Skip to main content

Using Isovists to Evolve Terrains with Gameplay Elements

  • Conference paper
  • First Online:
  • 2566 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9597))

Abstract

The virtual terrain for a video game generally needs to exhibit a collection of gameplay elements, such as some areas suitable for hiding and others for large scale battles. A key problem in automating terrain design is the lack of a quantitative definition of terrain gameplay elements. In this paper, we address the problem by proposing a representation for gameplay elements based on a combination of space-based isovist measures from the field of architecture and graph-connectivity metrics. We then propose a genetic algorithm-based approach that evolves a set of modifications to an existing terrain so as to exhibit the gameplay element characteristics. The potential for this approach in the design of computer game environments is examined by generating terrain containing instances of the “hidden area” game element type. Results from four preliminary tests are described to show the potential of this research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hullett, K., Whitehead, J.: Design patterns in FPS levels. In: Proceedings of the 5th International Conference on the Foundations of Digital Games, pp. 78–85 (2010)

    Google Scholar 

  2. Benedikt, M.L.: To take hold of space: Isovist fields. Environ. Plann. B Plann. Des. 6(1), 47–65 (1979)

    Article  Google Scholar 

  3. van Bilsen, A., Poleman, R.: 3D visibility analysis in virtual worlds: the case of supervisor. In: Proceedings of the Construction Applications of Virtual Reallity, pp. 5, 6, 267–278 (2009)

    Google Scholar 

  4. Perlin, K., Hoffert, E.: Hypertexture. SIGGRAPH Comput. Graph. 23(3), 253–262 (1989)

    Article  Google Scholar 

  5. Lau, W.-C., Erramilli, A., Wang, J.L., Willinger, W.: Self-similar traffic generation: the random midpoint displacement algorithm and its properties. In: 1995 IEEE International Conference on Communications (ICC 1995), pp. 466–472 (1995)

    Google Scholar 

  6. Fournier, A., Fussell, D., Carpenter, L.: Computer rendering of stochastic models. Commun. ACM 25(6), 371–384 (1982)

    Article  Google Scholar 

  7. World Machine: World Machine (2015). http://www.world-machine.com/

  8. Planetside: Planetside Software (2015). http://planetside.co.uk/

  9. Belhadj, F., Audibert, P.: Modelling landscapes with ridges and rivers: bottom up approach. In: GRAPHITE 2005: Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques, pp. 447–450 (2005)

    Google Scholar 

  10. Doran, J., Parberry, I.: Controlled procedural terrain generation using software agents. IEEE Trans. Comput. Intell. AI Games 2(2), 111–119 (2010)

    Article  Google Scholar 

  11. Hnaidi, H., Guérin, E., Akkouche, S., Peytavie, A., Galin, E.: Feature based terrain generation using diffusion equation. Comput. Graph. Forum 29(7), 2179–2186 (2010)

    Article  Google Scholar 

  12. Peytavie, A., Galin, E., Merillou, S. Grosjean, J.: Arches: a framework for modelling complex terrain. In: Proceedings of the Eurographics 2009 (2009)

    Google Scholar 

  13. Smelik, R., Galka, K., de Kraker, K.L., Kuijper, F., Bidarra, R.: Semantic constraints for procedural generation of virtual worlds. In: Proceedings of the 2nd International Workshop on Procedural Content Generation in Games. ACM (2011)

    Google Scholar 

  14. Raffe, W., Zambetta, F., Li, X.: Evolving patch-based terrains for use in video games. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 363–370 (2011)

    Google Scholar 

  15. Ong, T., Saunders, R., Keyser, J., Leggett, J.: Terrain generation using genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1463–1470 (2005)

    Google Scholar 

  16. Li, Q., Wang, G., Zhou, F., Tang, X., Yang, K.: Example-based realistic terrain generation. In: Pan, Z., Cheok, D.A.D., Haller, M., Lau, R., Saito, H., Liang, R. (eds.) ICAT 2006. LNCS, vol. 4282, pp. 811–818. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Togelius, J., Preuss, M., Yannakakis, G.N.: Towards multiobjective procedural map generation. In: Proceedings of the 2010 Workshop on Procedural Content Generation in Games, pp. 1–8 (2010)

    Google Scholar 

  18. Liapis, A., Yannakakis, G.N., Togelius, J.: Towards a generic method of evaluating game levels. In: Proceedings of the Artificial Intelligence for Interactive Digital Entertainment Conference (2013)

    Google Scholar 

  19. Olsen, J.: Realtime procedural terrain generation. Technical report, University of Southern Denmark (2004)

    Google Scholar 

  20. Frade, M., de Vega, F.F., Cotta, C.: Evolution of artificial terrains for video games based on accessibility. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 90–99. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Hart, P.E., Nilsson, L.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Pech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Pech, A., Lam, CP., Hingston, P., Masek, M. (2016). Using Isovists to Evolve Terrains with Gameplay Elements. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31204-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31203-3

  • Online ISBN: 978-3-319-31204-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics