Skip to main content

Modeling and Verification of an Interrupt System in \(\mu \)C/OS-III with TMSVL

  • Conference paper
Structured Object-Oriented Formal Language and Method (SOFL+MSVL 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9559))

  • 387 Accesses

Abstract

Interrupt mechanism is a useful means to ensure timely response to asynchronous events in real-time systems. Modeling and verification of the correctness of interrupt systems are important in practice. This paper proposes an efficient way to formalize the interrupt mechanism in TMSVL. We apply TMSVL to model and verify a timer interrupt application running under \(\mu \)C/OS-III. To do so, the real-time system is formalized in TMSVL, and properties to be verified are specified by projection temporal logic (PTL) formulas or TMSVL statements. Then a model checker built in the toolkit MSV is employed to check whether or not the model satisfies the properties automatically.

This research is supported by the NSFC Grant Nos. 61133001, 61322202, 61420106004, 91418201, and 61272117.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. Lect. Notes Comput. Sci. 4(12), 200–236 (2004)

    Article  MATH  Google Scholar 

  3. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: KRONOS: a model-checking tool for real-time systems (Tool-presentation for FTRTFT 1998). In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 298–302. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Choi, Y.: Model checking trampoline OS: a case study on safety analysis for automotive software. Softw. Test. Verif. Reliab. 24(1), 38–60 (2014)

    Article  Google Scholar 

  5. Dijkstra, E.W.: Notes on structured programming. Structured Programming, pp. 1–82. Academic Press Ltd., New York (1972)

    Google Scholar 

  6. Duan, Z., Tian, C.: A unified model checking approach with projection temporal logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Comput. Program. 70(1), 31–61 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Han, M., Duan, Z., Wang, X.: Time constraints with temporal logic programming. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 266–282. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Huang, J.C.: An approach to program testing. ACM Comput. Surv. (CSUR) 7(3), 113–128 (1975)

    Article  MATH  Google Scholar 

  10. Labrosse, J.J.: uC/OS-III. The Real-Time Kernel. Micrium Press, Weston (2009)

    Google Scholar 

  11. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  12. Lundqvist, K., Asplund, L.: A ravenscar-compliant run-time kernel for safety-critical systems. Real-Time Syst. 24(1), 29–54 (2003)

    Article  MATH  Google Scholar 

  13. Lv, M., Guan, N., Deng, Q., Ge, Y., Wang, Y.: Static worst-case execution time analysis of the \(\mu \)C/OS-II real-time kernel. Front. Comput. Sci. China 4(1), 17–27 (2010)

    Article  Google Scholar 

  14. Waszniowski, L., Hanzlek, Z.: Formal verification of multitasking applications based on timed automata model. Real-Time Syst. 38(1), 39–65 (2008)

    Article  MATH  Google Scholar 

  15. Waszniowski, L., Krákora, J., Hanzálek, Z.: Case study on distributed and fault tolerant system modeling based on timed automata. J. Syst. Softw. 82(10), 1678–1694 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cui, J., Duan, Z., Tian, C., Zhang, N. (2016). Modeling and Verification of an Interrupt System in \(\mu \)C/OS-III with TMSVL. In: Liu, S., Duan, Z. (eds) Structured Object-Oriented Formal Language and Method. SOFL+MSVL 2015. Lecture Notes in Computer Science(), vol 9559. Springer, Cham. https://doi.org/10.1007/978-3-319-31220-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31220-0_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31219-4

  • Online ISBN: 978-3-319-31220-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics