Skip to main content

Fiber Tracking in Traumatic Brain Injury: Comparison of 9 Tractography Algorithms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9556))

Abstract

Traumatic brain injury (TBI) can cause widespread and long-lasting damage to white matter. Diffusion weighted imaging methods are uniquely sensitive to this disruption. Even so, traumatic injury often disrupts brain morphology as well, complicating the analysis of brain integrity and connectivity, which are typically evaluated with tractography methods optimized for analyzing normal healthy brains. To understand which fiber tracking methods show promise for analysis of TBI, we tested 9 different tractography algorithms for their classification accuracy and their ability to identify vulnerable areas as candidates for longitudinal follow-up in pediatric TBI participants and matched controls. Deterministic tractography models yielded the highest classification accuracies, but their limitations in areas of extensive fiber crossing suggested that they generated poor candidates for longitudinal follow-up. Probabilistic methods, including a method based on the Hough transform, yielded slightly lower accuracy, but generated follow-up candidate connections more coherent with the known neuropathology of TBI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xu, J., Rasmussen, I.-A., Lagopoulos, J., Håberg, A.: Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging. J. Neurotrauma 24, 753–765 (2007)

    Article  Google Scholar 

  2. Jin, Y., Shi, Y., Zhan, L., Gutman, B., de Zubicaray, G.I., McMahon, K.L., Wright, M.J., Toga, A.W., Thompson, P.M.: Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics. NeuroImage 100, 75–90 (2014)

    Article  Google Scholar 

  3. Jin, Y., Shi, Y., Zhan, L., de Zubicaray, G.I., McMahon, K.L., Martin, N.G., Wright, M.J., Thompson, P.M.: Labeling white matter tracts in HARDI by fusing multiple tract atlases with applications to genetics. In: 10th Proceedings of the IEEE International Symposium Biomed Imaging, pp. 512–515 (2013)

    Google Scholar 

  4. Dennis, E.L., Jin, Y., Villalon-Reina, J., Zhan, L., Kernan, C., Babikian, T., Mink, R., Babbitt, C., Johnson, J., Giza, C.C.: White matter disruption in moderate/severe pediatric traumatic brain injury: advanced tract-based analyses. NeuroImage: Clinical 7, 493–505 (2015)

    Article  Google Scholar 

  5. Dennis, E.L., Ellis, M.U., Marion, S.D., Jin, Y., Kernan, C., Babikian, T., Mink, R., Babbitt, C., Johnson, J., Giza, C.C., Thompson, P.M., Asarnow, R.F.: Callosal function in pediatric traumatic brain injury linked to disrupted white matter integrity. J. Neurosci. 35, 10202–10211 (2015)

    Article  Google Scholar 

  6. Dennis, E.L., Jin, Y., Kernan, C.L., Babikian, T., Mink, R., Babbitt, C., Johnson, J., Giza, C.C., Asarnow, R.F., Thompson, P.M.: White matter integrity in traumatic brain injury: effects of permissible fiber turning angle. In: 12th Proceedings IEEE International Symposium Biomed Imaging, pp. 930–933 (2015)

    Google Scholar 

  7. Zhan, L., Zhou, J., Wang, Y., Jin, Y., Jahanshad, N., Prasad, G., Nir, T.M., Leonardo, C.D., Ye, J., Thompson, P.M., for The Alzheimer’s Disease Neuroimaging, I.: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease. Front. Aging Neurosci. 7, 48 (2015)

    Google Scholar 

  8. Zhan, L., Jahanshad, N., Jin, Y., Toga, A.W., McMahon, K.L., de Zubicaray, G., Martin, N.G., Wright, M.J., Thompson, P.M.: Brain network efficiency and topology depend on the fiber tracking method: 11 tractography algorithms compared in 536 subjects. In: 10th Proceedings of the IEEE International Symposium Biomed Imaging, pp. 1134–1137 (2013)

    Google Scholar 

  9. Giza, C.C., Maria, N.S., Hovda, D.A.: N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J. Neurotrauma 23, 950–961 (2006)

    Article  Google Scholar 

  10. Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006)

    Article  Google Scholar 

  11. Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.M.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 5, 1–23 (1999)

    Google Scholar 

  12. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994)

    Article  Google Scholar 

  13. Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain. Proc. Nat. Acad. Sci. U.S.A. 96, 10422–10427 (1999)

    Article  Google Scholar 

  14. Lazar, M., Weinstein, D.M., Tsuruda, J.S., Hasan, K.M., Arfanakis, K., Meyerand, M.E., Badie, B., Rowley, H.A., Haughton, V., Field, A.: White matter tractography using diffusion tensor deflection. Hum. Brain Mapp. 18, 306–321 (2003)

    Article  Google Scholar 

  15. Aganj, I., Lenglet, C., Jahanshad, N., Yacoub, E., Harel, N., Thompson, P.M., Sapiro, G.: A Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography. Med. Image Anal. 15, 414–425 (2011)

    Article  Google Scholar 

  16. Parker, G.J., Haroon, H.A., Wheeler-Kingshott, C.A.: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J. Magn. Reson. Imaging 18, 242–254 (2003)

    Article  Google Scholar 

  17. Wedeen, V.J., Rosene, D.L., Wang, R., Dai, G., Mortazavi, F., Hagmann, P., Kaas, J.H., Tseng, W.Y.: The geometric structure of the brain fiber pathways. Science 335, 1628–1634 (2012)

    Article  Google Scholar 

  18. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)

    Article  Google Scholar 

  19. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  20. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 14, 1137–1145 (1995)

    Google Scholar 

  21. De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., Formisano, E.: Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage 43, 44–58 (2008)

    Article  Google Scholar 

  22. Hulkower, M.B., Poliak, D.B., Rosenbaum, S.B., Zimmerman, M.E., Lipton, M.L.: A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR 34, 2064–2074 (2013)

    Article  Google Scholar 

  23. Wilde, E.A., Ayoub, K.W., Bigler, E.D., Chu, Z.D., Hunter, J.V., Wu, T.C., McCauley, S.R., Levin, H.S.: Diffusion tensor imaging in moderate-to-severe pediatric traumatic brain injury: changes within an 18 month post-injury interval. Brain Imaging Behav. 6, 404–416 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the NICHDS (R01 HD061504). ELD, YJ, and PT are also supported by NIH grants to PT: U54 EB020403, R01 EB008432, R01 AG040060, and R01 NS080655. CCG is supported by the UCLA BIRC, NS027544, NS05489, Child Neurology Foundation, and the Jonathan Drown Foundation. Scanning was supported by the Staglin IMHRO Center for Cognitive Neuroscience. We gratefully acknowledge the contributions of Alma Martinez and Alma Ramirez in assisting with participant recruitment and study coordination. Finally, the authors thank the participants and their families for contributing their time to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily L. Dennis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dennis, E.L. et al. (2016). Fiber Tracking in Traumatic Brain Injury: Comparison of 9 Tractography Algorithms. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2015. Lecture Notes in Computer Science(), vol 9556. Springer, Cham. https://doi.org/10.1007/978-3-319-30858-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30858-6_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30857-9

  • Online ISBN: 978-3-319-30858-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics