Skip to main content

Hybrid Control for a Real Swarm Robotics System in an Intruder Detection Task

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2016)

Abstract

Control design is one of the prominent challenges in the field of swarm robotics. Evolutionary robotics is a promising approach to the synthesis of self-organized behaviors for robotic swarms but it has, so far, only produced been shown in relatively simple collective behaviors. In this paper, we explore the use of a hybrid control synthesis approach to produce control for a swarm of aquatic surface robots that must perform an intruder detection task. The robots have to go to a predefined area, monitor it, detect and follow intruders, and manage their energy levels by regularly recharging at a base station. The hybrid controllers used in our experiments rely on evolved behavior primitives that are combined through a manually programmed high-level behavior arbitrator. In simulation, we show how simple modifications to the behavior arbitrator can result in different swarm behaviors that use the same underlying behavior primitives, and we show that the composed behaviors are scalable with respect to the swarm size. Finally, we demonstrate the synthesized controller in a real swarm of robots, and show that the behavior successfully transfers from simulation to reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unless indicated otherwise, the statistical tests were performed using two-sided Mann-Whitney U tests, with the p values adjusted using the Holm-Bonferroni method when multiple comparisons were made.

References

  1. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172(8), 292–321 (2016)

    Google Scholar 

  3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  4. Nolfi, S., Floreano, D.: Evolutionary Robotics: The biology, Intelligence, and Technology of Self-organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  5. Trianni, V.: Evolutionary Swarm Robotics: Evolving Self-organising Behaviours in Groups of Autonomous Robots. SCI, vol. 108. Springer, Heidelberg (2008)

    Google Scholar 

  6. Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues in evolutionary robotics. Evol. Comput. (2016, in press)

    Google Scholar 

  7. Duarte, M., Oliveira, S.M., Christensen, A.L.: Evolution of hybrid robotic controllers for complex tasks. J. Intell. Robot. Syst. 78(3–4), 463–484 (2015)

    Article  Google Scholar 

  8. Silva, F., Duarte, M., Oliveira, S.M., Correia, L., Christensen, A.L.: The case for engineering the evolution of robot controllers. In: Proceedings of the International Conference on the Simulation & Synthesis of Living Systems (ALIFE), pp. 703–710. MIT Press, Cambridge (2014)

    Google Scholar 

  9. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2(4) (2015)

    Google Scholar 

  10. Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M., Christensen, A.L.: Evolution of collective behaviors for a real swarm of aquatic surface robots (2015). Preprint, http://arxiv.org/abs/1511.03154

  11. Trianni, V., López-Ibáñez, M.: Advantages of task-specific multi-objective optimisation in evolutionary robotics. PLoS ONE 10(8), e0136406 (2015)

    Article  Google Scholar 

  12. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior. Adapt. Behav. 5(3–4), 317–342 (1997)

    Article  Google Scholar 

  13. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: a survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009)

    Article  Google Scholar 

  14. Whitley, L.D.: Fundamental principles of deception in genetic search. In: Proceedings of the 1st Workshop on Foundations of Genetic Algorithms, pp. 221–241. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  15. Doncieux, S., Mouret, J.B.: Beyond black-box optimization: a review of selective pressures for evolutionary robotics. Evol. Intel. 7(2), 71–93 (2014)

    Article  Google Scholar 

  16. Christensen, A.L., Dorigo, M.: Incremental evolution of robot controllers for a highly integrated task. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 473–484. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Lehman, J., Stanley, K.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  18. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)

    Article  Google Scholar 

  19. Gomes, J., Urbano, P., Christensen, A.L.: Evolution of swarm robotics systems with novelty search. Swarm Intell. 7(2–3), 115–144 (2013)

    Article  Google Scholar 

  20. Gomes, J., Christensen, A.L.: Generic behaviour similarity measures for evolutionary swarm robotics. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO), pp. 199–206. ACM, New York (2013)

    Google Scholar 

  21. Lee, W.P.: Evolving complex robot behaviors. Inf. Sci. 121(1–2), 1–25 (1999)

    Article  Google Scholar 

  22. Larsen, T., Hansen, S.T.: Evolving composite robot behaviour - a modular architecture. In: Proceedings of the International Workshop on Robot Motion and Control (RoMoCo), pp. 271–276. IEEE Press, Piscataway (2005)

    Google Scholar 

  23. Becerra, J.A., Bellas, F., Santos, J., Duro, R.J.: Complex behaviours through modulation in autonomous robot control. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 717–724. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Tunstel, E.: Mobile robot autonomy via hierarchical fuzzy behavior control. In: Proceedings of the International Symposium on Robotics and Manufacturing (WAC), pp. 837–842. ASME Press, New York (1996)

    Google Scholar 

  25. Duarte, M., Oliveira, S.M., Christensen, A.L.: Hybrid control for large swarms of aquatic drones. In: Proceedings of the 14th International Conference on the Synthesis & Simulation of Living Systems, pp. 785–792. MIT Press, Cambridge (2014)

    Google Scholar 

  26. Rodrigues, T., Duarte, M., Figueiró, M., Costa, V., Oliveira, S.M., Christensen, A.L.: Overcoming limited onboard sensing in swarm robotics through local communication. In: Nguyen, N.T., Kowalczyk, R., Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds.) TCCI XX. LNCS, vol. 9420, pp. 201–223. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27543-7_10

    Chapter  Google Scholar 

  27. Duarte, M., Silva, F., Rodrigues, T., Oliveira, S.M., Christensen, A.L.: JBotEvolver: a versatile simulation platform for evolutionary robotics. In: Proceedings of the 14thInternational Conference on the Synthesis & Simulation of Living Systems, pp. 210–211. MIT Press, Cambridge (2014)

    Google Scholar 

  28. Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real environments. Artif. Life 2(4), 417–434 (1996)

    Article  Google Scholar 

  29. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis. Adapt. Behav. 6(2), 325–368 (1997)

    Article  Google Scholar 

  30. Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  31. Hamann, H.: Towards swarm calculus: universal properties of swarm performance and collective decisions. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 168–179. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under the grants, SFRH/BD/76438/2011, SFRH/BD/89095/2012, PEst-OE/EEI/LA0008/2013, and EXPL/EEI-AUT/0329/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Duarte, M., Gomes, J., Costa, V., Oliveira, S.M., Christensen, A.L. (2016). Hybrid Control for a Real Swarm Robotics System in an Intruder Detection Task. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9598. Springer, Cham. https://doi.org/10.1007/978-3-319-31153-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31153-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31152-4

  • Online ISBN: 978-3-319-31153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics