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Subtyping Supports Safe Session Substitution

Simon J. Gay?

School of Computing Science, University of Glasgow, UK
Simon.Gay@glasgow.ac.uk

Abstract. Session types describe the structure of bi-directional point-
to-point communication channels by specifying the sequence and format
of messages on each channel. A session type defines a communication
protocol. Type systems that include session types are able to statically
verify that communication-based code generates, and responds to, mes-
sages according to a specified protocol. It is natural to consider subtyping
for session types, but the literature contains conflicting definitions. It is
now folklore that one definition is based on safe substitutability of chan-
nels, while the other is based on safe substitutability of processes. We
explain this point in more detail, and show how to unify the two views.

0 Prologue

My first encounter with Phil Wadler was at the Marktoberdorf Summer School
in 1992, where he lectured on monads in functional programming. His course
had the characteristically punning title “Church and State: taming effects in
functional languages”, and during his first lecture he removed his shirt to reveal
a T-shirt printed with the category-theoretic axioms for a monad. The following
year I met him again, at POPL in Charleston, South Carolina. He presented
the paper “Imperative Functional Programming”, also covering the monadic
approach and co-authored with Simon Peyton Jones, which in 2003 won the
award for the most influential paper from POPL 1993.

At that time, in the early 1990s, Phil was a professor at the University of
Glasgow, and I was a PhD student at Imperial College London, attending POPL
to present my own very first paper, which was about types for pi calculus. We
PhD students in the Imperial theory group had a view of the world in which a
small number of other departments were admired for their theoretical research,
and the rest were ignored. The Glasgow functional programming group was
admired, as was the LFCS in Edinburgh, where Phil now works. More than
twenty years later, I myself am a professor at the University of Glasgow, but
when I arrived here as a lecturer in 2000, Phil had already departed for the USA.
When he returned to Scotland to take a chair in theoretical computer science

? Supported by EPSRC (EP/K034413/1 “From Data Types to Session Types: A Ba-
sis for Concurrency and Distribution” and EP/L00058X/1 “Exploiting Parallelism
through Type Transformations for Hybrid Manycore Systems”) and COST Action
IC1201 “Behavioural Types for Reliable Large-Scale Software Systems”.
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at Edinburgh, we started the Scottish Programming Languages Seminar, which
is still active. Eventually the opportunity for a technical collaboration arose,
when Phil developed an interest in session types because of the Curry-Howard
correspondence between session types and linear logic, discovered by Lúıs Caires
and Frank Pfenning. This led to a successful EPSRC grant application by Phil,
myself, and Nobuko Yoshida, which is still running.

I am delighted to contribute this paper to Phil’s 60th birthday Festschrift.

1 Introduction

Session types were introduced by Honda et al. (1994; 1998), based on earlier
work by Honda (1993), as a way of expressing communication protocols type-
theoretically, so that protocol implementations can be verified by static type-
checking. The original formulation, now known as binary session types, cov-
ers pairwise protocols on bidirectional point-to-point communication channels.
Later, the theory was extended to multiparty session types (Honda et al., 2008),
in order to account for collective protocols among multiple participants.

Gay and Hole (1999, 2005) extended the theory of session types by adding
subtyping, to support more flexible interaction between participants in a proto-
col. Many papers now include subtyping. However, not all of them use the same
definition as Gay and Hole; some papers give the opposite variance to the session
type constructors. The alternative definition first appears in the work of Carbone
et al. (2007) and has been used in many papers by Honda et al., including one by
Demangeon and Honda (2011) whose main focus is subtyping. For example, con-
sider two simple session types with branching (external choice), one which offers
a choice between labels a and b, and one which offers label a alone. According to
Gay and Hole’s definition, the session type constructor for branch is covariant in
the set of labels, so that &〈a : end〉 6 &〈a : end, b : end〉. According to the Honda
et al. definition, branch is contravariant, so that &〈a : end, b : end〉 v &〈a : end〉.
Each paper defines a type system and an operational semantics and proves that
typability guarantees runtime safety. How can both definitions of subtyping be
correct?

The fundamental way of justifying the definition of subtyping for any lan-
guage is by Liskov and Wing’s (1994) concept of safe substitutability. Type T is
a subtype of type U if a value of type T can be safely used whenever a value of
type U is expected, where “safely” means without violating the runtime safety
property that the type system guarantees. In this paper we will analyse safe
substitutability in the setting of session types, to see how each definition of
subtyping can be justified. The answer lies in careful consideration of what is
being safely substituted. Gay and Hole’s definition is based on safe substitution
of communication channels, whereas Honda et al.’s definition is based on safe
substitution of processes. This situation contrasts with that of λ-calculus, where
the syntax consists only of expressions and there is no choice about which kind
of entity is being substituted.
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The remainder of the paper is structured as follows. Section 2 reviews the
concepts of session types and motivates the need for subtyping. Section 3 consid-
ers safe substitution of channels, and gives several justifications of the Gay and
Hole definition. Section 4 considers safe substitution of processes, and justifies
the Honda et al. definition. Section 5 describes a session type system for higher-
order communication, introduced by Mostrous and Yoshida (2007, 2015), and
shows how that setting allows the two definitions of subtyping to be reconciled.
Finally, Section 6 concludes. In order to reduce the volume of definitions, we
focus on intuition and explanation, and do not give full details of the languages
and type systems that we discuss.

2 Session Types and Subtyping

To illustrate the need for a theory of subtyping for session types, consider the
example of a server for mathematical operations (Gay and Hole, 2005). There are
two services: addition of integers, which produces an integer result, and testing
of integers for equality, which produces a boolean result. A client and a server
run independently and communicate on a bidirectional point-to-point channel,
which has two endpoints, one for the client and one for the server. The protocol
is specified by defining a pair of dual session types, one for each endpoint. The
type of the server’s endpoint is S, defined as follows.

S = &〈 add :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉

The &〈 . . . 〉 constructor specifies that a choice is offered between, in this
case, two options, labelled add and eq. It is an external choice, often called
“branch”: the server must be prepared to receive either label. Each label leads
to a type describing the continuation of the protocol, different in each case.
The constructors ?[. . .] and ![. . .] indicate receiving and sending, respectively.
Sequencing is indicated by . and end marks the end of the interaction. For
simplicity this protocol allows only a single service invocation.

In a run of the protocol, the first message is one of the labels plus and eq, sent
from the client to the server. Subsequently, the client sends messages according
to the continuation of the label that was chosen, and then receives a message
from the server. The type of the client’s endpoint is S, the dual of S.

S = ⊕〈 add : ![int].![int].?[int].end,
eq : ![int].![int].?[bool].end 〉

The structure is the same, but the directions of the communications are reversed.
The ⊕〈 . . . 〉 constructor is an internal choice, often called “select” or “choice”:
the client can decide which label to send.

Suppose that the server is upgraded by the addition of new services and an
extension of an existing service. The equality test can now handle floating point
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numbers, and there is a multiplication service. The type of the new server is S′.

S′ = &〈 add :?[int].?[int].![int].end,
mul :?[int].?[int].![int].end,
eq :?[float].?[float].![bool].end 〉

The requirement for a theory of subtyping is to allow a client that has been
typechecked with type S to interact with the new server. In Sections 3 and 4 we
will discuss the two approaches to subtyping that have appeared in the literature,
and explain how they account for this example.

Another possibility is to upgrade the type of the addition service to

add :?[float].?[float].![float].end.

This motivates the development of a theory of bounded polymorphism (Gay,
2008) that allows the addition service to have type

add(X 6 float) :?[X].?[X].![X].end

so that the client chooses an instantiation of the type variable X as either int
or float and then proceeds appropriately. We do not consider bounded polymor-
phism further in the present paper.

3 Channel-Oriented Subtyping

In Section 2 we defined session types for the mathematical server and client,
without choosing a language in which to implement them. We will now give pi
calculus definitions, following the example of Gay and Hole (2005). The core of
the server process is serverbody, parameterised by its channel endpoint x.

serverbody(x) = x.{ add :x?[u:int].x?[v:int].x![u+ v].0,
eq :x?[u:int].x?[v:int].x![u = v].0 }.

The branching construct x.{. . .} corresponds to the type constructor &〈 . . . 〉;
it receives a label and executes the code corresponding to that label. The rest
of the syntax is pi calculus extended with arithmetic operations. The process
x?[u:int].P receives an integer value on channel x, binds it to the name u, and
then executes P . The process x![u+ v].Q sends the value of the expression u+ v
on channel x and then executes Q. Finally, 0 is the terminated process.

The type system derives judgements of the form Γ ` P , where Γ is an
environment of typed channels and P is a process. A process does not have a
type; it is either correctly typed or not. The typing of serverbody is

x :S ` serverbody(x)

where S is the session type defined in Section 2. Although we are not showing
the typing rules here, it should be clear that the process and the type have the
same communication structure.
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Similarly, the core of one possible client process, which uses the addition
service, is clientbody, again parameterised by its channel endpoint.

clientbody(x) = x/add.x![2].x![3].x?[u:int].0

The typing is
x :S ` clientbody(x).

The client and server need to establish a connection so that they use opposite
endpoints c− and c+ of channel c. The original formulation of session types
(Takeuchi et al., 1994) used matching request and accept constructs, but here
we follow Gay and Hole’s approach in which the client uses standard pi calculus
name restriction to create a fresh channel and then sends one endpoint to the
server. This requires a globally known channel a of type [̂S] (the standard pi
calculus channel type constructor). The complete definitions and typings are

server(a) = a?[y:S].serverbody(y)
client(a) = (νx : S)(a![x+].clientbody(x−))
a : [̂S] ` server(a)
a : [̂S] ` client(a)

where (νx : S) binds x+ with type S and x− with type S.
In Section 2 we defined the session type S′ for an upgraded server. The

corresponding definition of newserverbody is

newserverbody(x) = x.{ add :x?[u:int].x?[v:int].x![u+ v].0,
mul :x?[u:int].x?[v:int].x![u ∗ v].0,
eq :x?[u:float].x?[v:float].x![u = v].0 }.

and we have x : S′ ` newserverbody(x). Now newserver is defined in terms of
newserverbody in the same way as before.

Clearly client can interact safely with newserver; the question is how to extend
the type system so that

a : [̂S′] ` client(a) | newserver(a).

In Gay and Hole’s theory, this is accounted for by considering safe substitu-
tion of channels. It is safe for newserverbody to interact on a channel of type S
instead of the channel of type S′ that it expects; the substitution means that
newserverbody never receives label mul and always receives integers in the eq
service, because the process at the other endpoint of the channel is using it with
type S. Subtyping is defined according to this concept of safe substitution, giving
S 6 S′. We see that branch (external choice) is covariant in the set of labels, and
input is covariant in the message type. If we imagine changing the definitions so
that the server creates the channel and sends one endpoint to the client, we find
that select (internal choice) is contravariant in the set of labels and output is
contravariant in the message type. These are the variances established by Pierce
and Sangiorgi (1996) in the first work on subtyping for (non-session-typed) pi
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S-End
end 6 end

T 6 U U 6 T
S-Chan

[̂T ] 6 [̂U ]

T 6 U V 6 W
S-InS

?[T ].V 6 ?[U ].W

m 6 n ∀i ∈ {1, . . . ,m}.Si 6 Ti

S-Branch
&〈 li : Si 〉16i6m 6 &〈 li : Ti 〉16i6n

U 6 T V 6 W
S-OutS

![T ].V 6 ![U ].W

m 6 n ∀i ∈ {1, . . . ,m}.Si 6 Ti

S-Choice
⊕〈 li : Si 〉16i6n 6 ⊕〈 li : Ti 〉16i6m

Fig. 1. Subtyping for non-recursive types.

calculus. Furthermore, it is clear that all of the session type constructors are
covariant in the continuation type, simply because after the first communica-
tion we can again consider safe substitutability with the continuation types in
the substituting and substituted positions. The definition of subtyping for non-
recursive session types is summarised in Figure 1, which includes the invariant
rule for standard channel types. For recursive types, the same principles are used
as the basis for a coinductive definition (Gay and Hole, 2005).

This definition of subtyping is justified by the proof of type safety in Gay
and Hole’s system. In the rest of this section, we give alternative technical jus-
tifications for the definition.

3.1 Safe substitutability of channels, formally

Gay and Hole express safe substitutability of channels for channels by (a more
general form of) the following result, in which zp is either z+ or z−.

Lemma 1 (Substitution (Gay and Hole, 2005, Lemma 8)). If Γ,w :W `
P and Z 6W and zp 6∈ dom(Γ ) then Γ, zp :Z ` P{zp/w}.

They define subtyping first, taking into account recursive types by giving a coin-
ductive definition based on the principles of Figure 1, and then prove type safety,
for which Lemma 1 is a necessary step. Alternatively, we can take Lemma 1 as
a statement of safe substitutability, i.e. a specification of the property that we
want subtyping to have, and then derive the definition of subtyping by consid-
ering how to prove the lemma by induction on typing derivations. For example,
in the inductive case for an input process, the relevant typing rule is T-InS. The
occurrence of subtyping in the rule is based on safe substitutability of channels:
the received value of type T must be substitutable for the bound variable y of
type U .

Γ, xp:S, y:U ` P T 6 U
T-InS

Γ, xp:?[T ].S ` xp?[y:U ].P

The specific case in the proof of the lemma is that we substitute zp for x in
the process x?[y:U ].Q. The typing derivation for x?[y:U ].Q concludes with an
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application of rule T-InS.

Γ, x:S, y:U ` Q T 6 U
T-InS

Γ, x:?[T ].S ` x?[y:U ].Q

To prove this case of Lemma 1 we need to establish Γ, zp :Z ` zp?[y:U ].Q{zp/x},
which has to have a derivation ending with an application of rule T-InS:

Γ, zp:S′, y:U ` Q{zp/x} A 6 U
T-InS

Γ, zp:?[A].S′ ` zp?[y:U ].Q{zp/x}

From the assumptions Z 6 ?[T ].S and T 6 U , we need to be able to conclude
Z = ?[A].S′ and S′ 6 S (to use the induction hypothesis) and A 6 U . To go
from T 6 U to A 6 U , for arbitrary U , requires A 6 T . Overall, in order to
make the proof of Lemma 1 work, we need:

if Z 6 ?[T ].S then Z = ?[A].S′ with A 6 T and S′ 6 S.

This is essentially one of the clauses in the coinductive definition of subtyping
(Gay and Hole, 2005, Definition 3); the only difference is that the coinductive
definition unfolds recursive types.

As another example we can consider the case of branch, with the typing
rule T-Offer. It contains the raw material of subtyping in the form of the
condition m 6 n, which guarantees that the received label is within the range
of possibilities.

m 6 n ∀i ∈ {1, . . . ,m}.(Γ, xp:Si ` Pi)
T-Offer

Γ, xp:&〈 li : Si 〉16i6m ` xp.{ li : Pi }16i6n

The relevant case in the proof of Lemma 1 is that we substitute zp for x in the
process x.{ li : Pi }16i6n. The typing derivation for x.{ li : Pi }16i6n concludes
with an application of rule T-Offer.

m 6 n ∀i ∈ {1, . . . ,m}.(Γ, x:Si ` Pi)
T-Offer

Γ, x:&〈 li : Si 〉16i6m ` x.{ li : Pi }16i6n

We need to establish Γ, zp:Z ` zp.{ li : Pi{zp/x} }16i6n, whose derivation must
end with an application of T-Offer:

r 6 n ∀i ∈ {1, . . . , r}.(Γ, zp:Zi ` Pi)
T-Offer

Γ, zp:&〈 li : Zi 〉16i6r ` zp.{ li : Pi }16i6n

From the assumptions Z 6 &〈 li : Si 〉16i6m and m 6 n we need to be able to
conclude Z = &〈 li : Zi 〉16i6r and ∀i ∈ {1 . . . r}.Zi 6 Si and r 6 n. Therefore
we need:

if Z 6 &〈 li : Si 〉16i6m then Z = &〈 li : Zi 〉16i6r with r 6 m and
∀i ∈ {1 . . . r}.Zi 6 Si.
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JendK = cap∅[]
J?[T ].SK = capi[JT K, JSK]
J![T ].SK = capo[JT K, JSK]

J&〈l1 : S1, . . . , ln : Sn〉K = capi[〈l1 : JS1K, . . . , ln : JSnK〉]
J⊕〈l1 : S1, . . . , ln : Sn〉K = capo[〈l1 : JS1K, . . . , ln : JSnK〉]

Fig. 2. Translation of session types into linear and variant types (Dardha et al., 2012).
Data types such as int and bool are translated into themselves.

Again this is essentially a clause in the coinductive definition of subtyping. The
other clauses are obtained similarly by considering other possibilities for the
structure of P , with the exception of the clause for end which requires proving
(straightforwardly) that Γ, x:end ` P if and only if Γ ` P and x 6∈ fn(P ). In
order to type as many processes as possible we take the largest relation satisfying
this clause, which leads to the coinductive definition.

3.2 Channel-oriented subtyping by translation

Kobayashi (2002) observed informally that the branch and choice constructors of
session types can be represented by variant types, which have been considered in
pi calculus independently of session types (Sangiorgi and Walker, 2001). Specif-
ically, making a choice corresponds to sending one label from a variant type,
and offering a choice corresponds to a case-analysis on a received label. With
this representation, Gay and Hole’s definition of subtyping follows by combin-
ing the standard definition of subtyping for variants in λ-calculus (Pierce, 2002)
with Pierce and Sangiorgi’s (1996) definition of subtyping for input and output
types in pi calculus. Dardha et al. (2012) developed this idea in detail1. They
showed that not only subtyping, but also polymorphism, can be derived from a
translation of session types into linear pi calculus (Kobayashi et al., 1999) with
variants.

The translation combines three ideas. First, in the linear pi calculus, a linear
channel can be used for only one communication. To allow a session channel to
be used for a series of messages, a continuation-passing style is used, so that
each message is accompanied by a fresh channel which is used for the next
message. Second, the linear pi calculus separates the capabilities for input (capi)
and output (capo) on a channel. A session type corresponding to an initial input
or output is translated into an input-only or output-only capability. Polyadic
channel types of the form capi[T1, . . . , Tn] are used. Third, branch and select
session types are both translated into variant types 〈l1 : T1, . . . , ln : Tn〉, with
the input or output capability as appropriate. The translation of types is defined
in Figure 2; note the use of the empty capability cap∅ in the translation of end.

1 See also Dardha’s (2014) PhD thesis.
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To illustrate the translation, consider the session types S and S from Sec-
tion 2.

JSK = capi[〈 add : capi[int, capi[int, capo[int, cap∅[] ] ] ]
eq : capi[int, capi[int, capo[bool, cap∅[] ] ] ] 〉 ]

JSK = capo[〈 add : capi[int, capi[int, capo[int, cap∅[] ] ] ]
eq : capi[int, capi[int, capo[bool, cap∅[] ] ] ] 〉 ]

Duality appears as a reversal of input/output capability at the top level only, so
that the message types of JSK and JSK are the same.

The standard definition of subtyping for variant types is covariant in the set
of labels. With the definitions in Figure 2, considering that capi is covariant and
capo is contravariant, this gives the same variances for branch and select that
Gay and Hole define.

3.3 Channel-oriented subtyping by semantic subtyping

Castagna et al. (2009) use the idea of semantic subtyping (Frisch et al., 2002)
to develop a set-theoretic model of session types in which subtyping is simply
set inclusion. The foundation for their model is a duality relation ./ on session
types, which characterises safe communication. Gay and Hole generalised the
duality function (·) to a coinductively-defined relation ⊥ (in order to handle
recursive types) which requires exact matching of label sets and message types.
For example, with the definitions in Section 2, we have S ⊥ S but not S′ ⊥
S. In contrast, S′ ./ S because every message sent on an endpoint of type S
will be understood by the process at the opposite endpoint of type S′, and
vice versa. Deriving the definition of subtyping from this definition of duality
is technically more complicated because of the circularity that the definition
of duality itself involves subtyping of message types, which in general can be
session types. When the theory is worked out, the session type constructors have
the same variances as in Figure 1. The paper does not discuss the distinction
between channel-oriented and process-oriented subtyping, but the fact that the
definition of duality includes subtyping on message types, which can be channel
types, implies that substitutability of channels is being considered.

4 Process-Oriented Subtyping

We consider the paper by Demangeon and Honda (2011) as a typical example
that defines subtyping in the Honda et al. style. Like Dardha et al., they study
subtyping for session types by translating into a simpler language. Apart from
the definition of subtyping, the main difference is that their linear pi calculus
combines variant types and input/output types so that a label is accompanied
by a message. The intuition behind the Honda et al. definition of subtyping is
easiest to understand by considering the type environment to be the type of a
process, which we emphasize here by writing judgements in the form P ` Γ .
Their subsumption result has a clear analogy with subtyping for λ-calculus.
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Here, the relation v is the subtyping relation on session types, lifted pointwise
to environments.

Proposition 1 (Subsumption (Demangeon and Honda, 2011, Proposi-
tion 9)). If P ` Γ and Γ v Γ ′ then P ` Γ ′.

Considering the type environment as a specification of the interactions that
process must allow, we can return to the maths server to see that all of the
following typings make sense.

serverbody(x) ` x :S
newserverbody(x) ` x :S′

newserverbody(x) ` x :S

In the first two judgements, the type and the process match exactly. The third
judgement states that the process with more behaviour, newserverbody, satisfies
the requirement expressed by the original type S, i.e. it provides the add and eq
services. In relation to subtyping, and Proposition 1, this means S′ v S, i.e.

&〈 add :?[int].?[int].![int].end,
mul :?[int].?[int].![int].end,
eq :?[float].?[float].![bool].end 〉

 v
{

&〈 add :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉

This is the opposite of the subtyping relationship for these types in Gay and
Hole’s theory, which we described in Section 3. Indeed, Demangeon and Honda
define subtyping for branch types to be contravariant in the set of labels, and
subtyping for select types is covariant. The example above also shows that input
needs to be contravariant in the message type and output needs to be covari-
ant, so that the subtyping relation is exactly the converse of Gay and Hole’s
definition. We emphasise that branch and input both involve receiving a value,
so it makes sense that they have the same variance; similarly select and out-
put. Demangeon and Honda actually define subtyping for input, which in their
presentation is unified with branch, to be covariant in the message type, and
conversely subtyping for output, which they unify with select, is contravariant.
It seems that this is just a typographical error, as other papers in the Honda
et al. style, for example by Chen et al. (2014), use the expected variance in the
message type. In some definitions of subtyping, for example by Mostrous and
Yoshida (2015), the variance depends on whether data or channels are being
communicated; the technical details need further investigation to clarify this
point.

Demangeon and Honda give further justification for their definition of sub-
typing by relating it to duality with the following result, stated here in a form
that combines their Definition 10 and Proposition 12.

Proposition 2. S1 v S2 if and only if for all S, S1 ./ S ⇒ S2 ./ S.

In words: if a process satisfies type S1, then it also satisfies type S2 if and only
if all safe interactions with S1 are also safe interactions with S2.
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The view of the session type environment as the specification of a process,
and consideration of when one process satisfies the specification originally given
for another process, correspond to working with safe substitution of processes,
instead of safe substitution of channels as in Section 3. Explicitly, consider the
following typing derivation for a server and client in parallel; we ignore the step
of establishing the connection, because in Demangeon and Honda’s system this
is achieved by a symmetrical request/accept construct rather than by sending a
channel endpoint.

serverbody(x+) ` x+ :S clientbody(x−) ` x− :S

serverbody(x+) | clientbody(x−) ` x+ :S, x− :S

Because we also have newserverbody(x+) ` x+ :S, the process newserverbody(x+)
can be safely substituted for serverbody(x+) in the derivation, i.e. in the typed
system.

It should be possible to prove a formal result about safe substitutability of
processes, along the following lines, where C[·] is a process context.

Conjecture 1. If P ` ΓP and Q ` ΓQ and ΓQ v ΓP and C[P ] ` Γ then C[Q] ` Γ .

5 Unifying Channel- and Process-Oriented Subtyping

Sections 3 and 4 described two separate type systems, with two definitions of
subtyping. To better understand the relationship between these definitions, we
use a language and type system in which both channel substitution and pro-
cess substitution can be expressed internally, by message-passing. This requires
higher-order communication, i.e. the ability to send a process as a message.

A natural way to develop a higher-order process calculus is to require a
process, before being sent as a message, to be made self-contained by being ab-
stracted on all of its channels. When a process is received, it can be applied to the
channels that it needs, and then will start executing. This approach is realistic
for distributed systems, as it does not assume that channels are globally avail-
able. Therefore we need a system that combines pi calculus and λ-abstraction,
with session types. This combination has been studied by Mostrous and Yoshida
(2015). We will now informally discuss typings in such a system.

In our presentation of Honda et al. style subtyping (Section 4) we used typing
judgements of the form P ` Γ . We will now write this as

P ` proc(Γ )

to emphasise the view of Γ as the type of P . In our presentation of Gay and
Hole subtyping (Section 3) we used typing judgements of the form Γ ` P . We
will now write this as

Γ ` P : proc

to emphasise that P is being given the type which says that it is a correct process.
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In Mostrous and Yoshida’s language of higher-order processes we can ab-
stract a process on its channels to obtain an expression with a function type, for
example

` λx.server(x) : S → proc

and
` λx.newserver(x) : S′ → proc.

Now we can identify proc(x : S) with S → proc. If we use Gay and Hole’s
subtyping relation, so that S 6 S′, then the standard definition of subtyping for
function types gives proc(x :S′) 6 proc(x : S), which is Honda et al.’s definition.
In other words, by moving to a setting in which safe substitution of both channels
and processes can be expressed in terms of message-passing, we can explain the
difference between Honda et al. subtyping and Gay/Hole subtyping by the fact
that subtyping on function types is contravariant in the parameter.

6 Conclusion

We have discussed two definitions of subtyping for session types, both justified
in terms of safe substitutability. The first definition, due to Gay and Hole, is
based on safe substitutability of channels and has been derived in several ways
in the literature. The second definition, due to Honda et al., is based on safe
substitutability of processes. We have shown that the two definitions can be
reconciled in a session type system for higher-order processes, of the kind defined
by Mostrous and Yoshida. This is achieved by identifying the type of a process
(its session environment, à la Demangeon and Honda) with a function type that
abstracts all of its channels. The Honda et al. definition, in which branch types
are contravariant, therefore arises from the combination of the Gay and Hole
definition, in which branch types are covariant, and the standard definition of
subtyping for function types, which is contravariant in the parameter.

We have used an informal presentation in order to focus on intuition and
reduce the number of definitions being quoted from the literature. A more tech-
nically detailed account, including a proof of Conjecture 1, will be left for a
future longer paper.
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