
Influence Maximization in Social Networks

with Genetic Algorithms

Doina Bucur1 and Giovanni Iacca2

1 Johann Bernoulli Institute, University of Groningen
Nijenborgh 9, 9747 AG Groningen, The Netherlands

d.bucur@rug.nl

2 INCAS3

Dr. Nassaulaan 9, 9401 HJ, Assen, The Netherlands
giovanniiacca@incas3.eu

Abstract. We live in a world of social networks. Our everyday choices
are often influenced by social interactions. Word of mouth, meme di↵u-
sion on the Internet, and viral marketing are all examples of how social
networks can a↵ect our behaviour. In many practical applications, it is of
great interest to determine which nodes have the highest influence over
the network, i.e., which set of nodes will, indirectly, reach the largest
audience when propagating information. These nodes might be, for in-
stance, the target for early adopters of a product, the most influential
endorsers in political elections, or the most important investors in finan-
cial operations, just to name a few examples. Here, we tackle the NP-hard
problem of influence maximization on social networks by means of a Ge-
netic Algorithm. We show that, by using simple genetic operators, it is
possible to find in feasible runtime solutions of high-influence that are
comparable, and occasionally better, than the solutions found by a num-
ber of known heuristics (one of which was previously proven to have the
best possible approximation guarantee, in polynomial time, of the op-
timal solution). The advantages of Genetic Algorithms show, however,
in them not requiring any assumptions about the graph underlying the
network, and in them obtaining more diverse sets of feasible solutions
than current heuristics.

Keywords: Social Network, Influence Maximization, Genetic Algorithm, Graph
Theory, Combinatorial Optimization.

1 Introduction

Social networks are graphs of relationships natural to organized societies. Among
humans, these relationships are the vehicle by which news, ideas, trends, adver-
tising, or influence will spread, starting from an initial set of information owners.
A process of influence spread is shown abstractly in Figure 1. In a social network
where a graph edge a ! b signifies a likelihood that user a will support b in any
election (e.g., for the purpose of work-related promotions), the long-term pro-
motion outcome will depend on the initial set of network participants who cast

a vote. Also, in a product-marketing network where the nodes are products and
the edges a ! b model the likelihood of clients buying product b after product a
was bought, an advertiser can increase sales by specifically promoting that set of
products which trigger the largest co-buying e↵ect upon the rest of the network.

Fig. 1. Schematic spread of influence in a social network: three discrete steps in the
state of the network starting from a single “seed” node. Nodes reached are drawn in red
(grey in print). The information propagates via edges according to specific probabilistic
spread models, each spread model particular to a type of network.

The precise dynamics by which the graph structure enables new information
to spread depends on the nature of the social network: a directed graph edge
a ! b may simply model a fixed probability that information will be adopted
by b if a has just done so; alternatively, the likelihood of influence propagation
across the edge depends on other features of node b, such as its number of direct
relationships with other nodes. Social sciences have studied a number of such
probabilistic propagation models [1].

The open problem of influence maximization in a social network is the fol-
lowing: given the network graph G, a discrete-time formal propagation model
M , and a numerical “budget” k � 1 of network nodes to be initial “seeds” of
influence, calculate that set of k seed nodes which will have the largest global
influence upon the network. The problem was initially formulated in [2], and was
proven to be NP-hard for most propagation models [1].

In this work, we tackle the influence maximization problem by means of a
Genetic Algorithm (GA) which uses simple genetic operators typically used in
discrete optimization. We evaluate the Genetic Algorithm on two large, real-
world network datasets from the SNAP repository [3] modelling: (1) the who-
voted-whom network of 7115 Wikipedia users through a number of years, and (2)
a snapshot of the Amazon product co-purchasing network, of 262111 products.
We compare the results against three existing heuristics (all of a greedy nature,
either based on graph theory, or on exhaustive incremental search), and also
with randomly sampled solutions. We show that, even on very large networks,
the GA is at least as good as some of the known heuristics, without using any

domain knowledge of the underlying graphs. Furthermore, the GA is able to find
multiple diverse solutions with equally high network influence, suggesting that
the fitness landscape of this problem may have a high level of multimodality.

The remainder of the paper is structured as follows. First, in the next section
we briefly review the background concepts on influence propagation and the ways
influence can be maximized, by using heuristics. Then, in Section 3 we describe
the Genetic Algorithm used in our tests. Section 4 reports the experimental
results and the related analysis. Finally, Section 5 concludes this work.

2 Background: network and propagation models

A social network is modelled as a directed graph G. For the purpose of studying
the propagation of influence, at a time t each node in G is either active (i.e.,
has adopted the new information) or inactive. As will be seen in Section 2.1
below, in the propagation models we use, the set of active nodes in G increases
monotonously until the propagation process ends.

2.1 Modelling the propagation of influence: the cascade models

We consider a family of two classic, discrete-time influence-propagation models
in social networks, known as “cascade” models [1], see Algorithm 1. In these
discrete-time propagation models, the dynamics of information adoption is rep-
resented in individual steps. A given set A0 of “seed” nodes start in the active
state; these are the network entities which are originally targeted in the influ-
ence process. In the next time step t � 1, each node activated at time t� 1 may
activate some other nodes according to a probability given by the propagation
model; in the case of cascade models, this probability of activation is attached
to every edge, and is an independent random variable. The propagation ends at
the time t when no new nodes were activated, and the set containing all nodes
made active before t is the end result of the propagation process.

The simplest cascade model is the Independent Cascade, first studied in the
marketing domain, as an attempt to understand the e↵ects that personal word-
of-mouth communication has upon macro-level marketing [4]. In the Independent
Cascade, each newly activated node n will succeed in activating each currently
inactive neighbour m with a fixed probability p, which is a global property of the
system, and is thus equal across all edges n ! m; when node n has more than
one neighbour, the attempts at activation are sequenced in arbitrary order. As
an example, for the simple network in Figure 2, in which A0 = {n}, the model
has p1 = p2 = p and, at time t = 1, nodes m1 and m2 are equally likely to
become active. Given p = 0.5, the expected size of the set of active nodes at the
end of the propagation process is 2; this count includes the seed node n itself.

The second cascade model, named Weighted Cascade, di↵ers from the In-
dependent Cascade in that it assigns non-uniform probabilities of activation to
edges: an edge n ! m has probability 1

in-degree(m) of activating m when n is itself

Fig. 2. Simple propagation example for the cascade
models. With Independent Cascade, p1 = p2; with
Weighted Cascade, p1 = 1/2 and p2 = 1/5.

�

��

��

��

��

active3. It holds that, unlike for the Independent Cascade model, the expected
number of neighbours which will succeed in activating any node equals 1.

Algorithm 1 The Cascade family of propagation models. G is the network graph,
A0 the set of “seed” nodes, and p(n! m) the probability that information will reach
across a directed graph edge n! m. In the Independent Cascade model, p(n! m)
is constant and equal to the input parameter p for all edges n ! m in G. In the
Weighted Cascade model, p(n! m) is instead equal to 1

in-degree(m) .

1: procedure Cascade(G,A0, p)

2: ⌧ False . ⌧ : has the propagation ended?
3: A A0 . A: the set of active nodes after the propagation ended
4: B A . B: the set of nodes activated in the last time slot
5: while not ⌧ do

6: nextB ;
7: for each n 2 B do . only nodes in B will activate new nodes
8: for each direct neighbour m of n in G, where m 62 A, do
9: with probability p(n! m), add m to nextB

10: B nextB
11: A A [B
12: if B is empty then

13: ⌧ True
14: return the size of A

2.2 Problem statement

The influence-maximization problem optimizes the choice of the seed nodes in
set A0. The influence of a given seed set A0, denoted �(A0), is the expected
size of the set A of active nodes, E[|A|], obtained by a propagation model from
Algorithm 1 after completion. Given a number k � 1, the problem asks to

3 For any node n, we denote by in-degree(n) the number of edges incoming to n,
and by out-degree(n) the number of edges outgoing from n. Unlike some of the
related literature, which works with undirected rather than directed graphs, in our
algorithms we make the distinction between the two degree counts explicit.

compute the optimum set A0, where |A0| = k, such that �(A0) = E[|A|] is
maximized over all possible sets A0 in the graph G.

For both models, the problem of calculating the optimal “seed” set is NP-
hard. Further, we also know an approximation hardness result: estimating the
optimal solution by a factor better than 1� 1

e (where e is the base of the natural
logarithm) is also NP-hard [1]; this was proven by showing that it is at least as
hard as the classical NP-hard problem of maximum coverage (i.e., determining
those k sets of elements whose union has the maximum size). This approximation
factor amounts to an approximation guarantee just above 63%, i.e., it is not
possible to obtain in polynomial time a set A0 whose influence is higher than
63% of the true optimum.

2.3 Existing heuristics. Their complexity and approximation

guarantees

Approximation algorithms are used to compute best-e↵ort solutions. In this pa-
per, we use three of the existing approximation heuristics as a basis for com-
parison of performance: General greedy (due to its high complexity, only when
feasible computationally), High degree, and Single discount. The Kempe et al. [1]
greedy hill-climbing algorithm (referred to in this paper as the General greedy
heuristic) is proven to approximate the solution to within a factor arbitrarily
close to the approximation guarantee; we thus use General greedy as an opti-
mality benchmark. This heuristic has the following logic: it starts with A0 = ;
and the given problem size k, and adds one node at a time to A0 until |A0| = k.
A new node n from G, with n 62 A0, is chosen to be added to A0 if n maximizes
�(A0 [{n}).

This means that all nodes in G, but not yet in A0 must have their added
influence evaluated by computing their �(A0 [{·}). Note that, since the propa-
gation models are stochastic, the evaluation of �(A0 [{·}) in polynomial time
will not be exact; the problem of exactly computing �(A0) for any A0 under
the Independent Cascade model was proven #P-complete in Wang et al. [5].
However, one can approximate �(A0) by simulating the propagation process a
number of times, as the computational budget allows.

The heuristics which followed the General greedy method fell into two cat-
egories: (a) heuristics which preserve the approximation guarantee of General
greedy while lowering its average-case (but not worst-case) complexity, and (b)
heuristics of better complexity, but either no optimality guarantees or much
weaker ones.

From the latter category of heuristics without any guarantees attached,
Kempe et al. [1] also tested experimentally the performance of a High-degree
(or degree centrality) heuristic, which adds nodes n to A0 in order of decreasing
out-degrees. They motivate this heuristic as being a standard greedy heuristic
for networks. Chen et al. [6] designs degree-discount heuristics based on High-
degree: if a node n is already in A0 and there exists an edge m ! n, then,
when considering whether to add node m to A0, this edge should not be counted
towards the out-degree of m. This heuristic is applicable to all cascade models,

and is denoted here as the Single discount heuristic. In our experiments, often
we found that Single discount will only minimally improve over High-degree, in
which case we compare only against Single discount. Many other heuristics than
the ones described above are known. Among those without optimality guaran-
tees, Jiang et al. [7] tests Simulated Annealing under Independent Cascade, and
finds that it has a complexity advantage over greedy heuristics, and can also find
narrowly better solutions.

Papers [1,6,7] evaluate the heuristics above comparatively on a small number
of large social networks, and generally find that, for these datasets, the General
greedy algorithm and its improved variants do find better solutions than the two
degree-based heuristics, if in cases only by a small percentage. To concretely
illustrate the fact that degree-based heuristics can underapproximate signifi-
cantly, Figure 3 gives two examples of small networks on which High degree is
not e↵ective. For the example on the left, High degree with k = 2 may select
as optimal seeds the set {c, d}, from among other options of equal out-degrees.
With Weighted Cascade, �({c, d}) = 4, while a better solution is the set {a, b},
with �({a, b}) = 10. On the right, under Independent Cascade with p = 50%,
the best single seed is {a}, with �({a}) = 8.5, rather than node b, which has the
same degree, with �({b}) = 6.

� �

��

�

�

Fig. 3. Examples of networks executing cascade propagation models on which degree-
based heuristics are ine↵ective. Left: a linear graph of nearly uniform node degrees,
where High degree may choose {c, d} as optimal seeds rather than the (here, optimal)
{a, b}, under Weighted Cascade. Right: an extended star topology where a and b have
equal degrees, but the seed set {a} has higher influence, under Independent Cascade.

However, it is these degree heuristics without approximation guarantees which
have the lowest computational complexity, rather than General greedy. Given a
graph G = (V,E), the problem size k, and number R of simulation repetitions
to evaluate �(A0), High degree has complexity O(|V | · log(k)) (with a min-heap
implementation), while General greedy is O(k · |V | · |E| ·R) [6]. In other words,
for graphs that are large or dense, the General-greedy technique can be entirely
infeasible.

3 Methodology: a Simple Genetic Algorithm

The application of Genetic Algorithms to the influence-maximization problem is
straightforward: a candidate solution generated by the GA is encoded as a fixed-
size sequence A0 of k seed node (integer-valued) identifiers. For each solution
A0, we evaluate the fitness �(A0) by running the Cascade Algorithm shown in
Algorithm 1 (either according to the Independent Cascade or to the Weighted
Cascade model). As the algorithm is stochastic, we run 100 simulation repe-
titions4. We then average, over the 100 repetitions, the size of A returned by
the Cascade Algorithm. This average value is finally assigned to each candidate
solution as its fitness.

The GA is configured to use 1-point crossover and a random mutation oper-
ator. The latter resets each node, with a given probability, to one of the possible
node identifiers in G. Both genetic operators (crossover and mutation) are ap-
plied with probability one. Selection is performed using fixed-size tournament,
with generational replacement and elitism (i.e., at each generation ne best solu-
tions in the population – the “elites” – are kept without being mutated). The
complete list of parameters of the GA is reported in Table 1. We obtained these
parameters through experimentation with di↵erent values; later in Section 4.3,
we present the results of varying the population size, the number of elites, the
tournament size, and the mutation rate.

Table 1. Parameters of the Genetic Algorithm

Parameter Value

No. generations 100⇥ k
No. elites 2 (for k = {10, 20}), 4 (for k = {30, 40, 50})
Population size 100
Mutation rate (per node) 0.1
Crossover rate 1.0
Tournament size 5

The proposed parameters were empirically chosen by running preliminary ex-
periments (see Section 4.3 on parameter analysis for further details). Overall, we
observed that the performance of the GA is quite robust with di↵erent parameter
settings, although we noted that some parameters (especially tournament size,
mutation rate, and population size) can sensibly a↵ect, as expected, the diversity

4 This number of repetitions was chosen as a practical compromise between the con-
fidence interval that it a↵ords, and the overall computational complexity of the
Genetic Algorithm. With regards to the accuracy of the fitness estimation, 100 sim-
ulation repetitions give a 95% confidence interval for the average in the approximate
range of [3, 10] nodes influenced, for all our experiments. Increasing the number of
repetitions to 10000 would give a 95% confidence interval for the average that is  1
nodes influenced in all experimental cases, but requires far longer runtimes.

of the solutions found at the end of the evolutionary process, as well as the opti-
mization results. As for the number of elites, we found that maintaining a slightly
higher number of unmutated individuals (4 instead of 2) is especially beneficial
for larger values of k. Indeed, as the search space dimensionality increases, keep-
ing a larger group of diverse elites seems to prevent premature convergence and
promote population diversity, especially in the later stages of evolution.

4 Experimental results and analysis

We test the proposed GA-based influence maximization algorithm on two large
social network datasets, available from the SNAP repository [3]. A brief descrip-
tion of the datasets is reported in Table 2. It is to note that we chose networks
with underlying graphs of strikingly di↵erent size and structure. The Wiki graph
is relatively small at 7115 nodes, and very variate in terms of node degrees, with
a large maximum out-degree. On the other hand, the Amazon graph (with over
a quarter of a million nodes) is orders of magnitude larger, and has a flat degree
landscape, with a maximum and median out-degree of 5.

Table 2. Large social networks from the Stanford large network dataset (SNAP [3]).
The names in brackets indicate the dataset names used on the SNAP repository.

Social network Graph type

and size

Node out-degrees

Wiki

(wiki-Vote)

who-voted-whom in
Wikipedia user elections
(data collected on Jan 3
2008)

directed,
7115 nodes,
103689 edges

min 0, max 893, avg
14.57, stddev 42.28,
median 2

Amazon

(amazon0302)

Amazon product
co-purchasing network
(data collected on March
2 2003); if i is frequently
co-purchased with product
j, the graph has an edge
i! j

directed,
262111 nodes,
1234877 edges

min 0, max 5, avg
4.71, stddev 0.95,
median 5

For each dataset, we consider the Independent and Weighted Cascade model
with values of k (the size of the seed node identifiers) ranging in {10, 20, 30, 40, 50}.
In the Independent Cascade model, we fix p = 1%; this low probability is realis-
tic for practical social networks. The combination between the Amazon dataset
and the Independent Cascade model is an exception, in that the low probability
p, together with the consistently very low node degrees in the Amazon graph,
yield a “flat” fitness landscape. Therefore, we do not present the results of this
combination.

In order to evaluate the influence of the initial population and the robustness
of the algorithm, we execute the GA three times on each experimental condition,
with di↵erent random seeds. All the experiments are implemented in Python,
by using the Genetic Algorithm provided by the Python package inspyred [8]
(configured as in Section 3). Experiments are run on two Linux machines: a
Ubuntu 14.04 with 64 AMD Opteron 2.3 GHz cores and 256 GB RAM and a
Ubuntu 12.04 with 32 Intel Xeon 2.0 GHz cores and 128 GB RAM. Computations
are parallelized by running in multiple threads the evaluation of the candidate
solutions generated by the GA.

A summary of the numerical results is shown in Figure 4 for the Wiki and
Amazon datasets. In the figures, we compare the highest influence (i.e., the num-
ber of active nodes) obtained by the GA with the results obtained by random
sampling and with the heuristics. All algorithms evaluate the fitness of a seed
set A0 in exactly the same way, i.e., by simulating the propagation model, start-
ing with A0, 100 times, and reporting the mean number of influenced nodes
as fitness. The figures report this mean value together with a measure of the
confidence in the mean: this is the 95% confidence interval, in the case of the
algorithms which output a single solution (i.e., the degree heuristics High de-
gree and Single discount, the greedy heuristic General greedy, and the Genetic
algorithm), and the standard deviation in the case of random sampling, which
samples 100 random values for A0, each evaluated in 100 simulation repetitions.
For the Wiki dataset, in the cases of both propagation protocols, the two degree-
based heuristics, High degree and Single discount, yield results that are largely
indistinguishable; because of this, we present only one in the figures, for clarity.

We also report, in Figure 5, examples of the generational trends on some of
the test cases. The evolutionary trends show on each test case little variation
among the various repetitions. Additionally, the convergence rate of the GA is
quite high, especially on the Wiki dataset.

4.1 Comparative influence results

The fact that the random sampling of seed nodes yields solutions of low network
influence is expected, as is the fact that the computationally intensive General
greedy heuristic, known to fulfill an approximation guarantee (as motivated in
Section 2.3) computes significantly better solutions.

On the other hand, the performance of the degree-based heuristics is surpris-
ing: on the Wiki dataset, the degree-based heuristics find better solution than
General greedy for the larger k values, while on the Amazon dataset their perfor-
mance is outdone by all other algorithms, including random sampling. This fact
can be explained by the di↵erent structure of the underlying graphs: essentially,
the Amazon graph conforms to the general idea shown in the example from Fig-
ure 3 (left), where we have shown that degree-based heuristics can be severely
suboptimal. Overall, the degree heuristics have undependable performance.

Finally, the Genetic algorithm, although stochastic and not of an exhaustive
nature (as General greedy), is consistently matching the General greedy heuristic;

��

���

����

����

����

����

����

��� ��� ��� ��� ���

�
��
��
���
��
��
��
��
��
�

�����������������

��������������������
�������������������������

������
���������������
��������������
�����������������

��

����

����

����

����

����

����

����

��� ��� ��� ��� ���
�����������������

��������������������
�����������������

������
���������������
��������������
�����������������

��

����

����

����

����

����

����

����

��� ��� ��� ��� ���
�
��
��
���
��
��
��
��
��
�

�����������������

����������������������
�����������������

������
�����������
���������������
��������������
�����������������

Fig. 4. Comparison of the numerical results: Wiki dataset, Independent Cascade (left);
Wiki dataset, Weighted Cascade (middle); Amazon dataset, Weighted Cascade (right).

for some data points and the smaller Wiki dataset, the Genetic algorithm outdoes
the greedy heuristic.

4.2 Runtimes

In Figure 6 we report the average runtimes, in core hours, of the Genetic Al-
gorithm and General greedy heuristic over the entire set of test scenarios. We
omit, for brevity, the runtimes of the other heuristics as they are, in comparison,
orders of magnitude smaller (< 1 core hour).

We observe that, for the Amazon dataset, the Genetic Algorithm has a run-
time that is approximately half as big as the runtime of the General greedy
heuristic. On the other hand, on the Wiki network the GA is more computation-
ally expensive (up to 30%) than the greedy heuristic, although for larger values
of k the runtimes of the two algorithms are comparable, suggesting that on this
particular dataset the GA is more e�cient for larger k.

���

����

����

����

�� ���� ���� ���� ���� �����

�
��
��
��

��
���
��
��
��
�

����������

���

���
����
����
����
����
����
����

�� ���� ����� ����� �����

�
��
��
��

��
���
��
��
��
�

����������

���

����
����
����
����
����
����
����
����

�� ���� ����� ����� ����� ����� �����

�
��
��
��

��
���
��
��
��
�

����������

���

��
���
���
���
����
����

�� ���� ���� ���� ���� �����

�
��
��
��

��
���
��
��
��
�

����������

���

���
���
���
����
����
����
����

�� ���� ����� ����� �����

�
��
��
��

��
���
��
��
��
�

����������

���

���
���
���
����
����
����
����
����

�� ���� ����� ����� ����� ����� �����

�
��
��
��

��
���
��
��
��
�

����������

���

Fig. 5. Examples of generational trends observed in the experiments with the Genetic
Algorithm. In each case, we report the trends of three repetitions of the GA.

��

���

����

�����

��
�������

�
������

��
�������

�
������

��
�������

�
������

��
�������

�
������

��
�������

�
������

�
�������

��������������

�
�������

��������������

�
�������

��������������

�
�������

��������������

�
�������

��������������

�
������

�
������

�
������

�
������

�
������

�
������

�
������

�
������

�
������

�
������

�
��
��
��
��
�

����������������� ��������������

Fig. 6. Average runtimes, in core hours, of Genetic Algorithm and General greedy
heuristic. Due to the limited computational resources available, we did not run the
General greedy heuristic on the Amazon dataset for k = {30, 40, 50}.

4.3 Parameter analysis

We conclude our analysis by reporting some empirical observations we made in
our experiments on the e↵ect of the parameters of the GA on the optimization
results. Due to limited computational resources, we performed only a preliminary
qualitative analysis on a limited set of parameter configurations, to gain some
general insight on the parametrization.

– No. elites: As reported in the previous section, elitism is beneficial as far
as a small percentage (2% � 4%) of the best individuals in the population
is maintained without undergoing mutation. Furthermore, for larger values
of k there is a positive e↵ect of higher numbers of elites on the diversity of
individuals (particularly in the later stages of the optimization process).

– Mutation rate: We observed that smaller mutation rates (0.1) are overall
beneficial in terms of optimization results, especially during the first stages
of evolution. The other value we tested, 0.2, seems to produce disruptive
mutations thus causing slower convergence. As shown in Figure 7 (top) for
the case hAmazon, Weighted Cascade, k = 10i, this trend appears in both
cases of tournament sizes 2 and 5.

– Tournament size: The e↵ect of tournament size shows mostly in two as-
pects: one one hand, increased tournament sizes increase the selection pres-
sure [9], thus resulting in a higher convergence rate, see Figure 7 (top). Also,
tournaments of 5 individuals allowed us to find a more diverse set of solutions
compared to binary tournaments, especially for larger values of k.

– Population size: We tested two values of population size, namely 50 and
100. Overall, we noted that bigger populations lead to better optimization
results, as shown in Figure 7 (bottom) for the case hAmazon, Weighted

Cascade, k = 10i. The intuitive explanation is that larger populations allow
a higher diversity level, thus improving the exploration of the search space.

���

����

����

����

�� ���� ���� ���� ���� �����

�
��
��
���
��
��
��
��
��
�

����������

���

���
���
���
���

���

����

����

����

�� ���� ���� ���� ���� �����

�
��
��
���
��
��
��
��
��
�

����������

���

���
��

Fig. 7. Influence of the GA parameters on the optimization results: tournament size and
mutation rate (top) and population size (bottom). For each parameter configuration,
three repetitions of the GA are shown. The others parameters are kept constant, see
Table 1 for details.

5 Conclusions

In this paper we made a first attempt to tackle the influence maximization prob-
lem in social networks by using Genetic algorithms. We performed an experi-
mental campaign on two datasets taken from real-world applications, comparing
the results of the GA against known heuristics based on either graph theory or
a greedy, incremental exhaustive search. In short, our experiments showed that
in each test case the performance of the GA is at least comparable to that of
the best tested heuristic. However, as heuristics typically rely on specific net-
work topology features, we observed a dramatic variation in their performance

from one case to the other. On the other hand, since the GA is agnostic w.r.t.
the properties of the networks, its results were more consistent across the whole
range of test cases. In addition to that, we found, quite surprisingly, that on
some test cases the GA was computationally cheaper than the greedy heuristic.

To the best of our knowledge, our study represents one of the very first
examples of application of computational intelligence methods to influence max-
imization in social networks, whereas a number of heuristics have been designed
and tested on this problem. Overall, our experiments revealed that Genetic algo-
rithms are a viable tool to solve the influence maximization problem, especially
in absence of any prior knowledge about the network topology and the charac-
teristics of the graph underlying the social network. Other related studies have
also shown that bio-inspired algorithms are suitable to compute solutions to
computationally hard problems from the area of complex systems and networks
in polynomial time: [10,11] applied natural selection as a means to stress-test
wireless sensor networks and find vulnerable topologies; [12,13] optimized the
path of strong attackers in large-scale mobile, wireless, urban delay-tolerant net-
works, and uncovered potential vulnerabilities in a message-routing protocol for
such networks.

Considering the high relevance of social networks in all modern applications,
we believe it is worth to further investigate the application of computational in-
telligence to this domain. In future research, we plan to analyze more thoroughly
the influence the GA parametrization on this specific problem. Furthermore, we
deem promising the possibility to combine GAs with graph-based heuristics, in
order to create domain-specific memetic algorithms. Finally, it will be interesting
to extend the experimental setup to other datasets.

References

1. Kempe, D., Kleinberg, J., Éva Tardos: Maximizing the spread of influence through
a social network. Theory of Computing 11(4) (2015) 105–147

2. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic
web. In Fensel, D., Sycara, K., Mylopoulos, J., eds.: The Semantic Web - ISWC
2003. Volume 2870 of Lecture Notes in Computer Science. Springer Berlin Heidel-
berg (2003) 351–368

3. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data (October 2015)

4. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems
look at the underlying process of word-of-mouth. Marketing Letters 12(3) (2001)
211–223

5. Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for independent
cascade model in large-scale social networks. Data Mining and Knowledge Discov-
ery 25(3) (2012) 545–576

6. Chen, W., Wang, Y., Yang, S.: E�cient influence maximization in social networks.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’09, New York, NY, USA, ACM (2009) 199–208

7. Jiang, Q., Song, G., Cong, G., Wang, Y., Si, W., Xie, K.: Simulated annealing
based influence maximization in social networks. In Burgard, W., Roth, D., eds.:
AAAI, AAAI Press (2011)

http://snap.stanford.edu/data

8. Garret, A.L.: Inspyred: A framework for creating bio-inspired computational intelli-
gence algorithms in Python. https://pypi.python.org/pypi/inspyred (October
2015)

9. Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and the
e↵ects of noise. Complex Systems 9 (1995) 193–212

10. Bucur, D., Iacca, G., Squillero, G., Tonda, A.: The impact of topology on energy
consumption for collection tree protocols: An experimental assessment through
evolutionary computation. Applied Soft Computing 16 (2014) 210–222

11. Bucur, D., Iacca, G., de Boer, P.T.: Characterizing topological bottlenecks for
data delivery in CTP using simulation-based stress testing with natural selection.
Ad Hoc Networks 30 (2015) 22–45

12. Bucur, D., Iacca, G., Squillero, G., Tonda, A.: Black holes and revelations: Using
evolutionary algorithms to uncover vulnerabilities in disruption-tolerant networks.
In Mora, A.M., Squillero, G., eds.: Applications of Evolutionary Computation. Vol-
ume 9028 of Lecture Notes in Computer Science. Springer International Publishing
(2015) 29–41

13. Bucur, D., Iacca, G., Gaudesi, M., Squillero, G., Tonda, A.: Optimizing groups
of colluding strong attackers in mobile urban communication networks with evo-
lutionary algorithms. Applied Soft Computing 40 (2016) 416 – 426

https://pypi.python.org/pypi/inspyred

	Influence Maximization in Social Networks with Genetic Algorithms

