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Abstract

We present an approach for segmenting low- and high-grade gliomas in multimodal magnetic 

resonance imaging volumes. The proposed approach is based on a hybrid generative-

discriminative model. Firstly, a generative approach based on an Expectation-Maximization 

framework that incorporates a glioma growth model is used to segment the brain scans into tumor, 

as well as healthy tissue labels. Secondly, a gradient boosting multi-class classification scheme is 

used to refine tumor labels based on information from multiple patients. Lastly, a probabilistic 

Bayesian strategy is employed to further refine and finalize the tumor segmentation based on 

patient-specific intensity statistics from the multiple modalities. We evaluated our approach in 186 

cases during the training phase of the BRAin Tumor Segmentation (BRATS) 2015 challenge and 

report promising results. During the testing phase, the algorithm was additionally evaluated in 53 

unseen cases, achieving the best performance among the competing methods.
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1 Introduction

Gliomas comprise a group of primary central nervous system (CNS) tumors of neuroglial 

cells (e.g., astrocytes and oligodendrocytes) that have different degrees of aggressiveness. 

They are mainly divided into low- and high-grade gliomas (LGGs and HGGs) according to 

their progression rate and histopathology. LGGs and HGGs exhibit distinct 

pathophysiological phenotypes and are subject to different treatment options. LGGs are less 

common than HGGs, constitute approximately 20 % of CNS glial tumors, and almost all of 

them eventually progress to HGGs [15]. HGGs are rapidly progressing malignancies, 

divided based on their histopathologic features into anaplastic gliomas and glioblastomas 

(GBMs) [21].
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Gliomas consist of various parts, each of which shows a different imaging phenotype in 

multimodal magnetic resonance imaging (MRI). Typically, the core of HGGs consists of 

enhancing, non-enhancing and necrotic parts, whereas the core of LGGs does not 

necessarily include an enhancing part. Another critical feature, for both understanding and 

treating gliomas, is the peritumoral edematous region. Edema occurs from infiltrating tumor 

cells, as well as a biological response to the angiogenic and vascular permeability factors 

released by the spatially adjacent tumor cells [1].

Quantification of the various parts of gliomas, in multimodal MRI, has an important role in 

treatment decisions, planning, as well as monitoring in longitudinal studies. The accurate 

segmentation of these regions is required to allow this quantification. However, tumor 

segmentation is extremely challenging due to the tumor regions being defined through 

intensity changes relative to the surrounding normal tissue, and such intensity information 

being disseminated across various modalities for each region. Additional factors that 

contribute to the difficulty of brain tumor segmentation task is the motion of the patient 

during the examination, as well as the magnetic field inhomogeneities. Hence, the manual 

annotation of such boundaries is time-consuming, prone to misinterpretation, human error 

and observer bias [3], with intra- and inter-rater variability up to 20 % and 28 %, 

respectively [16]. Computer-aided segmentation of brain tumor images would thus be an 

important advancement. Towards this end, we present a computer-aided segmentation 

method that aims to accurately segment such tumors and eventually allow for their 

quantification.

The remainder of this paper is organized as follows: Sect. 2 details the provided data, while 

Sect. 3 presents the proposed segmentation strategy. The experimental validation setting is 

described in Sect. 4 along with the obtained results. Finally, Sect. 5 concludes the paper with 

a short discussion and potential future research directions.

2 Materials

The data used in this study comprise 186 preoperative multimodal MRI scans of patients 

with gliomas (54 LGGs and 132 HGGs) that were provided as the training set for the 

multimodal BRATS 2015 challenge, from the Virtual Skeleton Database (VSD) [12]. 

Specifically, these data are a combination of the training set (10 LGGs and 20 HGGs) used 

in the BRATS 2013 challenge [17], as well as 44 LGG and 112 HGG scans provided from 

the National Institutes of Health (NIH) Cancer Imaging Archive (TCIA). The data of each 

patient consists of native and contrast-enhanced (CE) T1-weighted, as well as T2-weighted 

and T2 Fluid-attenuated inversion recovery (FLAIR) MRI volumes. The volumes of the 

various modalities were, co-registered to the same anatomical template and interpolated to 1 

mm3 voxel resolution. In addition to the training set, 53 multimodal volumetric images were 

provided as the testing set for the challenge, comprising both preoperative and after initial 

therapy scans.

Finally, ground truth (GT) segmentations for the training set were also provided. 

Specifically, the data from BRATS 2013 were manually annotated, whereas data from TCIA 

were automatically annotated by fusing the approved by experts results of the segmentation 
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algorithms that ranked high in the BRATS 2012 and 2013 challenges [17]. The GT 

segmentations comprise the enhancing part of the tumor (ET), the tumor core (TC), which is 

described by the union of necrotic, non-enhancing and enhancing parts of the tumor, and the 

whole tumor (WT), which is the union of the TC and the peritumoral edematous region. 

Note that the testing sets have been segmented manually by one to four rates, but the GT 

segmentations were not provided to the participating teams, allowing for their evaluation 

only by the challenge organizers.

3 Methods

The provided skull-stripped and co-registered MRI volumes were initially smoothed using a 

low-level image processing method, namely Smallest Univalue Segment Assimilating 

Nucleus (SUSAN) [20], to reduce intensity noise in regions of uniform intensity profile. The 

intensity histograms of all modalities of all patients were then matched to the corresponding 

modality of a single reference patient.

A modified version of the GLioma Image SegmenTation and Registration (GLISTR) 

software [10] was subsequently used to delineate the boundaries of healthy tissues (i.e., 
white and gray matter, cerebrospinal fluid, vessels and cerebellum), as well as tumor tissues 

(i.e., edema, necrosis, non-enhancing and enhancing parts of the tumor). Although GLISTR 

was inspired by a sequential approach of segmentation of the input brain scans followed by 

the registration of the outcome to a given healthy atlas [8], it was originally proposed in 

[9,10] as a tool that jointly performs segmentation and registration, but handles only scans 

with solitary HGGs. It was then conceptually improved in [14] to target broader brain tumor 

appearances, including multifocal masses and complex shapes with heterogeneous textures 

(e.g., LGGs), enabling it to also participate in the BRATS 2014 challenge [13]. The version 

of GLISTR used here, was modified in terms of using multiple seed-points for each brain 

tissue label, in order to model the exact intensity distribution (i.e., mean and variance) of 

each, whereas [14] uses a single seed-point for each label, assuming it is representative of 

each label’s mean intensity value, and the variance is described by a fixed value for all 

labels. Note that both previous and current versions of GLISTR do not depend on the 

coordinates of the initialization seed-points, but on the intensity value of the corresponding 

voxel on each modality. Therefore, even if different seed-points are initialized across two 

independent segmentation attempts, GLISTR output segmentation results should be 

identical, if the intensity distributions modeled during these attempts are the same. The 

whole framework of GLISTR is based on a probabilistic generative model that relies on 

Expectation-Maximizaton (EM), to recursively refine the estimates of the posteriors for all 

tissue labels, the deformable mapping to the atlas, and the parameters of the incorporated 

brain tumor growth model [11].

This modified version of GLISTR requires as input a single seed-point and a radius for each 

apparent tumor, as well as multiple seed-points for each brain tissue label. These seed-points 

were initialized using BrainTumorViewer1, which has been primarily developed for this 

purpose. Given the single seed-point and the radius inputs, the center and the bulk volume of 

1Available on: https://www.cbica.upenn.edu/sbia/software/braintumorviewer/.
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each tumor are approximated by a sphere (Fig. 1). The parametric model of the sphere is 

used to initiate the tumor growth model for each apparent tumor. This growth model is used 

to modify the healthy atlas into one with tumor and edema tissues matching the input scans, 

whilst it approximates the deformation occurred to the surrounding brain tissues, due to the 

effect of the tumors’ mass. A tumor shape prior is also estimated separately, by a random-

walk-based generative model, which uses multiple tumor seed-points as initial foreground 

cues. This tumor shape prior is systemically incorporated into the EM framework via an 

empirical Bayes model, as described in [14]. Furthermore, a minimum of three seed-points 

are initialized for each brain tissue label, with the intention of capturing the intensity 

variation of each tissue label, and modeling each label’s intensity distribution. This provides 

a better initialization to the EM framework, resulting to more accurate delineation of all 

tissue labels, when compared to [14] that uses a single seed-point for each label. The output 

of GLISTR is a posterior probability map for each tissue label, as well as a label map, which 

is a very good initial segmentation of all different tissues within a patient’s brain.

A machine-learning approach was then used to refine GLISTR results by utilizing 

information across multiple patients. Specifically, the gradient boosting algorithm [5] is 

employed for voxel-level multi-label classification. Gradient boosting is an ensemble 

method that produces a prediction model by combining weak learners in a stage-wise 

fashion. It generalizes other boosting techniques by allowing the optimization of an arbitrary 

differentiable loss function. We used the Python package scikit-learn [18] for the 

implementation, choosing deviance as the loss function. At each iteration, a weak learner, 

specifically a decision tree of maximum depth 3, was added to the decision function, 

approximating the current negative gradient of the objective. Randomness was introduced 

when constructing each tree [6]. Each decision tree was fit to a sub-sample of the training 

set, with the sampling rate set equal to 0.6. The split was also determined stochastically by 

sampling a subset of features at each node, with the number of sampled features set equal to 

the square root of the total number of features. The algorithm was terminated after 100 such 

iterations.

The features used for training our model consist of five components; image intensity, image 

derivative, geodesic information, texture features, and the GLISTR posterior probability 

maps. The intensity component comprises the raw intensity value of each voxel (I(vi)), as 

well as their differences among all four modalities (i.e., T1, T1-CE, T2, T2-FLAIR). The 

image derivative component comprises the Laplacian of Gaussian and the image gradient 

magnitude. Note that prior to calculating any intensity-based feature, intensity normalization 

was performed based on the median intensity value of the GLISTR segmented cerebrospinal 

fluid. The geodesic information at voxel vi was given by the geodesic distance from the 

seed-point used in GLISTR as the tumor center, at voxel vs. Specifically, the geodesic 

distance between vi and vs was defined as minγ ∫γ P(γ(s))ds, where γ is a path connecting 

vi to vs. Similar to the approach taken in [7], we set the weight P at each voxel to be 

proportional to its gradient magnitude, and the optimization was solved using the fast 

marching method [4,19]. Furthermore, the texture features describe the first and second 

order texture statistics computed from a gray-level co-occurrence matrix. Specifically, the 

first order statistics comprise the mean and variance of the intensities from each modality 

within a radius of 2 voxels for each voxel. For the second order statistics, the image volumes 
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were firstly normalized to 64 different gray levels, and then a bounding box of 5-by-5 pixels 

was used for all the pixels of each image slice. Subsequently, a graylevel co-occurrence 

matrix was filled with the intensity values within a radius of 2 pixels for all eight main 

directions (i.e., {0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°}) to extract the energy, entropy, 

dissimilarity, homogeneity (i.e., inverse difference moment of order 2), and inverse 

difference moment of order 1. It should also be mentioned that our model was trained using 

both LGG and HGG training samples simultaneously using a 54-fold cross-validation setting 

(given that 54 LGGs were present in the training data, i.e., allowing for using a single LGG 

within each fold). The cross-validation setting is necessary in order to avoid over-fitting.

Finally, a patient-wise refinement was performed by assessing the local intensity distribution 

of the current segmentation labels and updating their spatial configuration based on a 

probabilistic model, inspired by [2]. Firstly, the intensity distribution of voxels with GLISTR 

posterior probability equal to 1 for the tissue classes of white matter, edema, necrosis, non-

enhancing and enhancing tumor, were populated separately. Note that in the current 

segmentation goal, there is no distinction between the non-enhancing and the necrotic parts 

of the tumor. A normalization to the histograms of pair-wise distributions was then applied. 

The class-conditional probability densities (Pr(I(vi)|Class1) and Pr(I(vi)|Class2)) were 

modeled by fitting distinct Gaussian models, using Maximum Likelihood Estimation to find 

the mean and standard deviation for each class. There are three pair-wise distributions 

considered here; the edema voxels opposed to the white matter voxels in the T2-FLAIR 

volume, the ET voxels opposed to the edema voxels in the T1-CE volume, and the ET voxels 

opposed to the union of the necrosis and the non-enhancing tumor in the T1-CE volume. In 

all cases, the former intensity population is expected to have much higher (i.e., brighter) 

values. Hence, voxels of each class with small spatial proximity (namely 3 voxels) to the 

opposing tissue class were evaluated based on their intensity. Specifically, the intensity I(vi) 

of each of these voxels was assessed and Pr(I(vi)|Class1) was compared with Pr(I (vi)|
Class2). The voxel vi was then classified into a tissue class according to the larger of the two 

conditional probabilities. This is equivalent to a classification based on Bayes’ Theorem 

with equal priors for the two classes, i.e., Pr(Class1) = Pr(Class2) = 0.5.

Note that our challenge winning methodology has been made publicly available on the 

Online Image Processing Portal (IPP)2 of the Center for Biomedical Image Computing and 

Analytics (CBICA), of the University of Pennsylvania. CBICA’s IPP allows users to 

perform their data analysis using the integrated algorithms, without any software 

installation, whilst also using CBICA’s High Performance Computing resources.

4 Experiments and Results

In order to assess the segmentation performance of our method, we evaluated the overlap 

between the proposed tumor labels and the GT in three regions, i.e., WT, TC and ET, as 

suggested in [17]. Figure 2 showcases example segmentation results along with the 

respective GT segmentations for eight patients (four HGGs and four LGGs). These 

correspond to the two most and least successful segmentation results for each glioma grade. 

2Available on: https://ipp.cbica.upenn.edu/.

Bakas et al. Page 5

Brainlesion. Author manuscript; available in PMC 2017 July 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ipp.cbica.upenn.edu/


We observe high agreement between the generated results and the provided labels. We note 

that the highest overlap is observed for edema, while there is some disagreement between 

the segmentations of the enhancing and non-enhancing parts of the tumor.

To further appraise the performance of the proposed method, we quantitatively validated the 

per-voxel overlap between respective regions, in the training set, using the DICE coefficient 

(see Fig. 3 and Table 1). This metric takes values between 0 and 1, with higher values 

corresponding to increased overlap. Moreover, aiming to understand fully the obtained 

results, we stratified them based on the labeling protocol of the GT segmentation. In 

particular, data with manually annotated GT (i.e., BRATS 2013 data) was evaluated 

separately from data with automatically defined GT (i.e., TCIA data). The reason behind this 

distinction is twofold. First, only manual segmentation can be considered as gold standard, 

thus allowing us to evaluate the potential of our approach when targeting an interactive 

clinical work-flow. Second, results validated using automatically defined GT should be 

interpreted with caution because of the inherently introduced bias towards the employed 

automated methods, which also influences visually inspecting experts [3]. As a 

consequence, our method may be negatively impacted since it may learn to reproduce the 

systematic mistakes of the provided annotations. Furthermore, since LGGs are characterized 

by a distinct pathophysiological phenotype (i.e., lack of enhancing tumor part), we also 

divided the obtained results in terms of the tumors’ grade (i.e., LGG and HGG). This allows 

the performance assessment of the proposed approach on the distinct imaging phenotype of 

each grade separately.

Figure 3 reports the distributions of the cross-validated DICE score across patients of the 

training set, for each step of the proposed method and for each tissue label (WT, TC and ET) 

while Table 1 reports the respective mean and median values. The results are presented 

following the previously described stratifications. Figure 3 shows a clear step-wise 

improvement in both the mean and median values of all tissue labels when considering the 

complete set of data, the automatically annotated, the LGGs and the HGGs. On the contrary, 

we observe a step-wise deterioration of both the mean and median values for the TC label 

when assessing the manually annotated subset of the data (see Table 1 for the exact values). 

This is probably the effect of learning systematically mislabeled voxels present in the 

automatically generated GT annotations (see mislabeled ET in GT of the second HGG in 

Fig. 2(a)). Furthermore, we note the segmentation results for the ET label to vary 

significantly between LGGs and HGGs, with the former showing lower and less consistent 

results. This seems to be the effect of training our learning model using both classes 

simultaneously, when LGGs typically show a different pathophysiological phenotype 

marked by the lack of an enhancing part. Nevertheless, the segmentation of the WT label in 

the LGGs is comparable to this of the HGGs.

Lastly, the hereby proposed method was also quantitatively evaluated during the testing 

phase of the BRATS 2015 challenge along other 12 participating teams, using the DICE 

score and the robust Hausdorff distance (95 % quantile), similar to [17]. Each team had only 

48 hours for producing their segmentation labels, from the time the testing set was made 

available, until the submission of the results to VSD. The limited time of the testing phase 

was considered essential to minimize the chance of optimizing the proposed algorithms on 
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the given data. According to the results presented during the challenge, our semi-automatic 

approach performed best when compared to the other competing methods.

5 Discussion

We presented an approach that combines generative and discriminative methods towards 

providing a reliable and highly accurate segmentation of LGGs and HGGs in multimodal 

MRI volumes. Our proposed approach is built upon the brain segmentation results provided 

by a modified version of GLISTR. GLISTR segments the brain into tumor and healthy tissue 

labels by means of a generative model encompassing a tumor growth model and a 

probabilistic atlas of healthy individuals. GLISTR tumor labels are subsequently refined 

taking into account population-wide tumor label appearance statistics that were learned by 

employing a gradient boosting multi-class classifier. The final results are produced by 

adapting the segmentation labels based on patient-specific label intensity distributions from 

the multiple modalities.

Our approach was able to deliver high quality tumor segmentation results, eventually 

performing best among the competing methods in BRATS 2015 challenge, by significantly 

improving GLISTR results [13] through the adopted post-processing strategies. This 

improvement was evident for both manually and automatically segmented data, as well as 

for both LGGs and HGGs. The only case where the post-processing resulted in a decrease of 

the performance is for the TC label when considering only the manually segmented data. 

This could be probably attributed to the fact that the supervised gradient boosting model 

learned consistent errors present in the automatically generated segmentations and 

propagated them when refining GLISTR results. While pooling information for more 

patients seems to be benefiting the learning algorithm, it also introduces a bias towards the 

more numerous automatically generated data. Accounting for this bias by weighting 

accordingly manually and automatically segmented samples could possible allow for 

harnessing the additional information without compromising quality. Moreover, the 

proposed approach performed best in the WT label, which is clinically considered of the 

highest importance since it allows for: (i) assessment and evaluation of the heterogeneity of 

the peritumoral edematous region [1], (ii) estimates of diffuse tumor infiltration, rather than 

a binary tumor/no-tumor classification, and (iii) guidance to spatially-precise treatment 

decisions.

The proposed approach segmented the whole tumor and the tumor core with high accuracy 

for both LGGs and HGGs. However, the segmentation results for the enhancing tumor 

varied importantly between the two classes of tumors, with the performance of our method 

in the case of LGGs being significantly lower and less consistent. This is due to the fact that 

LGGs are characterized by a distinct pathophysiological phenotype that is often marked by 

the lack of an enhancing part, hence not having the same imaging phenotype with the HGGs. 

In addition, the segmentation of the enhancing tumor could be further improved considering 

that gliomas can be distinguished into two distinct imaging phenotypes, which are not 

necessarily consistent with their clinical grade (i.e., LGG/HGG). These distinct imaging 

signatures could be possibly exploited in a machine learning framework that considers 

separately radiologically defined HGGs and LGGs, i.e., tumors with and without a 
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distinctive enhancing part. By modeling separately these distinct imaging phenotypes, it is 

possible to capture better the imaging heterogeneity and improve label prediction.
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Fig. 1. 
Example of using a single seed-point and a radius to approximate the center and the bulk 

volume of a tumor by a sphere. The figures illustrate (from left to right) the axial, coronal 

and sagittal view of the same patient.
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Fig. 2. 
Examples for four LGG and four HGG patients. Green, red and blue masks denote the 

edema, the enhancing tumor and the union of the necrotic and non-enhancing parts of the 

tumor, respectively (Color figure online).
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Fig. 3. 
Distributions of the DICE score across patients for each step (G: GLISTR, GB: gradient 

boosting, P: proposed) of the proposed method, each tissue label and different groupings of 

data. The black cross and the red line inside each box denote the mean and median values, 

respectively (Color figure online).
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