc-
ture in social networks,” Scientific reports, vol. 3, 2013.
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