
This is a repository copy of On the Analysis of Simple Genetic Programming for Evolving
Boolean Functions.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/97981/

Version: Accepted Version

Proceedings Paper:
Oliveto, P. and Mambrini, A. (2016) On the Analysis of Simple Genetic Programming for
Evolving Boolean Functions. In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E. and
Sim, K., (eds.) Genetic Programming. 19th European Conference on Genetic
Programming, March 30 - April 1, 2016, Porto, Portugal. Lecture Notes in Computer
Science, 9594 . Springer , pp. 99-114.

https://doi.org/10.1007/978-3-319-30668-1_7

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

On the Analysis of Simple Genetic Programming

for Evolving Boolean Functions

Andrea Mambrini and Pietro S. Oliveto

University of Sheffield, United Kingdom
{a.mambrini, p.oliveto}@sheffield.ac.uk

Abstract. This work presents a first step towards a systematic time
and space complexity analysis of genetic programming (GP) for evolv-
ing functions with desired input/output behaviour. Two simple GP algo-
rithms, called (1+1) GP and (1+1) GP*, equipped with minimal function
(F) and terminal (L) sets are considered for evolving two standard classes
of Boolean functions. It is rigorously proved that both algorithms are ef-
ficient for the easy problem of evolving conjunctions of Boolean variables
with the minimal sets. However, if an extra function (i.e. NOT) is added
to F, then the algorithms require at least exponential time to evolve the
conjunction of n variables. On the other hand, it is proved that both al-
gorithms fail at evolving the difficult parity function in polynomial time
with probability at least exponentially close to 1. Concerning generali-
sation, it is shown how the quality of the evolved conjunctions depends
on the size of the training set s while the evolved exclusive disjunctions
generalize equally badly independent of s.

Keywords: Genetic programming, Theory, Runtime Analysis

1 Introduction

Genetic programming (GP) was originally proposed by Koza as an evolutionary
computation technique for evolving computer programs [4]. Traditionally GP
represents programs using syntax trees and evaluates their fitness by executing
them and then comparing their behaviour against an ideal one (eg., the desired
input/output behaviour of the function to be evolved). A population of programs
is evolved using typical genetic algorithm (GA) variation and selection operators
adapted to work on syntax trees with the goal of eventually identifying a pro-
gram with the desired functionality. GP has shown great potential by evolving,
for example, quantum computing algorithms that outperformed all previous ap-
proaches [18], soccer-playing programs [7] and algorithms for the transmembrane
segment identification protein problem [5], to name a few.

Despite the wide range of successful applications, there is still very little
understanding of GP’s behaviour [16, 14]. Theoretical work concerning GP has
always been undertaken since its early days [6], the majority of which has applied
schema theory [4, 17]. Schema theories are based on the idea of partitioning the

search space into subsets, called schemata, and modelling the behaviour and dy-
namics of the population over the schemata. However, such an analysis does not
allow any insight towards the understanding of the performance of GP. Chapter
11.1 of [16] concludes that through schema theories “...we have no way of closing
the loop and fully characterising the behaviour of GP systems which is always a
result of the interaction between the fitness function and the search biases of the
representation and genetic operations used in the system”. Such characterisations
and interactions can, instead, be understood by analysing the time and space
complexity of a GP system when attempting to evolve a given class of functions.
This approach has been applied to other classes of bio-inspired optimisation
heuristics, with remarkable success [1]. Nowadays, the performance quality of
various bio-inspired optimisation heuristics is known concerning sophisticated
population-based heuristics and even for standard combinatorial optimisation
problems with practical applications [12]. These results shed light on which kind
of problems a given algorithm works on efficiently and on which it is inefficient
and provide a relationship between the size of the problem and the time and
space required to solve it. Along the way guidelines towards optimal parameter
settings are given.

Some initial runtime analysis results concerning GP systems have already ap-
peared [11]. Such first studies regarded two functions classes called ORDER and
MAJORITY where the fitness of a tree (i.e., a candidate solution) depends on the
structure of the tree rather than on its execution. Although this is a considerable
simplification compared to the problems to which GP is usually applied, these re-
sults show that very simple GP systems can optimise both structures efficiently.
Furthermore, understanding how and when correct structures are evolved will
be necessarily crucial in an analysis of more realistic GP scenarios. Recently, the
same simple GP systems have been analysed on the MAX Problem [6] where,
given a set of functions, a set of terminals and a bound D on the maximum depth
of the solution, the goal is to evolve a tree that returns the maximum value given
any combination of functions and terminals [3]. The analysis shows that the sim-
ple GP systems can efficiently evolve MAX with function set F = {+, ∗} and
one constant as terminal set. Compared to the previous functions, MAX is more
similar to those evolved by GP in practical applications since the fitness indeed
depends on the behaviour of the computed function on the input. Still, depen-
dence is not very strong, since the space of possible inputs can be partitioned
into just two subsets such that for every input in a subset, the optimal solution
to the problem is the same.

In this paper we make a further step forward and provide an analysis of GP
for typical benchmark functions used in the field of GP [4, 6]. Hence, we con-
sider proper learning problems where the fitness depends on the input/output
behaviour of the trees. When the initial foundations for a systematic time com-
plexity analysis of EAs were being set, very simple EAs were considered (eg.,
the (1+1) EA) for simple benchmark problems which are easy for EAs (eg.,
OneMax and LeadingOnes) and others which are hard (eg., Trap Functions and
Needle-In-A-Haystack) [2]. In a similar fashion we will analyse the simple and

minimalistic (1+1) GP considered in previous runtime analyses of GP [11, 3] for
simple Boolean functions with minimal function and terminal sets. Since under
the evolvability notion in the PAC-learing framework it is well-understood that
conjunctions (i.e., AND) are evolvable efficiently while parity problems (i.e.,
XOR) are not [19], we naturally choose these boolean functions as our start-
ing points for the analysis. In particular, the presented AND problem may be
regarded as a GP analogue to OneMax for EAs, while XOR the analogue to
Needle. Moreover, we will take into consideration the generalization ability of
the solutions found by the algorithms when using incomplete training sets since,
as the problem size grows, it is not possible to test the candidate solutions on
the complete training set efficiently. We point out that runtime results are avail-
able concerning the recently introduced GP variant called Geometric Semantic
Genetic Programming (GSGP) [10]. The long term aim of the work presented
herein is to understand the behaviour and performance of standard and widely
used GP systems.

In the next section we introduce the two simple (1+1) GP and (1+1) GP*
systems and formally define the learning problems. In Section 3 we present
the results for the AND and XOR functions of n variables using the com-
plete training set and minimal function and terminal sets (i.e., respectively
F = {AND}, L = {X1, . . . , Xn} and F = {XOR}, L = {X1, . . . , Xn}). In par-
ticular, we show that both the (1+1) GP and the (1+1) GP* can evolve conjunc-
tions efficiently while they are both inefficient when evolving parity. However, if
we add another function to F (i.e., NOT), then the algorithms become inefficient
also for evolving conjunctions. In Section 4 we present the results when only a
training set of polynomial size in the problem size is allowed. We show that the
algorithms fit the training set for the AND function in logarithmic time while
the XOR function becomes harder than a Needle function for larger than loga-
rithmic training sets because points leading closer to the optimal solution may
be rejected. We conclude the section by providing results on how the evolved
solutions generalise to the complete training set. In the Conclusions we discuss
future work directions.

2 Preliminaries

We consider the (1+1)-GP (Algorithm 1) and (1+1)-GP* (Algorithm 2) from
[11], both working with a population of size one and producing at each generation
one new offspring using the HVL-Prime mutation operator [15] which chooses,
uniformly at random, to either insert, to remove or to replace a node according
to the procedures described in Algorithm 3.

The only difference between (1+1) GP and (1+1)-GP* is that the former
accepts an offspring which is at least as fit as its parent, while the latter accepts
only strictly better offspring. An individual X is represented as a binary tree
such that each internal node can be an element of the function set F and each
leaf can be an element of the terminal set L. The two algorithms do not have
a termination criterion since, here, we are interested in the first point of time

Algorithm 1 (1+1) GP

1: Initialise an empty tree X
2: for t := 1 to ∞ do

3: X ′ := HVL-Prime(X)
4: if f(X ′) ≤ f(X) then
5: X := X ′

Algorithm 2 (1+1) GP*

1: Initialise an empty tree X
2: for t := 1 to ∞ do

3: X ′ := HVL-Prime(X)
4: if f(X ′) < f(X) then
5: X := X ′

when the optimal solution is found. For simplicity we initialise the algorithms
with empty trees1. However, all the presented results can be easily adapted to
random tree initialisation with only slightly differing theorem statements.

Let the complete truth table C = {(x1, y1), ..., (xN , yN)} describe the com-

plete input-output behaviour of a Boolean function ĥ : {0, 1}n → {0, 1} over
n variables (i.e., the table has N = 2n rows). A training set T consisting of
s ≤ N test cases T ⊂ C = {(x1, y1), ..., (xs, ys)} is sampled from the truth
table uniformly at random with replacement. The black box Boolean learning
problem consists of using just the training set T to learn a Boolean function
h : {0, 1}n → {0, 1} matching as well as possible the input-output behaviour
described by C. Given a candidate solution (i.e., a Boolean expression h), the
fitness function returns the training error ǫt(h) which is the number of rows on
which the expression h mismatches the input-output behaviour described by T :
ǫt(h) =

∑
(xi,yi)∈T I[h(xi) 6= yi] where I[·] is the indicator function that is 1 if

its inner expression is true and 0 otherwise. We impose that the fitness function
returns a value of 2n + 1 for an empty tree, which is worse than the fitness of
any tree.

We will analyse the (1+1) GP and (1+1) GP* on two boolean problems,

ANDn with target function ĥ = AND(X1, . . . , Xn) and XORn with target

function ĥ = XOR(X1, . . . , Xn). We say that an algorithm solves a boolean
problem efficiently if it can evolve a solution fitting the training set (i.e., having
training error equal to zero) in expected polynomial time, where time is defined
as the number of fitness function evaluations.

We will first analyse the situation in which s = N , thus the training set
encompasses all the possible input-output cases (i.e. complete dataset). In this
situation finding an expression that fits the training set T will obviously also
lead to an expression that fits the complete set, and thus the original Boolean
function. Afterwards we will consider training sets of at most polynomial size,
s = poly(n) < N (i.e. incomplete training set). In this case, minimizing the error
on the training set will lead to a generalization error which can be defined as
ǫg(h) =

∑
(xi,yi)∈C I[h(xi) 6= yi] where C is the complete truth table.

We define the generalization ability of an algorithm A as G(A, s) = 1 −
E[ǫg(X̃)]

N where X̃ is the best individual found by the algorithm (which tries to
minimize the error on the training set) after a polynomial number of steps.

1 We assume the SUB and DEL of an empty tree return an empty tree.

Algorithm 3 HVL-Prime

1: procedure HVL-Prime(X)
2: Select uniformly a random an action among INS, DEL, SUB
3: if action is INS then

4: Choose a node v ∈ X uniformly at random
5: Select uniformly at random a terminal v′ from L

6: Replace v with a node f selected uniformly at random from F

7: Set v and v′ as children of f , choosing the order of the children uniformly
at random.

8: if action is DEL then

9: Choose, uniformly at random, a leaf node v with parent p and sibling s

10: Replace p with s

11: Delete p and v

12: if action is SUB then

13: Choose a leaf v uniformly at random
14: Select uniformly at random a terminal v′ from L

15: Replace v with v′

3 Analysis for Complete Training Sets

In this section we analyse the (1+1) GP and the (1+1) GP* on ANDn and
XORn in the case of training sets of size s = 2n = N (i.e. complete datasets).

3.1 Analysis for ANDn with Complete Training Sets

Theorem 1 shows that both the (1+1)-GP and the (1+1) GP* evolve ANDn

efficiently with L = {X1, . . . , Xn} and F = {AND}. The theorem also shows
that the strict selection of (1+1) GP* enforces solutions of exactly n variables
while the (1+1) GP may produce solutions that are asymptotically larger by a
logarithmic factor. The following Lemma will be useful.

Lemma 1. Every conjunction of v distinct variables differs from the target func-
tion AND(X1, . . . , Xn) on fv = 2n−v − 1 rows.

Proof. We prove the statement by induction. The base case f1 = 2n−1−1 follows
because the truth table of any conjunction of one variable has 2n/2 ones and
2n/2 zeros. The target function and the conjunction of one variable will agree
on one row, i.e. the one in which all the variables are set to 1. On the rest of the
2n−1 − 1 rows the two functions will not agree.

To prove the inductive step we need to assume fi = 2n−i − 1 and prove
that fi+1(x) = 2n−(i+1) − 1. When one variable is added to the conjunction, the
number of ones will halve (since half of them will be anded with a zero). Since
just one of them agrees with the target function, the new conjunction will differ
on fi+1 = (fi + 1)/2− 1, which by hypothesis is 2n−(i+1).

Theorem 1. The (1+1)-GP and the (1+1) GP* using F = {AND} and L =
{X1, . . . , Xn} efficiently solve ANDn, using the complete truth table as training

set, in time O(n log n). The size of the final expression is n for (1+1) GP* and
O(n log n) in expectation for (1+1)-GP.

Proof. We divide the search space into A1, . . . , An fitness levels such that each
level Ai contains all the conjunctions of i distinct variables. By Lemma 1 we
have a fitness level partition with increasing fitness and the artificial fitness levels
technique [1] is in force. We need to derive a lower bound on the probability pi
that an individual leaves level Ai and reaches level Ai+1.

For both (1+1) GPs at level Ai the number of distinct i variables may not be
reduced as the fitness would decrease. Hence to reach level Ai+1 it is sufficient
for both algorithms to choose an INS operation and then insert one of the n− i
variables that is not already in the conjunction. This probability is pi ≥

1
3
n−i
n .

Thus, by the fitness level method the expected runtime is E[T] ≤
∑n

i=1 1/pi =∑n
i=1

3n
n−i = O(n log n), which proves the first statement.

For the (1+1) GP* (strict selection) an INS operation adding a duplicate of
an existing variable will not be accepted since it would have the same fitness
of the parent. The same holds for a SUB operation replacing one variable with
a duplicate of an existing one. Thus at each iteration the current solution has
each variable appearing at most once and, for this reason, a DEL operation will
never be accepted, since it would reduce the fitness. Since no duplicates are
allowed in the (1+1) GP*, the size of the final expression is exactly n. For the
(1+1) GP (weak selection) the situation is different because an INS operation
can insert a variable that already exists in the current expression. We observe
that the only operation increasing the size of the current expression is INS. Since
in expectation O(n log n) of these operations occur, the expected size of the final
expression cannot be more than O(n log n).

In the following theorem we show that just adding the negation of all the
variables to the terminal set makes both algorithms inefficient.

Theorem 2. Both the (1+1)-GP and the (1+1)-GP* using F = {AND} and
L = {X1, . . . , Xn, X1, . . . , Xn} cannot solve ANDn with probability at least p >

1−
(
1
4

)n/3
using the complete truth table as training set.

Proof. Differently from the situation of Theorem 1, the search space contains
many local optima from which the algorithms cannot escape. All solutions con-
taining both a variable Xi and its negation Xi evaluate to 0, hence have a fitness
of 1. We prove that such a solution is found with probability exponentially close
to 1. When the current expression is missing just i ≤ n/3 variables the prob-
ability of adding a new variable is bounded from above by the probability of
doing so with an INS operation plus the probability that a SUB operation adds

a missing variable, which is padd ≤ 1
3
n/3
2n + 1

3
n/3
2n = 1/9. At the same time the

probability of inserting the negation of a variable which is already in the current

expression is at least pneg ≥ (2/3)n
2n = 1/3. The probability of the second event

happening before the first is P (neg|neg ∪ add) ≥
pneg

pneg+padd
≥ 1/3

1/3+1/9 = 3/4.

The probability that neg never happens before all the n/3 missing variables are

added is p ≤ (1− 3/4)n/3 =
(
1
4

)n/3
, thus the algorithm ends up in one of these

local optima with probability p > 1−
(
1
4

)n/3
.

Since a deletion of Xi decreases fitness, the only way to leave such local
optima is by adding all the missing variables and then removing Xi (plus all the
other negated variables that might have been inserted in the process). In the
case of strict selection, this is not possible and the (1+1) GP* is stuck forever.
For the case of weak selection, the algorithm will have to walk on a plateau of
fitness 1 until it reaches a point when all the n variables are in the tree. Only at
that point it would be allowed to walk on another plateau by removing all the
negated variables. When this happens the optimum would be found. Similarly
to the proof of Theorem 4 it is possible to show that this cannot happen in less
than exponential time with probability exponentially close to 1. We don’t report
a complete proof here due to space restrictions.

3.2 Analysis for XORn with Complete Training Sets

The analysis for XORn will show a needle-like fitness landscape (Proposition 2).
In fact when the training set encompasses all the possible input-output pairs, all
the solutions in the search space but the optimum will have the same fitness. As
a result, we will show in Theorem 3 that the (1+1) GP* cannot solve XORn in
finite time because it cannot find strictly improving solutions and in Theorem
4 that the (1+1) GP cannot solve XORn in less than exponential time with
probability exponentially close to 1. We state the two following facts.

Proposition 1. Any exclusive disjunction of m variables (X1⊕ . . .⊕Xm) on a
truth table of n ≥ m variables outputs 1 for half of its inputs and 0 for the other
half.

Proposition 2. Any exclusive disjunction of m variables (X1 ⊕ . . . ⊕Xm) on
a truth table of n ≥ m variables differs from X1 ⊕ . . .⊕Xn on 2n−1 inputs, thus
has fitness 2n−1.

Now we are ready to state and prove the theorems.

Theorem 3. The (1+1)-GP* using F = {XOR} as function set and L =
{X1, . . . , Xn} as terminal set cannot solve XORn, using the complete truth table
as training set.

Proof. Since by Proposition 2 all the points in the search space have the same
fitness, any individual after the first one will not be accepted. Thus XORn

cannot be solved using strict selection.

The following Lemma will be useful in the proof of Theorem 4.

Lemma 2. In a tree containing m leaves, each one sampled uniformly at random
from L = {X1, . . . , Xn} with replacement, with probability p ≥ 1 − e−Ω(n) each

variable Xi appears at most M < m logn
n times for m ≥ n2

e , and at most M <
2n

ln
(

n2

em

) < 2n times for m < n2

e .

Proof. We will bound M from above by using a balls and bins argument [9],
where the m balls represent the total number of variables in the tree and each
of the n bins represents a different variable Xi. The probability that M > γ
is the probability that after throwing m balls into n bins by selecting each bin
uniformly at random, there is at least one bin containing at least γ balls. Let X
be a random variable counting the number of balls in a given bin and P (X > γ)
be the probability that one bin contains more than γ balls. Then by the union
bound P (M > γ) ≤ n · P (X > γ). We will calculate P (X > γ) for two separate
cases.

(1) Let m ≥ n2

e . Since the probability of selecting a bin is 1/n, the expected
number of balls in the bin is µ = E(X) = m/n. Applying the Chernoff bound
P (X > (1 + δ) · µ) ≤ [1

1+δ (
e

1+δ)]
µ ≤ (1

1+δ)
µ for any δ > 0 [9] and by exploiting

m ≥ n2

e we get:

P

(
X >

m log n

n

)
≤

(
1

log n

)m
n

≤

(
1

log n

)n
e

≤

(
1

e

)n
e

= e−Ω(n)

where the inequality before the last one holds for n > ee. Thus M < m logn
n with

probability at least 1− ne−Ω(n) = 1− e−Ω(n).

(2) Let m < n2

e . By applying the Chernoff bound again with τ = 1 + δ we
get for any τ > 1

P (X > τ · µ) ≤
(e
τ

)τµ

We want τ such that P (X > τ · µ) ≤ e−n which is equivalent to

(e
τ

)τµ
≤ e−n ⇐⇒ en ≤

(τ
e

)τµ
⇐⇒ e

n
eµ ≤

(τ
e

) τ
e

⇐⇒ e
n2

e·m ≤
(τ
e

) τ
e

Now, letK = τ/e and N = e
n2

e·m . SinceK > 2 lnN
ln lnN impliesKK > N provided

that N > e which holds since m < n2/e, we get that
(
τ
e

) τ
e ≥ e

n2

e·m holds for

τ

e
>

2 ln(e
n2

em)

ln ln(e
n2

em)
⇐⇒ τ >

2n

µ ln(n2

em)

Hence τ > 1 for m < 2n2 and we can apply the Chernoff bound. Thus,

P

(
X ≥

2n

ln(n2

em)

)
≤ e−n

So M ≤ 2n

ln(n2

em
)
< 2n with probability at least 1− ne−n.

Theorem 4. The (1+1)-GP using F = {XOR} and L = {X1, . . . , Xn} to
evolve XORn using the complete truth table as training set requires more than
2Ω(n

log n
) steps with probability p > 1− 2−Ω(n

log n
) to reach the optimum.

Proof. We apply the simplified negative drift theorem [13]. Let kt denote the
number of missing variables in our current solution after simplification2 (thus
e.g. for X1⊕X4⊕X1, kt = n−1) at step t. Given an expression with i variables
missing after simplification we denote with E[∆(i)] = E[(kt+1 − kt)|kt = i)] the
negative drift, which is the expected increase in the number of missing variables
after simplification in the next step. Since each of the operations (INS, DEL,
SUB) happens with equal probability, E[∆(i)] = 1

3E[∆INS(i)] +
1
3E[∆DEL(i)] +

1
3E[∆SUB(i)].

When an INS operation occurs E[∆INS(i)] ≥
n−i
n − i

n since we decrease kt by
one when we insert a variable which was not in the current solution and increase
it by one when we add a variable that was already there (because simplification
would remove it). For i ≤ 1

4n, E[∆INS(i)] > 1/2.
When a DEL operation occurs we notice that the number of missing variables

after simplification increases if we delete one of the variables appearing an odd
number of times in the expression (thus not being simplified out), while we
decrease the number of missing variables if we delete a variable appearing an
even number of times (because it would not be simplified out anymore). Thus
calling m the number of leaves in the tree (i.e. the number of variables before
simplification), and M = maxi [count(Xi)] the maximum number of occurrences
of a variable, we observe pessimistically that E[∆DEL(i)] ≥ m−M ·i

m − M ·i
m =

m−2·M ·i
m . The conditional drift when m ≥ n2

e (thus M < m logn
n with probability

exponentially close to 1 by Lemma 2) is

E[∆DEL(i)] ≥
m− 2 ·M · i

m
≥

m− 2 · m logn
n · i

m

which is positive for i < n
2 logn On the other hand the conditional drift when

m < n2

e (thus M < 2n with probability exponentially close to 1) is

E[∆DEL(i)] ≥
m− 2 ·M · i

m
≥

m− 4n · i

m

which is positive for i < m
4n < n

4e (since m < n2/e).
When a SUB operation occurs we notice that the number of missing variables

after simplification increases by two if we replace one of the variables appearing
an odd number of times in the expression with another different variable appear-
ing an odd number of times, while it decreases by two if we replace one of the
variables appearing an even number of times in the expression with one different
variable appearing an even number of times. In all other cases the number of
missing variables stays the same. Thus E[∆SUB(i)] ≥ 2·m−Mi

m · n−i−1
n −2·Mi

m · i−1
n .

For i ≤ n/2 [thus n−i−1
n ≥ i−1

n] we get

E[∆SUB(i)] ≥
2(i− 1)

n

[
m−Mi

m
−

Mi

m

]
=

2(i− 1)

n

[
m− 2Mi

m

]

2 Simplification is a conceptual tool used for the proofs. The actual tree contains all
the variables (i.e., the algorithm does not simplify the trees).

Now we check the two cases of Lemma 2. For m ≥ n2

e , we get

E[∆SUB(i)] ≥
2(i− 1)

n

[
m− 2 · m logn

n · i

m

]

For 2 ≤ i ≤ n
4 logn we get E[∆SUB(i)] ≥

1
n . For m < n2

e , we get

E[∆SUB(i)] ≥
2(i− 1)

n

[
m− 2 · 2n · i

m

]

For 2 ≤ i ≤ m
8n < n

8e (since m < n2

e) we get E[∆SUB(i)] ≥
1
n .

Finally, choosing a = n
8 logn and b = n

16 logn , the expected negative drift

E[∆(i)] = 1
3 (E[∆INS(i)] + E[∆DEL(i)] + E[∆SUB(i)]) ≥ (1/3)[1/2 + 0 + 1

n] ≥
1/6 + o(1) for i ∈ (a, b). Since the probability of performing steps greater than
2 is 0 and p(∆(i) = 2) ≤ 1/3 ≤ (1/2)2−r for r = 1 the drift theorem is in
force. Thus, conditional to the failure probabilities of Lemma 2, the optimum

is found in time T < 2
n

16 log n with probability 2−Ω(n
log n). By the union bound

the probability that the bounds on M do not hold in 2
n

16 log n steps is less than
2

n
16 log n · e−Ω(n) = e−Ω(n). Summing up the failure probabilities completes the

proof.

4 Analysis for Incomplete Training Sets

In this section we consider training sets of at most polynomial size, s << 2n. The
algorithm will thus calculate the fitness just on s = poly(n) rows. We say that
an algorithm efficiently solves a boolean problem if it can find a solution fitting
the training set (i.e. with training error equal to zero) in expected polynomial
time. We first analyse the time the algorithms takes to get to a solution with
fitness zero on the training set and afterwards we will analyse the generalization
error.

4.1 Analysis for ANDn with Incomplete Training Set

The analysis for ANDn shows that a polynomial training set is fit in logarithmic
time (Theorem 5). Theorem 6 gives an upper bound on the generalization ability
and gives a necessary condition on the size of the training set to achieve a
generalization ability over a fixed threshold.

Theorem 5. Let s = poly(n) be the size of a training set chosen from the truth
table uniformly at random with replacement. Then both the (1+1) GP and the
(1+1) GP* using F = {AND} and L = {X1, . . . , Xn} will solve ANDn in
expected time O(log s) = O(log n).

Proof. Since the elements of the truth table are binomially distributed with
parameters n and p = 1/2, the expected number of 1s in a randomly chosen
row of the training set is n/2. By a simple application of Chernoff bounds,
the probability that more than Y = n/2 + ǫn 1s are in the chosen element is
bounded from above by e−Ω(n). By a union bound the probability that any of the
s elements of the training set contains more than Y 1s is less than s · e−Ω(n) =
poly(n) · e−Ω(n) = e−Ω(n). The algorithm will reach the minimum error (i.e.
fitness) of 0 when for each row of the training set there exists a variable Xi

in the constructed tree that has a 0 in that row. In this case the AND of Xi

with itself or any other variable will return 0. We call a step successful if in that
step the algorithm adds a new unseen terminal to the tree. For strict selection
such a terminal is accepted if it reduces the error in the training set while for
non-strict selection it is always accepted as the fitness cannot decrease. The
other operators SUB and DEL do not contribute to fitness since DEL may only
remove redundant terminals in the non-strict selection version and SUB may only
exchange terminals that do not decrease fitness. If a terminal Xi is exchanged for
a terminal Xj leading to an improvement (i.e., more rows of the training set have
a 0) this may only speed up the algorithm. We consider a phase of k successful
steps of the (1+1)-GP and calculate the probability that at the end of the k
steps not even one variable with value 0 in a given row of the training set has
been added. This probability is the probability that the first k terminals that are
selected to be added to the tree have value 1 in the chosen row. Since for each row
of the training set there are at most Y 1s, the probability that a terminal has a 1
in that position is at most Y/n and the probability that k consecutive terminals
are all 1s in that position is bounded from above by (Y/n)k. By the union bound,
the probability that in any of the s rows of the training set all the k terminals
have values 1 is less than ps = s · (Y/n)k. We calculate the value of ps after a

phase of length k = log n
Y
(2s): ps ≤ s ·

(
Y
n

)k

= s ·

(
Y
n

)log n
Y

(2s)

= s · 1
2s = 1

2 .

Hence with probability at least 1/2, after k = log n
Y
(2s) successful steps, for each

row of the training set the constructed tree contains at least one terminal Xi

that has value 0 in that row. This implies that, in expectation, 2 phases of length
k each are sufficient to reduce the error in the training set to 0. All that remains
to be done is to calculate the expected time for 2k successful steps. Given that
the tree consists of i different terminals, the probability that the (1+1)-GP adds
a new terminal to the tree is pi =

1
3
n−i
n where 1/3 is the probability that an INS

operation is chosen. Hence, by a simple coupon collector argument the expected
time to collect the AND of 2k = 2 log n

Y
(2s) different terminals is bounded by:

2 log n
Y

(2s)−1∑

i=0

3n

n− i
≤

2 log n
Y

(2s)−1∑

i=0

3n

n− (2 log n
Y
(2s)− 1)

≤

2 log n
Y

(2s)−1∑

i=0

3n

cn
= O(log n

Y
(2s)) = O(log n)

Finally, we need to remember that the above expected time is conditional to
starting with at most Y ones in each row of the training set. This may not
happen with probability at most e−Ω(n). If this is the case we pessimistically
assume that a row of the training set consists of its worst case value of n − 1
1s and one 0. Then, by the same coupon collector argument used in Theorem
1, the conditional expected runtime is bounded from above by O(n log n). The
statement of the theorem now follows by an application of the law of total
expectation:

E(T) = p(X) · E(T |X) + p(X) · E(T |X)

≤ (1− e−Ω(n)) ·O(log n) + e−Ω(n) ·O(n log n) = O(log n)

Theorem 6. Both the (1+1) GP and the (1+1) GP* using F = {AND}, L =
{X1, . . . , Xn} and a training set of size s = poly(n), have a generalization ability
on ANDn of G ≤ 1− 2− log(s).

Proof. Recall that the generalization error ǫg(h) of an expression h is the number
of rows mismatching the target function. In the case of AND, ǫg(h) ≥ ones(h)−1,
since all but at most one 1s are mismatched.

Theorem 5 states that the algorithms will stop at an expression h̃ having
at most log(s) variables, thus having at least 2n−log(s) ones. Thus ǫg(h̃) ≥

2n−log(s)− 1. The generalization ability is then G = 1−
ǫg(h̃)
2n ≤ 1− 2− log(s).

Corollary 1. A necessary condition to get a generalization ability greater than
1− ǫ, is to have a training set of size s > 1

ǫ .

Proof. From Theorem 6 the generalization ability is G ≤ 1− 2− log(s). Thus:

1− 2− log(s) > 1− ǫ ⇔ 2− log(s) < ǫ ⇔ 1/s < ǫ ⇔ s > 1/ǫ

4.2 Analysis for XORn with Incomplete Training Set

The analysis for XORn shows that if the training set size is at most log(n), the
training set can be fit efficiently (Theorem 7). On the other hand if the size of
the training set grows asymptotically faster than log n, then the algorithms do
not fit the training set in polynomial time with probability exponentially close
to 1 (Theorem 8). However, in both cases the generalization ability will be equal
to 1/2 with probability exponentially close to 1 in the former case, and with
probability 1 in the latter case (Theorem 9).

Theorem 7. Let s ≤ lnn be the size of the training set chosen from the truth ta-
ble uniformly at random with repetition. Then the (1+1) GP using F = {XOR}
as function set and L = {X1, . . . , Xn} as terminal set will find a solution fitting
the training set of XORn in time O(n2) with probability at least 1− e−Ω(n).

Proof. Since each row of the training set is binomially distributed with param-
eters n and p = 1/2, also each variable Xi is binomially distributed, but with
parameters s and p = 1/2 because the training set has s rows. An element j
(i.e., 1 ≤ j ≤ s) of the optimal solution opt fitting the training set has value
1 if the number of 1s in the n variables X1, . . . , Xn at position j is odd while
it has value 0 if the number of 1s at position j in the n variables is even.
Hence, once the training set has been created, the optimal solution is deter-
mined and each variable Xi will have the same value as opt at each position j
with probability 1/2. By the principle of deferred decisions [9], the same holds
for Xi⊕, . . . ,⊕Xm, 1 ≤ i,m ≤ n− 1 at each position j. In fact if the first m− 1
terms Xi,⊕, . . . ,⊕Xm−1 have the “correct“ value at position j, then with prob-
ability 1/2 the output will still be correct after the first m−1 terms are XOR-ed
with Xm (i.e., Xm has a 0 at position j). On the other hand if it was not correct
it would become “correct“ with probability 1/2 (i.e., Xm has a 1 at position j).
Thus

P (j is correct) = P (Xm(j) = 0 | j was correct) + P (Xm(j) = 1 | j was not correct)

= 1/2 · 1/2 + 1/2 · 1/2 = 1/2

As a result the probability that any solution, Xi⊕, . . . ,⊕Xm, 1 ≤ i,m ≤ n−1 is
equal to opt in all positions is bounded by p(Xt = opt) = 1

2s ≥ 1
2lnn = 1

n . Hence
the probability that a solution Xi⊕, . . . ,⊕Xm, 1 ≤ i,m ≤ n−1 is different from
opt is less than (1− 1/n) and the probability that cn2 solutions are all different
than opt is bounded by

(
1−

1

n

)cn2

≤

(
1−

1

n

)n·cn

≤

(
1

e

)cn

where c < 1 is a positive constant. As a result, after visiting cn2 distinct solu-
tions, with probability at least 1− e−cn, the training set has been fitted by the
algorithm.

All that remains to be shown is that cn2 distinct solutions are visited by
the (1+1)-GP. We consider a current solution of the algorithm X1, X2, . . . , Xm,
Xm+1, . . . , Xn where the Xi are the variables that are missing after simplifica-
tion. By just considering an INS operation, from each such solution it is possible
to reach n different neighbours (i.e., n − i neighbours are reached by adding a
missing variable and i neighbours are reached by adding one of the m variables,
hence effectively removing a variable after simplification). If less than (9/10)n
of the neighbours on the current level have not been visited, the probability of
visiting one is at least 1/3 · 9/10 = 3/10 > 1/4. Otherwise we consider the set of
neighbours as “full” and look at the probability of moving to a new solution not
having any neighbours in common with the current solution. Such a solution can
be visited by either: (a) adding two missing variables; (b) removing two of the
m variables in the current solution; (c) adding one missing variable and remov-
ing one of the m variables. Each of (a), (b), (c) can be achieved by performing
two consecutive INS operations of which the first operation must lead to an ac-
cepted search point (i.e., which happens with probability at least 1/2). If, after

the first INS operations all the neighbours of c′n different solutions (not hav-
ing neighbours in common with the previous search point) were all “full” then
c′(9/10)n2 distinct solutions would have been visited (recall a neighbourhood is
full when (9/10)n neighbours have been visited). We set c′(9/10) > c. Hence,
unless (9/10)c′n2 distinct solutions have been seen, there must be at least a con-
stant fraction c′′n of neighbours reached by the second INS that lead to unseen
new solutions by another INS operation. Overall, the probability of reaching a
new solution with ’unfilled neighbourhood’ is at least 1/3·1/3·1/2·(c′′n)/n = c∗.
Since each of the distinct solutions is found with constant probability, the ex-
pected time to find them all is bounded from above by (c′n2 · c∗). By another
application of Chernoff bounds with success probability c∗ and a phase of length
2c′c∗n2, we get that c′n2 distinct solutions have not been seen with probability
at most e−1/8·c∗c′n2

. Summing up the failure probabilities proves the statement
of the theorem.

We now consider larger training sets.

Theorem 8. Let s = ω(log n) be the size of the training set chosen from the
truth table uniformly at random with repetition. Then the (1+1) GP using F =
{XOR} and L = {X1, . . . , Xn} will not find a solution fitting the training set
of XORn with fitness better than (1− δ)s/2, δ > 0 any constant, in polynomial
time with probability at least 1− e−Ω(s).

Proof. As shown in the proof of Theorem 7 each column of the training set is
binomially distributed with parameters s and p = 1/2, and by the principle
of deferred decisions the same holds for each candidate solution Xi⊕, . . . ,⊕Xm,
1 ≤ i,m ≤ n−1. As a result the probability that each row of a candidate solution
is equal to the value in the respective row in opt with probability p(Yi) = 1/2
and the expected number of rows where they are equal is E(Y) = s/2. Hence,
by a simple application of Chernoff bounds, the probability that a candidate
solution has (1 + δ)s/2 rows that agree with the respective rows in opt is

P

(
Y >

s

2
+ δ

s

2

)
≤ e−(δ/6)·s)

By the union bound the probability that after a polynomial number of steps nc

any seen solution agrees in (1 + δ)s/2 rows is less than

nc · e−(δ/6)·s) ≤ ec logn−(δ/6)s ≤ e−Ω(s)

for any s = ω(log n), which proves the statement of the theorem.

Theorem 9. Both the (1+1) GP and the (1+1) GP* using F = {XOR}, L =
{X1, . . . , Xn} and a training set of size s = poly(n) have a generalization ability
of G = 1/2.

Proof. By Proposition 2 all the expressions but X1 ⊕ . . . ⊕Xn have a general-
ization error of 2n−1 thus if the algorithms do not find the expression Y = X1⊕

. . .⊕Xn in polynomial time their generalization ability is G = 1− 2n−1

2n = 1/2.
By Theorem 3 the (1+1) GP* will never move from its first point, hence does
not find Y with probability 1− 2−s. The (1+1) GP with s = ω(log n) cannot fit
the training set in polynomial time by Theorem 7, thus cannot find Y efficiently.
When s < log(n) we use a similar argument to that of Theorem 4 to show that,
even if the training set can be fit in polynomial time, the expression Y will not
be found in polynomial time. In fact since with probability 1/2 a new solution
will have fitness better than its parent, the expected drift will be half of that
calculated in Theorem 4 (i.e., in expectation half of the offspring will not be ac-
cepted). Thus the time to get to Y is still at least exponential with probability
exponentially close to 1, which concludes the proof.

5 Conclusions

A further step has been made towards the rigorous computational complexity
analysis of GP for evolving functions with desired input/output behaviour. We
have analysed the (1+1) GP and (1+1)-GP* for evolving two common boolean
functions, XORn and ANDn (which may be considered the GP analogues to
OneMax and Needle for EAs) both in the case of complete input-output infor-
mation and with incomplete training sets of polynomial size.

We have rigorously proved that ANDn can be efficiently solved by both the
(1+1) GP and the (1+1) GP* in case of complete datasets, with (1+1) GP*
producing shorter expressions. We have also shown that both the algorithms
can efficiently fit a training set of polynomial size and provided a necessary
condition to achieve a given generalization ability. The analysis forXORn reveals
a needle-like fitness landscape, leading to the (1+1) GP* not being able to solve
the problem at all and the (1+1) GP requiring exponential time. The analysis
for the incomplete datasets has shown that there is a log(n) threshold for the
size of the training set under which the training set can be fit efficiently and
over which asymptotically it cannot be fit in polynomial time with probability
exponentially close to 1. The analysis on the generalization ability has shown
that, despite the size of the training set, the generalization ability is equal to
1/2 with probability exponentially close to 1.

Future work will be directed, on one hand, towards extending the results to
increasingly deal with more comprehensive terminal and function sets, while on
the other hand will focus on more sophisticated GP systems and benchmark
functions where typical bloat and overfitting problems can be studied.

6 Acknowledgements

The authors would like to thank Alberto Moraglio for constructive discussions
which initialised this work. Further preliminary discussions occurred at Dagstuhl
Seminar N.15211. This work was supported by EPSRC under Grant n. EP/M004252/1.

References

1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific (2011)

2. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276(1-2), 51–81 (2002)

3. Kötzing, T., Sutton, A.M., Neumann, F., O’Reilly, U.M.: The max problem revis-
ited: the importance of mutation in genetic programming. Theor. Comp. Sci. 545,
94–107 (2014)

4. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

5. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge, MA, USA (1994)

6. Langdon, W.B., Poli, R.: Foundations of genetic programming. Springer (2002)
7. Luke, S.: Genetic programming produced competitive soccer softbot teams for

RoboCup97. In: Genetic Programming 1998: Proceedings of the Third Annual
Conference. pp. 214–222. Morgan Kaufmann (1998)

8. Mitavskiy, B., Rowe, J.E.: Some results about the markov chains associated to GPs
and general EAs. Theor. Comp. Sci. 361(1), 72–110 (2006)

9. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University
Press (2005)

10. Moraglio, A., Mambrini, A., Manzoni, L.: Runtime analysis of mutation-based
geometric semantic genetic programming on boolean functions. In: Proc. of FOGA
XII. pp. 119–132. ACM (2013)

11. Neumann, F., O’Reilly, U.M., Wagner, M.: Computational complexity analysis of
genetic programming - initial results and future directions. In: Genetic Program-
ming Theory and Practice IX, pp. 113–128. Springer (2011)

12. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization:
Algorithms and Their Computational Complexity. Springer-Verlag (2010)

13. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evo-
lutionary computation. Algorithmica 59(3), 369–386 (2011)

14. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic pro-
gramming. Genetic Programming and Evolvable Machines 11(3-4), 339–363 (2010)

15. O’Reilly, U.M., Oppacher, F.: Program search with a hierarchical variable lenght
representation: Genetic programming, simulated annealing and hill climbing. In:
Proc. of PPSN. pp. 397–406. Springer-Verlag (1994)

16. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming.
Published via http://lulu.com (2008)

17. Poli, R., McPhee, N.F., Rowe, J.E.: Exact schema theory and markov chain models
for genetic programming and variable-length genetic algorithms with homologous
crossover. Genetic Programming and Evolvable Machines 5(1), 31–70 (Mar 2004)

18. Spector, L., Barnum, H., Bernstein, H.J., Swamy, N.: Quantum computing appli-
cations of genetic programming. In: Spector, L., Langdon, W.B., O’Reilly, U.M.,
Angeline, P.J. (eds.) Advances in Genetic Programming 3, pp. 135–160. MIT Press,
Cambridge, MA, USA (1999)

19. Valiant, L.G.: Evolvability. J. ACM 56(1), 3:1–3:21 (2009)

