Skip to main content

Sim-EDA: A Multipopulation Estimation of Distribution Algorithm Based on Problem Similarity

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9595))

Abstract

In this paper a new estimation of distribution algorithm Sim-EDA is presented. This algorithm combines a multipopulation approach with distribution modelling. The proposed approach is to tackle several similar instances of the same optimization problem at once. Each subpopulation is assigned to a different instance and a migration mechanism is used for transferring information between the subpopulations. The migration process can be performed using one of the proposed strategies: two based on similarity between problem instances and one which migrates specimens between subpopulations with uniform probability. Similarity of problem instances is expressed numerically and the value of the similarity function is used for determining how likely a specimen is to migrate between two populations. The Sim-EDA algorithm is a general framework which can be used with various EDAs.

The presented algorithm has been tested on several instances of the Max-Cut and TSP problems using three different migration strategies and without migration. The results obtained in the experiments confirm, that the performance of the algorithm is improved when information is transferred between subpopulations assigned to similar instances of the problem. The migration strategy which transfers specimens between the most similar problem instances consistently produces better results than the algorithm without migration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baluja, S.: Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Technical report, Pittsburgh (1994)

    Google Scholar 

  2. Bessaou, M., Petrowski, A., Siarry, P.: Island model cooperating with speciation for multimodal optimization. In: Schoenauer, M., et al. (eds.) Parallel Problem Solving from Nature PPSN VI. LNCS, vol. 1917, pp. 437–446. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Brest, J., et al.: Dynamic optimization using self-adaptive differential evolution. In: IEEE Congress on Evolutionary Computation, pp. 415–422. IEEE (2009)

    Google Scholar 

  4. Chen, J., Wineberg, M.: Enhancement of the shifting balance genetic algorithm for highly multimodal problems. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pp. 744–751. IEEE Press, Portland (2004)

    Google Scholar 

  5. delaOssa, L., Gámez, J.A., Puerta, J.M.: Migration of probability models instead of individuals: an alternative when applying the island model to EDAs. In: Yao, X. (ed.) PPSN 2004. LNCS, vol. 3242, pp. 242–252. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Derrac, J., et al.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  7. Dong, W., Yao, X.: Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms. Inf. Sci. 178(15), 3000–3023 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giacobini et al., M., Preuß, M., Tomassini, M.: Effects of scale-free and small-world topologies on binary coded self-adaptive CEA. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 86–98. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Jozefowiez, N., Semet, F., Talbi, E.G.: Target aiming pareto search and its application to the vehicle routing problem with route balancing. J. Heuristics 13(5), 455–469 (2007)

    Article  Google Scholar 

  10. Lancucki, A., Chorowski, J., Michalak, K., Filipiak, P., Lipinski, P.: Continuous population-based incremental learning with mixture probability modeling for dynamic optimization problems. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 457–464. Springer, Heidelberg (2014)

    Google Scholar 

  11. Li, J.P., et al.: A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)

    Article  Google Scholar 

  12. Mezmaz, M.S., Melab, N., Talbi, E.: Using the multi-start and island models for parallel multi-objective optimization on the computational grid. In: Second IEEE International Conference on e-Science and Grid Computing, 2006. e-Science 2006, pp. 112–120 (2006)

    Google Scholar 

  13. Michalak, K.: Sim-EA: an evolutionary algorithm based on problem similarity. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 191–198. Springer, Heidelberg (2014)

    Google Scholar 

  14. Michalak, K.: The Sim-EA algorithm with operator autoadaptation for the multiobjective firefighter problem. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015. LNCS, vol. 9026, pp. 184–196. Springer, Heidelberg (2015)

    Google Scholar 

  15. Newman, A.: Max cut. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, pp. 1–99. Springer, New York (2008)

    Google Scholar 

  16. Nudelman, E., Leyton-Brown, K., H. Hoos, H., Devkar, A., Shoham, Y.: Understanding random SAT: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Peña, J.M., Lozano, J.A., Larrañaga, P.: Globally multimodal problem optimization via an estimation of distribution algorithm based on unsupervised learning of Bayesian Networks. Evol. Comput. 13(1), 43–66 (2005)

    Article  Google Scholar 

  18. Pelikan, M., Goldberg, D.E.: Hierarchical problem solving by the Bayesian optimization algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference 2000, pp. 267–274. Morgan Kaufmann (2000)

    Google Scholar 

  19. Santana, R., Mendiburu, A., Lozano, J.: Structural transfer using EDAs: an application to multi-marker tagging SNP selection. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2012)

    Google Scholar 

  20. Santana, R., Larranaga, P., Lozano, J.A.: Side chain placement using estimation of distribution algorithms. Artif. Intell. Med. 39(1), 49–63 (2007)

    Article  Google Scholar 

  21. Shim, V.A., et al.: Enhancing the scalability of multi-objective optimization via restricted Boltzmann machine-based estimation of distribution algorithm. Inf. Sci. 248, 191–213 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. de Sousa, S., Haxhimusa, Y., Kropatsch, W.G.: Estimation of distribution algorithm for the Max-Cut problem. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 244–253. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello, C.A.: Parallel approaches for multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 349–372. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Tsutsui, S., Fujimoto, Y., Ghosh, A.: Forking genetic algorithms: gas with search space division schemes. Evol. Comput. 5(1), 61–80 (1997)

    Article  Google Scholar 

  25. Uludag, G., et al.: A hybrid multi-population framework for dynamic environments combining online and offline learning. Soft Comput. 17(12), 2327–2348 (2013)

    Article  Google Scholar 

  26. Ursem, R.K.: Multinational GA optimization techniques in dynamic environments. In: Whitley, D., et al. (ed.) Genetic and Evolutionary Computation Conference, pp. 19–26. Morgan Kaufmann(2000)

    Google Scholar 

  27. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: on separability, population size and convergence. J. Comput. Inf. Technol. 7, 33–47 (1998)

    Google Scholar 

  28. Yan, W., Xiaoxiong, L.: An improved univariate marginal distribution algorithm for dynamic optimization problem. AASRI Procedia 1, 166–170 (2012). AASRI Conference on Computational Intelligence and Bioinformatics

    Article  Google Scholar 

  29. Yang, S., Yao, X.: Dual population-based incremental learning for problem optimization in dynamic environments. In: Proceedings of the 7th Asia Pacific Symposium on Intelligent and Evolutionary Systems, pp. 49–56 (2003)

    Google Scholar 

  30. Yuan, B., Orlowska, M., Sadiq, S.: Extending a class of continuous estimation of distribution algorithms to dynamic problems. Optim. Lett. 2(3), 433–443 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhong, X., Li, W.: A decision-tree-based multi-objective estimation of distribution algorithm. In: 2007 International Conference on Computational Intelligence and Security, pp. 114–118 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Michalak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Michalak, K. (2016). Sim-EDA: A Multipopulation Estimation of Distribution Algorithm Based on Problem Similarity. In: Chicano, F., Hu, B., García-Sánchez, P. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2016. Lecture Notes in Computer Science(), vol 9595. Springer, Cham. https://doi.org/10.1007/978-3-319-30698-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30698-8_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30697-1

  • Online ISBN: 978-3-319-30698-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics