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Abstract Many real world operational research problems can be formu-
lated as graph colouring problems. Algorithms for this problem usually
operate under the assumption that the size and constraints of a problem
are Ąxed, allowing us to model the problem using a static graph. For many
problems however, this is not the case and it would be more appropriate
to model such problems using dynamic graphs. In this paper we will
explore whether feasible colourings for one graph at time-step t can be
modiĄed into a colouring for a similar graph at time-step t + 1 in some
beneĄcial manner.
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1 Introduction

The graph colouring problem (GCP) aims to colour each vertex of a graph
G = (V, E) such that no adjacent vertices have the same colour and the number
of colours used is minimised. The minimum number of colours required to colour
a graph G is called the chromatic number of G, denoted by χ(G).

By considering the different aspects of a given problem instance and how they
might relate to the components of a graph (vertices, edges and colours), one can
reformulate many real world problems into a GCP. One example is frequency
assignment [1] where each geographical site is represented by a vertex, an edge
exists between two vertices if their respective sites are within a certain proximity
of one another, and colours represent communication frequencies (e. g. radio fre-
quencies). Other examples include exam timetabling [5,15], register allocation [3],
designing seating plans [11] and grouping people in social networks [16].

Most GCP methods can only be applied to such problems under the assump-
tion that the size and constraints of a problem are Ąxed (i. e. V and E are Ąxed
in the associated graph G = (V, E)). However, in areas such as the frequency
assignment problem [4] this is not always appropriate as sites can be added or
removed from the communication network, or the location of sites can themselves
move. The aim of this particular research, therefore, is to explore graph colouring
on dynamic graphs. More speciĄcally, we wish to look at methods which modify
a feasible colouring for one graph into a colouring for a ŞsimilarŤ graph.
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The rest of the paper will be structured as follows: Section 2 will formerly
deĄne dynamic graphs and their associated problems and Section 3 will then
discuss the various search spaces for graph colouring problems. Section 4 will
then outline a general approach and deĄne the different modiĄcation methods
used, Section 5 will contain the experimentation details, and in Section 6 we
will present the results. Finally, Section 7 will summarise the Ąndings of the
experiments and discuss future work.

2 Dynamic Graph Colouring Problems

The importance of studying dynamic graphs and their associated problems has
been highlighted by Harary and Gupta [7] who outlined many applications,
especially in the area of computer science, and postulated that techniques applied
to static graphs should be extended for dynamic graphs. However, there has been
very little research regarding methods designed explicitly for dynamic graphs.

Two methods for Ąnding colourings for dynamic graphs are given in [13]
and [14]. The Ąrst of these proposes a genetic algorithm that uses the same
population of colourings between time-steps for vertex dynamic graphs and
the second proposes an agent-based approach for repairing colourings between
time-steps for edge dynamic graphs. Both of these methods are only concerned
with the quality of initial colourings, whereas this research will presume that
optimisation can take place between time-steps.

We deĄne a dynamic graph G = (G0, G1, . . . , GT ) as a series of T + 1 static
graphs where Gt = (Vt, Et) ∈ G is the static graph deĄned for time-step t ∈
¶0, 1, . . . , T♦. At every time-step, the objective in analogous to the static GCP.
In terms of methodology, this means using heuristic methods to Ąnd a feasible
kt-colouring for each time-step t, where kt is a good approximation of χ(Gt).

Objectively, this is an attempt to minimise
∑T

t=0 kt.
In this work we choose to split the concept of dynamic graphs into two

cases: edge dynamic graphs and vertex dynamic graphs. In the edge dynamic
graph colouring problem, changes can only occur on the edge set Et; therefore
V0 = V1 = . . . = VT = V for all time-steps. For an edge dynamic graph G,
consider the graph Gt = (V, Et) for time-step t. To get to time-step t + 1 we must
deĄne a set of deleted edges E−

t+1 ⊆ Et and a set of new edges E+
t+1 ⊆ (E\Et)

where E is the set of all possible edges between vertices in V . The edge set for
time-step t + 1 is then deĄned as Et+1 = (Et\E−

t+1) ∪ E+
t+1.

In the vertex dynamic graph colouring problem, changes are applied to the
vertex set Vt. This in turn affects the edge set Et, as edges incident to deleted
vertices will themselves need to be deleted. Similarly, new vertices will also require
the addition of new edges unless the new vertex is intended to be isolated. For a
vertex dynamic graph G, consider the graph Gt = (Vt, Et) for time-step t. To get
to time-step t + 1 we must deĄne a set of deleted vertices V −

t+1 ⊆ Vt and a set

of new vertices V +
t+1. Once these are deĄned, the set of deleted edges E−

t+1 ⊆ Et

is deĄned to be the set of all edges incident to the deleted vertices (i. e. E−

t+1

contains all the edges ¶u, v♦ ∈ Et such that either u ∈ V −

t+1 or v ∈ V −

t+1). The
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set of new edges E+
t+1 is a set of connecting edges from the set of new vertices

to any of the vertices in Vt+1 (i. e. E+
t+1 contains edges ¶u, v♦ ∈ Et+1 where Et+1

is the set of all possible edges between vertices in Vt+1 and either u ∈ V +
t+1

or v ∈ V +
t+1). The vertex and edge sets for time-step t + 1 are then deĄned as

Vt+1 = (Vt\V −

t+1) ∪ V +
t+1 and Et+1 = (Et\E−

t+1) ∪ E+
t+1 respectively.

In fact, edge dynamic graphs can be considered as a special case of vertex
dynamic graphs where ♣V −

t ♣ = ♣V +
t ♣ = ♣Vt−1♣ and E−

t = Et−1, ∀t ∈ ¶1, . . . , T♦.
Another special case is on-line graph colouring, where exactly one vertex is added
at each time-step (i. e. V −

t = ∅ and ♣V +
t ♣ = 1, ∀t ∈ ¶1, . . . , T♦). On-line graph

colouring has the additional constraint that, once coloured, a vertex cannot be
transferred to a different colour class. Research concerning on-line graph colouring
mainly consists of worst case behaviour analysis of algorithms [6,12].

3 Search Spaces of the GCP

In this paper we will approach dynamic graph colouring problems by adapting
methods for the static problem. In general, the literature suggest three main
search spaces for the static GCP: (i) feasible colourings only, where every
vertex is coloured, there are no clashes (i. e. all adjacent vertices are coloured
differently) and the number of colour classes is allowed to vary; (ii) complete,

improper colourings, where every vertex is coloured but clashes are permitted;
and (iii) partial, proper colourings, where no clashes occur but there may be
ŞuncolouredŤ vertices.

The search space of feasible colourings only is rarely used in the literature as
it is often difficult to determine which of two k-colourings is closer to becoming a
colouring with k − 1 colour classes. One example of a heuristic method in this
search space is a simulated annealing approach outlined in [9].

In the complete, improper search space a colouring S = ¶S1, . . . , Sk♦ is

a partition of V into k disjoint subsets (i. e. V =
⋃k

i=1 Si and Si ∩ Sj = ∅,
∀i, j ∈ ¶1, . . . , k♦ and i ̸= j). Si is called the ith colour class of the colouring
S and the colouring function c : V → ¶1, . . . , k♦ is deĄned such that c(v) = i

for all v ∈ Si. One well-known algorithm that operates in this search space is
TabuCol [8]. In this algorithm, to move from one colouring S to a neighbouring
colouring S ′, a vertex v is transferred from its current colour class Si to a different
colour class Sj where i ̸= j. Then S becomes S ′ = ¶S′

1, . . . , S′

k♦ with S′

i = Si\¶v♦,
S′

j = Sj ∪ ¶v♦ and S′

l = Sl, ∀l ∈ ¶1, . . . , k♦\¶i, j♦. The vertex v to be moved can
also be chosen exclusively from the set of currently clashing vertices (i. e. we can
move v ∈ Si if and only if ∃u ∈ Si such that u ̸= v and ¶u, v♦ ∈ E). For a given
solution S, the associated cost function in this algorithm is given by

f(S) =

k∑

i=1

♣E(i)♣ (1)

where E(i) is the set of edges with both end points in Si. This cost function is
equivalent to the number clashes in the colouring. If f(S) = 0 then the colouring
S has no clashes and is therefore a feasible k-colouring.
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In the partial, proper search space a colouring S = ¶S1, . . . , Sk, Sk+1♦ is
deĄned by a partition of V into k + 1 disjoint subsets. The Ąrst k subsets
are independent sets (i. e. E(i) = ∅, ∀i ∈ ¶1, . . . , k♦) and the remaining vertices

v ∈ V \(
⋃k

i=1 Si) are placed in the additional subset Sk+1 of ŞuncolouredŤ vertices,
in which clashes are also permitted.

PartialCol [2] (a modiĄcation of TabuCol) is an example of an algorithm
that operates in this search space. In this algorithm, to move from one colouring
S to a neighbouring colouring S ′, we transfer an uncoloured vertex v ∈ Sk+1 to
a colour class Si where i ≤ k and move the set of vertices adjacent to v, Ui ⊆ Si,
to Sk+1. Then S becomes S ′ = ¶S′

1, . . . , S′

k, S′

k+1♦ with S′

i = (Si\Ui) ∪ ¶v♦,
S′

k+1 = (Sk+1 ∪ Ui)\¶v♦ and S′

l = Sl, ∀l ∈ ¶1, . . . , k♦\¶i♦.
For a given solution S, the associated cost function in this algorithm is given

by
f(S) = ♣Sk+1♣ (2)

which is equivalent to the number of uncoloured vertices. An alternative cost
function is

f(S) =
∑

v∈Sk+1

deg(v) (3)

where deg(v) is the degree of vertex v. If the vertices in Sk+1 have low degrees
then, in theory, they will be easier to move into colour classes without causing
clashes. For both of these cost functions, if f(S) = 0 then there are no uncoloured
vertices and S is therefore a feasible k-colouring.

4 Methods

Our approach for solving a dynamic graph G = ¶G0, G1, . . . , GT ♦ will follow the
process outlined in Algorithm 1. Notice that for G0 a method for the static GCP
needs to be applied.

Algorithm 1 Generic DGCP Algorithm

Input: a dynamic graph G = (G0, G1, . . . , GT )
Output: a set S = {S0,S1, . . . ,ST } where St is a feasible colourings for Gt ∈ G
1: S0 ← Static GCP Algorithm (G0)
2: for t = 1 to T do

3: St ← Dynamic GCP Time-step Algorithm (Gt,St−1) (i. e. Algorithm 2)
4: return S = {S0,S1, . . . ,ST }

For each time-step t, suppose a feasible colouring St for Gt has been found;
that is, a colouring where all vertices are coloured and no clashes occur. This
colouring might then be saved and possibly modiĄed in some way to be used as a
colouring for Gt+1. Using this modiĄed colouring with k ≥ ♣St♣ colour classes as a
starting point, we then wish to Ąnd a feasible k-colouring for Gt+1. If we succeed,
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then we search for a feasible colouring with one fewer colour class and so on until
some stopping criteria (e.g. a time or iteration limit) is reached. It may of course
be impossible to Ąnd a feasible k-colouring for Gt+1. In order to accommodate
this eventuality, if some timing criteria is met and a feasible colouring (of any
size) has not be found, then we increase k by 1, we allow the target number of
colour classes to be increased indeĄnitely until a feasible colouring is found or
the algorithmŠs stopping criteria is met. This process is outlined in Algorithm 2.

The focus of this particular piece of research is to explore the different
methods for modifying a feasible colouring achieved in time-step t into an initial
colouring for time-step t + 1 (i. e. line 2 of Algorithm 2). The essential question
to be answered is: can a feasible colouring for one graph Gt be used in some
advantageous way to Ąnd a feasible colouring for a similar graph Gt+1?

Algorithm 2 Generic DGCP Time-step Algorithm

Input: a graph Gt+1 and a feasible colouring St for Gt

Output: a feasible colouring St+1 for Gt+1

1: Sbest ← ∅
2: St+1 ← St modiĄed in some way (see Sections 4.1 and 4.2)
3: k ← |St+1|
4: while not stopping criterion do

5: attempt to make St+1 a feasible k-colouring for Gt+1

6: if St+1 is a feasible k-colouring for Gt+1 then

7: Sbest ← St+1

8: k ← k − 1
9: if Sbest = ∅ and a computation limit is reached then

10: k ← k + 1
11: St+1 ← Sbest

12: return St+1

4.1 ModiĄcation for Edge Dynamic Graphs

For all of the following methods, the Ąnal feasible colouring St for Gt can be
considered as a complete, improper colouring for Gt+1 with k = ♣St♣ colour
classes. We can do this because every vertex v ∈ V will be coloured but the new
edges E+

t+1 are likely to cause clashes. With this knowledge we can then apply
one of the following modiĄcation methods.

(1) Calculate the number of clashes: Calculate the initial number of clashes
and then pass St directly to the tabu search operator which will attempt to Ąnd
a feasible k-colouring for Gt+1.

(2) Uncolour clashing vertices: By identifying pairs of clashing vertices in St

and transferring one of the vertices in each of these pairs to a set of uncoloured
vertices, one produces a partial, proper colouring S̃t+1 for Gt+1. S̃t+1 along with
the set of uncoloured vertices can now be passed to the tabu search operator
which will attempt to Ąnd a feasible k-colouring for Gt+1.
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(3) Solve clashing vertices: In a similar manner to Method (2), clashing
vertices are ŞuncolouredŤ to produce a partial, proper colouring S̃t+1 for Gt+1.
An attempt is then made to re-insert each of these uncoloured vertices into a
colour class in S̃t+1 such that no clashes are incurred. The remaining uncoloured
vertices and any appropriate edges are then considered as a residual graph G′

t+1

of Gt+1. This residual graph is passed to the constructive operator (speciĄcally,
the recursive largest Ąrst (RLF) algorithm [10]) which produces a feasible k′-
colouring for G′

t+1. The feasible colouring for G′

t+1 is then combined with S̃t+1 to
produce a feasible colouring for Gt+1 with k + k′ colour classes. The tabu search
operator will then attempt to Ąnd a feasible (k + k′ − 1)-colouring for Gt+1.

4.2 ModiĄcation for Vertex Dynamic Graphs

The Ąnal feasible colouring St achieved for Gt will be neither a complete, improper
colouring or a partial, proper colouring for Gt+1 as it will include the deleted
vertices V −

t+1 and wonŠt include the new vertices V +
t+1. For each of the following

methods, every deleted vertex v ∈ V −

t+1 must Ąrst be removed from St in order

to produce a partial, proper colouring S̃t+1 for Gt+1 with k = ♣St♣ colour classes.
We can then apply one of the following modiĄcation methods.

(4) Randomly assign new vertices: Each new vertex v ∈ V +
t+1 is randomly

assigned to a colour class in S̃t+1 to produce a complete, improper colouring for
Gt+1. This can then be passed to the tabu search operator which will attempt to
Ąnd a feasible k-colouring for Gt+1.

(5) Uncolour new vertices: Unlike Method (4), the new vertices V +
t+1 are not

assigned to colour classes in S̃t+1. Instead the new vertices V +
t+1 are considered

as a set of uncoloured vertices. Along with S̃t+1, this set of uncoloured vertices is
passed to the tabu search operator which attempts to Ąnd a feasible k-colouring
for Gt+1.

(6) Solve new vertices: An attempt is made to insert each of the new vertex
v ∈ V +

t+1 into an a colour class in S̃t+1 such that no clashes are incurred. The
remaining new vertices and any appropriate edges are then considered as a
residual graph G′

t+1 of Gt+1. This residual graph is passed to the constructive
operator (again, RLF) which produces a feasible k′-colouring for G′

t+1. The

feasible colouring for G′

t+1 is then combined with S̃t+1 to produce a feasible
colouring for Gt+1 with k + k′ colour classes. The tabu search operator will then
attempt to Ąnd a feasible (k + k′ − 1)-colouring for Gt+1.

5 Experimentation Details

In our experiments we considered dynamic random graphs. For each dynamic
random graph we specify an initial number of vertices n, a desired density d, a
change probability p and a number of time-steps T . To construct a sequence of
graphs G we use the following methods.

For an edge dynamic graph consider the graph Gt = (V, Et). To construct
Gt+1, every edge ¶u, v♦ ∈ Et is copied to the set of deleted edges E−

t+1 with
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probability p and every currently non-existent edge ¶u, v♦ ∈ E\Et is copied to
the set of new edges E+

t+1 with probability dp
1−d

.
For a vertex dynamic graph, consider the graph Gt = (Vt, Et). To construct

Gt+1, every vertex v ∈ Vt is copied to the set of deleted vertices V −

t+1 with

probability p and the set of new vertices is constructed such that ♣V +
t+1♣ is an

integer between np(1 − p) and np(1 + p). Every edge ¶u, v♦ ∈ Et+1 with u ∈ Vt+1,
v ∈ V +

t+1 and u ̸= v is then added to the set of new edges E+
t+1 with probability

d.
For both the edge and vertex dynamic graphs, the following parameters were

used: n = 500, d ∈ ¶0.1, 0.5, 0.9♦, p ∈ ¶0.005, 0.01, . . . , 0.05♦ and T = 10, and
for each combination of these parameters, 20 graphs were produced. The RLF

algorithm [10] was applied to obtain an initial colouring for G0. Note that all
results corresponding to these initial graphs are ignored; however, the colourings
they produced were used in the modiĄcation methods for G1.

In our case, each time-step was given a time limit of 10 seconds1 (i. e. line 4
of Algorithm 2). If this time limit had been set much longer, say hours, then the
advantage of modifying colourings between time-steps would obviously diminish.

TabuCol [8] and PartialCol [2] were used to Ąnd feasible colourings in the
complete, improper search space and partial, proper search space respectively (i. e.
line 5 of Algorithm 2). These algorithms use the neighbourhood moves outlined
in Section 3 and, upon performing a move, the inverse moves are made ŞtabuŤ
for 0.6 × f(S ′) + r iterations, where f is the cost function given in Equations (1)
and (2) respectively, S ′ is the resultant colouring after the neighbourhood move,
and r is a random integer from the set ¶0, 1, . . . , 9♦. This tabu tenure has been
used in both [8] and [2].

During execution, the target number of colour classes is adjusted in the
following way. Let k be the target number of colour classes, initially deĄned by
the modiĄcation method being implemented. If a feasible k-colouring cannot
be obtained within half of the allotted time limit then k is increased by 1. If a
feasible k-colouring cannot then be obtained within half of this remaining time
limit then k is again increased by 1, and so on (i. e. lines 9 and 10 of Algorithm 2).
For example, say the target number of colour classes for Gt is initially set as
k = 23, if a feasible 23-colouring cannot be found within 5 seconds then the tabu
search operator attempts to Ąnd a feasible 24-colouring for Gt, if this cannot
be found within a further 2.5 seconds then the tabu search attempts to Ąnd a
feasible 25-colouring for Gt, and so on.

For a base-line comparison, the following control method was also imple-
mented:

(0) Reset: The static graph Gt ∈ G for each time-step t ∈ ¶1, . . . , T♦ is
considered without any information about colourings achieved in the previous
time-steps. As with G0, the RLF algorithm is applied to obtain an initial colouring
for Gt (i. e., RLF replaces line 2 of Algorithm 2). Tabu search is then applied
iteratively in an attempt to Ąnd colourings with fewer colour classes. The number

1 All algorithms were programmed in C++ and executed on a 3.3GHZ Windows 7 PC
with an Intel Core i3-2120 processor and 8GB RAM.
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of colour classes in the Ąnal, feasible colouring achieved and the time required to
obtain this colouring is then recorded.

Note that Methods (1) and (4) operate exclusively in the complete, improper
search space, Methods (2) and (5) operate exclusively in the partial, proper
search space, and Methods (0), (3) and (6) can operate in either search space
as required. Because of this, only comparisons between methods designed for
the same problem and operating in the same search space are compared. For
example, for the edge dynamic GCP operating in the complete, improper search
space only Methods (0), (1) and (3) are compared against one another.

In all of our results, unless otherwise stated, all statistical tests are Wilcoxon
signed rank tests with signiĄcance level α = 0.05.

6 Results

6.1 Initial Colourings for the Edge Dynamic GCP

Let us Ąrst consider the initial feasible colourings produced for the edge dynamic
GCP. For all densities d and change probabilities p, Methods (1) and (2) were
found to produce initial, feasible colourings with signiĄcantly fewer colour classes
than both Methods (0) and (3). This is clearly illustrated in Figure 1.

We have observed a signiĄcant increase in the time required by Methods (1)
and (2) to achieve their initial, feasible colourings compared to Methods (0) and
(3) for all values of d and p, as seen in Table 1. A main contributing factor to this
may be found in the nature of the different methods: Methods (0) and (3) both
start from feasible colourings whereas Methods (1) and (2) do not and therefore
require more time to move to a feasible region of the search space. For similar
reasons, as p increases so too does the time required by Methods (1) and (2) to
achieve an initial, feasible colouring.

For d = 0.1 with p = 0.005, d = 0.5 with p ≤ 0.02, and d = 0.9 with p ≤ 0.01
Method (3) was found to produce initial, feasible colourings with signiĄcantly
fewer colour classes than Method (0). However, for higher settings of p, speciĄcally
for d = 0.1 with p ≥ 0.01, d = 0.5 with p ≥ 0.03, and d = 0.9 with p ≥ 0.015,
the opposite holds. This is again clearly illustrated in Figure 1. Hence we can
conclude that for these high levels of p, modifying feasible colourings for Gt is of
no beneĄt when attempting to achieve initial, feasible colourings for Gt+1.

Considering computational effort, we have found that the time required by
Method (3) to achieve initial, feasible colourings is signiĄcantly less compared
to Method (0) for d ∈ ¶0.5, 0.9♦ with all values of p. Both Methods (0) and (3)
employ RLF; however, Method (0) applies it to the whole graph Gt = (V, Et) at
each time-step t as opposed to Method (3) which only applies it to a residual
graph G′

t = (V ′, E′

t) of Gt where V ′ ⊆ V (which implies ♣V ′♣ ≤ ♣V ♣). We therefore
see that applying Method (3) with low levels of p is advantageous with regards
to both the number of colour classes in initial, feasible colourings and the time
required to obtain them.
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Figure 1. Mean initial, feasible colourings for the edge dynamic GCP. Graphs on the
left represents results from trials in the complete, improper search space and those
on the right for trials in the partial, proper search space. From top to bottom, rows
represent d = 0.1, 0.5, and 0.9 respectively.
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Table 1. Median time (in seconds) required to obtain an initial, feasible colouring for
the edge dynamic GCP (a 0∗ entry implies that the recorded time is less than 10−3

seconds).

p(%)
d Method 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.1 (0) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

(1) 0∗ 0.015 0.016 0.031 0.031 0.031 0.031 0.047 0.047 0.047
(2) 0∗ 0∗ 0.015 0.015 0.015 0.015 0.015 0.016 0.016 0.016
(3) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.5 (0) 0.016 0.016 0.031 0.031 0.031 0.016 0.016 0.016 0.016 0.016
(1) 1.692 2.246 2.777 2.948 3.182 3.268 3.363 3.791 4.181 3.713
(2) 1.545 1.872 2.083 2.996 2.325 2.590 2.824 2.519 2.730 2.972
(3) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.9 (0) 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031
(1) 5.008 5.125 5.335 5.140 5.288 5.421 5.366 5.171 5.327 5.304
(2) 4.376 4.235 5.016 5.070 5.047 5.031 5.008 4.789 5.038 5.023
(3) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

6.2 Initial Colourings for the Vertex Dynamic GCP

Let us now consider initial colourings for the vertex dynamic GCP. It is Ąrst
worth mentioning that a small change to the edge set of a graph will affect more
vertices than a comparable change to its vertex set. It is therefore not surprising
that the following results are similar to those presented in Section 6.1 but for
higher values of p.

Comparable to Methods (1) and (2) for the edge dynamic problem, the initial,
feasible colourings achieved by Methods (4) and (5) have signiĄcantly fewer
colour classes than Methods (0) and (6) but require signiĄcantly more time
to obtain them. The time required by Methods (4) and (5) also has a positive
relationship with the change probability p. These observations can be seen in
Figure 2 and Table 2. The reasons for this behaviour are the same as those given
for Methods (1) and (2) in Section 6.1.

Table 2. Median time (in seconds) required to obtain an initial, feasible colouring for
the vertex dynamic GCP (a 0∗ entry implies that the recorded time is less than 10−3

seconds).

p(%)
d Method 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.1 (0) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0.015 0.015
(4) 0∗ 0∗ 0.015 0.015 0.016 0.031 0.031 0.031 0.031 0.046
(5) 0∗ 0∗ 0.015 0.015 0.015 0.016 0.015 0.016 0.016 0.016
(6) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.5 (0) 0.016 0.031 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
(4) 0.320 1.131 1.240 1.724 1.482 1.724 1.935 2.411 2.114 2.785
(5) 0.663 0.983 1.537 1.529 1.630 1.537 1.973 1.794 1.841 2.340
(6) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.9 (0) 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031
(4) 1.069 1.997 2.941 3.830 3.565 4.189 4.820 4.938 4.852 5.007
(5) 1.163 1.731 2.644 3.222 2.387 3.416 3.339 3.424 2.816 3.346
(6) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗
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Again, as with Method (3) for the edge dynamic problem, Method (6) produces
initial, feasible colourings with both signiĄcantly fewer and signiĄcantly more
colour classes than Method (0) depending on the change probability p. However,
Method (6) only produces initial, feasible colourings with signiĄcantly more
colour classes for d = 0.1 with p ≥ 0.035. In fact, for d = 0.1 with p ≤ 0.02, and
d ∈ ¶0.5, 0.9♦ with all values of p, Method (6) achieves initial, feasible colourings
with signiĄcantly fewer colour classes. This is clearly illustrated in Figure 2.

As with Method (3), Method (6) requires signiĄcantly less time than Method
(0) in all instances except for d = 0.1 with p ≤ 0.03 (as seen in Table 2). This
is again likely because Method (6) applies RLF to a smaller graph G′

t with
♣V ′

t ♣ = ♣V +
t ♣ ≈ np as opposed to applying it to Gt with ♣Vt♣ ≈ n.

6.3 Final Colourings for the Edge Dynamic GCP

Next let us consider Ąnal colourings for the edge dynamic GCP. The Friedman
test with α = 0.05 shows that for d = 0.1 there is no signiĄcant difference
between the number of colour classes in the Ąnal, feasible colourings achieved
when applying Methods (0), (1), (2) and (3). However, Methods (1) and (2) both
achieve Ąnal, feasible colourings with signiĄcantly more colour classes than those
achieved by Method (0) for d = 0.9 with p ≥ 0.01 and p ≥ 0.035 respectively.
Methods (1) and (2) also achieve Ąnal, feasible colourings with signiĄcantly more
colour classes than those achieved by Method (3) for d = 0.9 with some values of
p. This observation is likely due to the relatively large amount of time required by
Methods (1) and (2) to Ąnd an initial, feasible colouring compared to Methods (0)
and (3) (see Section 6.1 and Table 1). This ŞwastedŤ time then translates to time
not being allocated to Ąnding feasible colourings with fewer colour classes.

For d = 0.5 and some values of p, Method (3) was found to achieve Ąnal, fea-
sible colourings with signiĄcantly fewer colour classes than Method (0). However,
for d = 0.9 with p ≥ 0.04 the opposite holds which is unsurprising as Method (3)
produces initial, feasible colourings with signiĄcantly more colour classes under
these parameter settings.

The following time comparisons correspond only to trials where the number of
colour classes in the Ąnal, feasible colourings achieved by the compared methods
were equal to one another. This will also be the case in Section 6.4.

Method (1) was found to reach Ąnal, feasible colourings signiĄcantly faster
than Method (0) for d = 0.1 with p ≤ 0.035, and d = 0.5 with p ≤ 0.01 as
seen in Table 3. Similarly, Method (2) also achieves Ąnal, feasible colourings
in signiĄcantly less time than Method (0) for d = 0.1 with all values of p, and
d = 0.5 with p = 0.005. Both of these methods were also able to reach Ąnal,
feasible colourings signiĄcantly faster than Method (3) for d = 0.1 with some
values of p. These observations are likely due to the fact that the initial, feasible
colourings achieved by Methods (1) and (2) are also the Ąnal, feasible colourings
achieved for d ∈ ¶0.1, 0.5♦ with low values of p.

On the other hand, Method (1) was found to require signiĄcantly more time
than Method (0) to achieve Ąnal, feasible colourings for d = 0.5 with p ≥ 0.035,
and d = 0.9 with all values of p. The same was also found for Method (2) for
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Figure 2. Mean initial, feasible colourings for the vertex dynamic GCP. Graphs on
the left represents results from trials in the complete, improper search space and those
on the right for trials in the partial, proper search space. From top to bottom, rows
represent d = 0.1, 0.5, and 0.9 respectively.
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d = 0.9 with most values of p. In a similar fashion, these two methods require
signiĄcantly more time to achieve Ąnal, feasible colourings than Method (3) for
d ∈ ¶0.5, 09♦ with most values of p. This is probably due to the same arguments
presented with regards to the number of colour classes in the Ąnal, feasible
colourings achieved by these methods for d = 0.9.

Unlike Methods (1) and (2), Method (3) was not found to require signiĄcantly
more time than Method (0) for any parameter settings. On the contrary, for
d = 0.1 with p ≤ 0.035, and d = 0.5 with p ≤ 0.02, Method (3) requires
signiĄcantly less time to achieve Ąnal, feasible colourings. It should be highlighted
that these are similar parameter settings for which Method (3) is able to produce
initial, feasible colourings with signiĄcantly fewer colour classes than Method (0).

Table 3. Median time (in seconds) required to obtain Ąnal, feasible colourings with
the same numbers of colour classes for the edge dynamic GCP (a 0∗ entry implies that
the recorded time is less than 10−3 seconds).

p(%)
d S.S. Method 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.1 C.I. (0) 0.047 0.046 0.047 0.046 0.047 0.046 0.047 0.046 0.047 0.047
(1) 0∗ 0.015 0.016 0.031 0.031 0.031 0.031 0.047 0.047 0.047
(3) 0.015 0.016 0.031 0.031 0.046 0.031 0.047 0.047 0.047 0.047

P.P. (0) 0.016 0.016 0.031 0.016 0.031 0.031 0.031 0.031 0.031 0.031
(2) 0∗ 0∗ 0.015 0.015 0.015 0.015 0.015 0.016 0.016 0.016
(3) 0∗ 0.015 0.015 0.015 0.016 0.016 0.016 0.031 0.031 0.031

0.5 C.I. (0) 3.478 2.996 3.034 3.128 2.442 2.855 2.528 3.136 2.941 2.754
(1) 1.653 2.371 3.190 3.097 3.424 3.417 3.869 4.259 4.321 4.275
(3) 1.077 1.794 2.130 2.683 2.239 2.652 2.754 2.465 3.284 2.762

P.P. (0) 2.933 2.910 3.081 2.870 2.278 2.730 2.636 2.559 2.309 2.676
(2) 1.872 1.888 2.356 3.783 2.356 2.722 3.058 2.847 2.746 3.331
(3) 1.435 2.160 2.060 2.356 2.246 2.699 2.169 2.442 2.168 2.598

0.9 C.I. (0) 5.492 5.476 5.008 4.836 5.569 5.912 4.851 5.694 4.430 4.602
(1) 6.225 7.122 7.691 7.074 7.964 7.550 7.535 8.455 7.176 7.488
(3) 4.181 4.906 4.415 4.353 5.694 5.195 4.649 5.234 5.039 4.882

P.P. (0) 4.181 5.242 5.179 4.166 5.273 4.914 3.681 4.602 4.212 4.633
(2) 5.141 5.616 5.975 6.365 6.365 5.741 6.038 5.506 5.452 5.866
(3) 3.877 4.649 5.070 4.275 4.352 4.025 4.196 4.618 4.688 4.977

6.4 Final Colourings for the Vertex Dynamic GCP

Finally, let us consider Ąnal colourings for the vertex dynamic GCP. As mentioned
in Section 6.2, a small change to the edge set will usually affect more vertices
than a comparable change to its vertex set.

Method (4) was found to achieve Ąnal, feasible colourings with signiĄcantly
fewer colour classes than Method (0) for d = 0.5 with most values of p, and
d = 0.9 with p ≤ 0.03. Similarly, Method (5) was also found to achieve Ąnal,
feasible colourings with signiĄcantly fewer colour classes than Method (0) for
d ∈ ¶0.5, 0.9♦ with some values of p. On the other hand, Method (4) achieves
Ąnal, feasible colourings with signiĄcantly more colour classes than Method (6)
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for d = 0.9 with p ≥ 0.025. Although Methods (4) and (5) require signiĄcantly
more time to produce initial, feasible colourings (see Section 6.2 and Table 1)
it is likely that Methods (0) and (6) still require more time to reach a feasible
colouring with equivalent numbers of colour classes for low levels of p. This
would imply that Methods (4) and (5) attempt to Ąnd feasible colourings with
fewer colour classes earlier than Methods (0) and (6). Further analysis should be
conducted in order to investigate the validity of this proposition.

Unlike Method (3) for the edge dynamic problem, Method (6) was only
found to reach Ąnal, feasible colourings with the same or signiĄcantly fewer
colour classes than Method (0). Both Methods (0) and (6) start each time-step
from a feasible colouring; however, Method (6) achieves initial colouring with
signiĄcantly fewer colour classes than Method (0) for most combinations of d

and p (see Section 6.2 and Figure 2). Method (6) will therefore attempt to Ąnd
feasible colourings with fewer colour classes earlier than Method (0).

It was found that Methods (4) and (5) achieve Ąnal, feasible colourings in
signiĄcantly less time than Method (0) for d = 0.1 with all values of p, and
d ∈ ¶0.5, 0.9♦ with p ≤ 0.01. Additionally, Method (4) was found to achieve
Ąnal, feasible colourings in signiĄcantly less time for d = 0.5 with p ≤ 0.04, and
d = 0.9 with p ≤ 0.025 also. This can be seen in Table 4. The reason for these
observations is likely to be the same as that given with regards to the number of
colour classes in the Ąnal, feasible colourings achieved with low levels of p.

On the contrary, Methods (4) and (5) require signiĄcantly more time to
achieve Ąnal, feasible colourings than Method (6) for d ∈ ¶0.5, 0.9♦ with most
values of p. In comparison to Method (0), Method (6) starts from a feasible
colouring with signiĄcantly fewer colour classes for d ∈ ¶0.5, 0.9♦ with all values
of p (see Section 6.2 and Figure 2). This will likely translate to Method (6)
attempting to Ąnd feasible colourings with fewer colour classes before Methods (4)
and (5) are able to produce initial, feasible colourings.

Method (6) was also found to require signiĄcantly less time to achieve Ąnal,
feasible colourings than Method (0) for all values of d with most values of p

(again, see Table 4). This is probably due to the same argument given earlier with
regards to the number of colour classes in the Ąnal, feasible colourings achieved
by Method (6) compared to Method (0).

7 Conclusions and Future Work

In this paper we have presented several methods for modifying feasible colourings
from one time-step of a dynamic random graph in order to help Ąnd a feasible
colouring for the next time-step.

Our experiments have shown that, for both edge and vertex dynamic graphs,
initial colourings with signiĄcantly fewer colour classes can be achieved by initially
modifying a feasible k-colouring for Gt into an infeasible k-colouring for Gt+1

and then passing this directly to the tabu search operator. However, there is a
signiĄcant trade off with respect to the time required to achieve an initial, feasible
colouring when these modiĄcation methods are applied. These methods were
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Table 4. Median time (in seconds) required to obtain Ąnal, feasible colourings with
the same numbers of colour classes for the vertex dynamic GCP (a 0∗ entry implies
that the recorded time is less than 10−3 seconds).

p(%)
d S.S. Method 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.1 C.I. (0) 0.046 0.046 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.062
(4) 0∗ 0∗ 0.015 0.015 0.016 0.031 0.031 0.031 0.031 0.046
(6) 0∗ 0∗ 0.015 0.016 0.031 0.031 0.031 0.046 0.031 0.047

P.P. (0) 0.016 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031
(5) 0∗ 0∗ 0.015 0.015 0.016 0.016 0.016 0.031 0.031 0.031
(6) 0∗ 0.015 0.015 0.015 0.016 0.016 0.016 0.031 0.031 0.031

0.5 C.I. (0) 5.141 3.682 4.321 4.610 4.212 3.619 3.884 3.713 3.666 3.612
(4) 0.515 1.224 1.996 1.747 2.738 2.699 3.713 2.551 4.103 4.470
(6) 0.328 1.084 1.045 1.303 2.028 1.740 1.981 2.020 2.013 2.247

P.P. (0) 2.652 3.073 3.276 3.151 2.980 2.504 2.964 2.457 2.933 2.855
(5) 1.505 1.264 2.574 2.621 2.341 3.066 2.566 2.551 3.167 2.980
(6) 0.203 1.068 1.092 1.529 1.544 1.420 1.381 2.192 2.387 2.293

0.9 C.I. (0) 5.702 6.069 6.318 6.146 6.053 6.021 6.209 5.843 5.881 6.186
(4) 1.428 5.007 5.007 4.399 5.460 5.148 5.507 6.069 6.381 6.459
(6) 1.786 2.090 3.019 3.307 4.033 3.681 3.667 4.227 3.791 4.142

P.P. (0) 4.867 5.281 4.680 5.492 5.585 4.267 4.181 4.665 4.602 4.462
(5) 2.964 3.362 4.665 5.194 4.446 4.196 6.255 5.585 5.054 5.281
(6) 1.373 2.013 2.566 1.981 3.261 3.330 3.416 2.745 3.884 4.189

also found to achieve Ąnal, feasible colourings with the signiĄcantly more colour
classes for some edge dynamic problems but signiĄcantly fewer colour classes for
some vertex dynamic problems. The time required to achieve comparable Ąnal
colourings via these methods is dependent on p.

It has also been shown that reducing a feasible colouring for Gt into a partial,
proper colouring for Gt+1 and then applying a constructive algorithm to the
residual graph induced by the ŞuncolouredŤ vertices can also achieve initial,
feasible colourings with signiĄcantly fewer colour classes when p is small enough.
These modiĄcation methods were also shown to produce initial, feasible colourings
in signiĄcantly less time for d ∈ ¶0.5, 0.9♦. Finally, these methods also resulted
in Ąnal, feasible colourings with the same or signiĄcantly fewer colour classes and
require equal or signiĄcantly less time to do so.

Note that in this piece of work, all changes between time-steps of dynamic
graphs have occurred completely at random; however, for some real world ap-
plications there may be some level of predictability. More speciĄcally, we might
have some knowledge of how edges and vertices are likely to change in the future.
We wish to extend this research and explore how this sort of information can be
used to our advantage in order to produce more robust colourings.
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