Skip to main content

Comparative Network Analysis Using KronFit

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 644))

Abstract

Comparative network analysis is an emerging line of research that provides insights into the structure and dynamics of networks by finding similarities and discrepancies in their topologies. Unfortunately, comparing networks directly is not feasible on large scales. Existing works resort to representing networks with vectors of features extracted from their topologies and employ various distance metrics to compare between these feature vectors. In this paper, instead of relying on feature vectors to represent the studied networks, we suggest fitting a network model (such as Kronecker Graph) to encode the network structure. We present the directed fitting-distance measure, where the distance from a network \(A\) to another network \(B\) is captured by the quality of \(B\)’s fit to the model derived from \(A\). Evaluation on five classes of real networks shows that KronFit based distances perform surprisingly well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Details on evaluated data set are presented in Sect. 5.1.

References

  1. Bebber, D.P., Hynes, J., Darrah, P.R., Boddy, L., Fricker, M.D.: Biological solutions to transport network design. Proceedings of the Royal Society of London B: Biological Sciences 274(1623), 2307–2315 (2007)

    Article  Google Scholar 

  2. Milo, R., et al.: Network motifs: simple building blocks of complex networks. Science 298, 824827 (2002)

    Article  Google Scholar 

  3. Pržulj, Natasa: Biological network comparison using graphlet degree distribution. Bioinformatics 23(2), e177–e183 (2007)

    Article  Google Scholar 

  4. Serrano, M.Ǎ., Bogunǎ, M., Vespignani, A.: Extracting the multiscale backbone of complex weighted networks. Proc. Nat. Acad. Sci. 106(16), 6483–6488 (2009)

    Article  Google Scholar 

  5. Baskerville, Kim: Paczuski, Maya: Subgraph ensembles and motif discovery using an alternative heuristic for graph isomorphism. Phys. Rev. E 74(5), 051903 (2006)

    Article  Google Scholar 

  6. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic blockmodels. In: Advances in Neural Information Processing Systems, pp. 33–40 (2009)

    Google Scholar 

  7. Myunghwan, K., Leskovec, J.: Multiplicative attribute graph model of real-world networks. Internet Math. 8(1–2), 113–160 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Davis, M., Liu, W., Miller, P., Hunter, R.F., Kee, F.: AGWAN: A Generative Model for Labelled, Weighted Graphs. In: New Frontiers in Mining Complex Patterns, pp. 181–200. Springer International Publishing (2014)

    Google Scholar 

  9. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kronecker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–1042 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Neudecker, H.: A note on Kronecker matrix products and matrix equation systems. SIAM J. Appl. Math. 17(3), 603–606 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, M., Leskovec, J.: The network completion problem: inferring missing nodes and edges in networks. In: SDM, pp. 47–58 (2011)

    Google Scholar 

  12. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2009)

    Google Scholar 

  13. U. of Oregon Route Views Project. Online data and reports: http://www.routeviews.org. The CAIDA UCSD, AS Relationships Dataset (years 1997–2000). http://www.caida.org/data/active/as-relationships/

  14. Leskovec, J., Krevl, A.: Stanford Large Network Dataset Collection, June 2014. http://snap.stanford.edu/data

  15. MacQueen, J.: Some methods of classification and analysis of multivariate observations. In: LeCam, L.M., Neyman, J., (eds.), Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, p. 281. University of California Press, Berkeley, CA (1967)

    Google Scholar 

  16. Ward, Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Google Scholar 

  17. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  18. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17, 107–145 (2001)

    Article  MATH  Google Scholar 

  19. Calinski, T., Harabasz, J.: A Dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hennig, C., Liao, T.: How to find an appropriate clustering for mixed-type variables with application to socio-economic stratification. J. Roy. Stat. Soc. Ser. C. Appl. Stat. 62, 309–369 (2013)

    MathSciNet  Google Scholar 

  21. Tibshirani, R., Walter, G.: Cluster validation by prediction strength. J. Comput. Graph. Stat. 14(3), 511528 (2005)

    Article  MathSciNet  Google Scholar 

  22. Gordon, A.D.: Classification, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL (1999)

    MATH  Google Scholar 

  23. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553569 (1983)

    MATH  Google Scholar 

  24. Onnela, J.-P., et al.: Taxonomies of networks from community structure. Phys. Rev. E 86(3), 036104 (2012)

    Article  Google Scholar 

  25. Gallos, L.K., Fefferman, N.H.: Revealing effective classifiers through network comparison. EPL (Europhys. Lett.) 108(3), 38001 (2014)

    Google Scholar 

  26. Aliakbary, S., Motallebi, S., Rashidian, S., Habibi, J., Movaghar, A.: Distance metric learning for complex networks: towards size-independent comparison of network structures. Chaos: An Interdisciplinary. J. Nonlinear Sci. 25(2), 023111 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gupta Sukrit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sukrit, G., Rami, P., Konstantin, K. (2016). Comparative Network Analysis Using KronFit. In: Cherifi, H., Gonçalves, B., Menezes, R., Sinatra, R. (eds) Complex Networks VII. Studies in Computational Intelligence, vol 644. Springer, Cham. https://doi.org/10.1007/978-3-319-30569-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30569-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30568-4

  • Online ISBN: 978-3-319-30569-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics