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Abstract. Activity-based models, as a specific instance of agent-based
models, deal with agents that structure their activity in terms of (daily)
activity schedules. An activity schedule consists of a sequence of activ-
ity instances, each with its assigned start time, duration and location,
together with transport modes used for travel between subsequent ac-
tivity locations. A critical step in the development of simulation models
is validation. Despite the growing importance of activity-based models
in modelling transport and mobility, there has been so far no work fo-
cusing specifically on statistical validation of such models. In this paper,
we propose a six-step Validation Framework for Activity-based Models
(VALFRAM) that allows exploiting historical real-world data to assess
the validity of activity-based models. The framework compares tempo-
ral and spatial properties and the structure of activity schedules against
real-world travel diaries and origin-destination matrices. We confirm the
usefulness of the framework on three real-world activity-based transport
models.

1 Introduction

Transport and mobility have recently become a prominent application area for
multi-agent systems and agent-based modelling [Chen and Cheng, 2010]. Models
of transport systems offer an objective common ground for discussing policies
and compromises [de Dios Ortúzar and Willumsen, 2011], help to understand
the underlying behaviour of these systems and aid in the actual decision making
and transport planning.

Large-scale, complex transport systems, set in various socio-demographic
contexts and land-use configurations, are often modelled by simulating the be-
haviour and interactions of millions of autonomous, self-interested agents. Agent-
based modelling paradigm generally provides a high level of detail and allows
representing non-linear patterns and phenomena beyond traditional analytical
approaches [Bonabeau, 2002]. Specific subclass of agent-based models, called
activity-based models, address particularly the need for realistic representation
of travel demand and transport-related behaviour. Unlike traditional trip-based
models, activity-based models view travel demand as a consequence of agent’s

ar
X

iv
:1

50
2.

07
60

1v
2 

 [
cs

.M
A

] 
 3

 M
ar

 2
01

5



2

needs to pursue various activities distributed in space and understanding of
travel decisions is secondary to a fundamental understanding of activity be-
haviour [Jones et al., 1990].

Gradual methodological shift towards such a behaviourally-oriented model-
ling paradigm is evident. An early work on the topic is represented by the
CARLA model, developed as part of the first comprehensive assessment of
behaviourally-oriented approach at Oxford [Jones et al., 1983]. Later work is
represented by the SCHEDULER model – a cognitive architecture producing
activity schedules from long- and short-term calendars and perceptual rules
[Gärling et al., 1994], TRANSIMS – an integrated system of travel forecasting
models, including activity scheduler [Smith et al., 1995], or ALBATROSS – the
first model of complete activity scheduling process automatically estimated from
data [Arentze and Timmermans, 2000].

In order to produce dependable and useful results, the model needs to be
valid1 enough. In fact, validity is often considered the most important property
of models [Klügl, 2009]. The process of quantifying the model validity by deter-
mining whether the model is an accurate representation of the studied system
is called validation and the validation process needs to be done thoroughly and
throughout all phases of model development [Law, 2009].

Despite the growing adoption of activity-based models and the generally
acknowledged importance of model validation, a validation process for activity-
based models in particular has not yet been standardized by a detailed method-
ological framework. Validation techniques and guidelines are addressed in most
modelling textbooks [Balci, 1994,Law, 2007] and have even been instantiated in
the form of a validation process for general agent-based models [Klügl, 2009];
however, such techniques are still too general to provide concrete, practical
methodology for the key validation step: statistical validation against real-world
data.

In this paper, we address this gap and propose a validation framework en-
titled VALFRAM (Validation Framework for Activity-based Models), designed
specifically for statistically quantifying the validity of activity-based transport
models. The framework relies on the real-world transport behaviour data and
quantifies the model validity in terms of clearly defined validation metrics. We
illustrate and demonstrate the framework on several activity-based transport
models of a real-world region populated by approximately 1 million citizens.

2 Preliminaries

2.1 Activity-based Models

Activity-based models [Ben-Akivai et al., 1996] are multiagent models in which
the agents plan and execute so-called activity schedules – finite sequences of ac-
tivity instances interconnected by trips. Each activity instance needs to have a

1 Valid model is a model of sufficient accuracy (precision). We use these terms inter-
changeably in the following text.
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specific type (e.g. work, school or shop), location, desired start time and dura-
tion. Trips between activity instances are specified by their main transport mode
(e.g. car or public transport).

2.2 Validation Methods

Validation methods in general are usually divided into two types:

– Face validation subsumes all methods that rely on natural human intelli-
gence such as expert assessments of model visualizations. Face validation
shows that model’s behaviour and outcomes are reasonable and plausible
within the frame of the theoretic basis and implicit knowledge of system
experts or stake-holders. Face validation is in general incapable of produc-
ing quantitative, comparable numeric results. Its basis in implicit expert
knowledge and human intelligence also makes it difficult to standardize face
validation in a formal methodological framework. In this paper, we therefore
focus on statistical validation.

– Statistical validation (sometimes called empirical) employs statistical mea-
sures and tests to compare key properties of the model with the data gathered
from the modelled system (usually the original real-world system).

From a higher-level perspective, VALFRAM can be viewed as an activity-
based model-focused implementation of the statistical validation step of a more
comprehensive validation procedure for generic agent-based models, introduced
in [Klügl, 2009], as depicted in Figure 1. Besides the face and statistical valida-
tion, this procedure features other complementary steps such as calibration and
sensitivity analysis.

In case of activity-based models, 
implemented by VALFRAM
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Fig. 1: Higher-level validation procedure for agent-based models in general, in-
troduced in [Klügl, 2009]. VALFRAM implements the statistical validation step
specifically for activity-based models.

Being set in the context of activity-based modelling, the VALFRAM frame-
work is concerned with the specific properties of activity schedules generated
by the agents within the model. These properties are compared to historical
real-world data in order to compute a set of numeric similarity metrics.
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3 VALFRAM description

In this section a detailed description of VALFRAM is given. We cover validation
data, validation objectives and finally measures defined by VALFRAM.

3.1 Data

A requirement for statistical validation of any model is data capturing the re-
levant aspects of the behaviour of modelled system, against which the model
is validated. To validate an activity-based model, the VALFRAM framework
requires two distinct data sets gathered in the modelled system:

1. Travel Diaries: Travel diaries are usually obtained by long-term surveys (tak-
ing up to several days), during which participants log all their trips. The
resulting data sets contain anonymized information about every participant
(usually demographic attributes such as age, gender, etc.), and a collec-
tion of all their trips with the following properties: time and date, duration,
transport mode(s) and purpose (the activity type at the destination). More
detailed travel diaries also contain the locations of the origin and the desti-
nation of each trip.

2. Origin-Destination Matrix (O-D Matrix): The most basic O-D matrices
(sometimes called trip tables) are simple two-dimensional square matrices
displaying the number of trips travelled between every combination of origin
and destination locations during a specified time period (e.g. one day or one
hour). The origin and destination locations are usually predefined, mutually
exclusive zones covering the area of interest and their size determines the
level of detail of the matrix. In real-world systems, O-D matrices may be
obtained by roadside monitoring, household surveys or derived from mobile
phone networks [Caceres et al., 2007].

3.2 VALFRAM Validation Objectives

The VALFRAM validation framework is concerned with a couple of specific
properties of activity schedules produced by modelled agents. These particular
properties need to correlate with the modelled system in order for the model
to accurately reproduce the system’s transport-related behaviour. At the same
time, these properties can actually be validated based on available data sets –
travel diaries and O-D matrices. In particular, we are interested in:

A. Activities and their:
1. temporal properties (start times and durations),
2. spatial properties (distribution of activity locations in space),
3. structure of activity sequences (typical arrangement of successive activity

types).
B. Trips and their:

1. temporal properties (transport mode choice in different times of day;
durations of trips),
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2. spatial properties (distribution of trip’s origin-destination pairs in space),
3. structure of transport mode choice (typical mode for each destination

activity type).

3.3 VALFRAM Validation Metrics

To validate these properties of interest, we need to perform six validation steps
(A1, A2, A3, B1, B2, B3), as depicted in Table 1 and detailed in the rest of this
section. In each validation step, we compute specific numeric metrics (statis-
tics). For all metrics, higher values of these statistics indicate a larger difference
between the model and validation set, i.e., lower accuracy.

A.Activities B.Trips

Task Data set Task Data set

1.Time

Compare the distributions
of start times and dura-
tions for each activity type
using Kolmogorov-Smirnov
(KS) statistic.

Travel Diaries

Compare the distribution of
selected modes by time of
day and the distribution of
travel times by mode using
χ2 and KS statistics.

Travel Diaries

2.Space

Compare distribution of
each activity type in 2D
space using RMSE. Plot
heat maps for additional
feedback.

Space-aware
Travel Diaries

Compute the distance be-
tween generated and real-
world O-D matrix using
RMSE.

Origin-
Destination
Matrix

3.Structure

i) Compare activity counts
within activity schedules
using χ2 statistics. ii) Com-
pare distributions of activ-
ity schedule subsequences
as n-grams profiles using χ2

statistics.

Travel Diaries

Compare the distribution of
selected transport mode for
each type of target activity
type using χ2 statistics.

Travel Diaries

Table 1: Six validation steps of VALFRAM framework and corresponding vali-
dation data sets needed for each of them.

A1. Activities in Time: The comparison of activity distributions in time is
realized by means of a well-established Kolmogorov-Smirnov two-sample statis-
tic [Hollander et al., 2013]. VALFRAM applies the method to start time distri-
butions p(start|act. type) as well as to duration distributions p(duration|act. type).

The statistic is defined as the maximum deviation between the empirical
cumulative distribution functions FM and FV which are based on the model and
validation data distributions: dKS = supx |FM (x)−FV (x)|. The values lie in the
interval [0, 1].

Figure 2a shows an example application of the Kolmogorov-Smirnov statistic
comparing two different models to validation data.

A2. Activities in Space: The comparison of activity distributions in space is
performed separately for every activity type. Unlike in the previous step, the
distributions are two-dimensional (latitude, longitude or projected coordinates).
The process consists of the following steps. First, bivariate empirical cumulative
distribution functions (ECDFs) FM and FV are constructed using coordinate
data for both model and validation data, respectively. Second, FM and FV are



6

Validation

Model A

Model B

0 5 10 15 20
0

start (h)

p(
st

ar
t|

w
or

k)

dKS
A = 0.56 dKS

B = 0.22

(a) work activity start time (b) Modeled area, sleep activity

Fig. 2: Start time distributions for work activity shown for validation data and
two different models (a) including Kolmogorov-Smirnov statistics. Modelled area
including sleep activity spatial PDF visualized as a heat map (b).

regularly sampled getting matrices EM and EV both having m rows and n
columns. Third, Root Mean Squared Error (RMSE) of the two matrices is com-

puted using decdf =
√∑m

i=1

∑n
j=1

(
EMij − EVij

)2
/(mn). As EMij ≤ 1 and EVij ≤ 1,

the measure decdf is again limited to the [0, 1] interval.

Figure 2b shows the spatial probability distribution function (PDF) of sleep
type activities on the validation set visualized as a heat map. The probability
distribution was approximated from data using Gaussian kernels. Similar heat
maps might be helpful when developing a model as they can show where problems
or imprecisions are.

A3. Structure of Activities: In the previous steps, we examined the activity
distributions in time and space. In this step, we consider the activity composition
of the entire activity schedules. We propose a measure which compares distribu-
tions of activity counts in activity schedules as well as a measure comparing the
distribution of possible activity type sequences.

Activity Count: The comparison of activity counts in activity schedules is
based on a well-known Pearson’s chi-square test [Sokal and Rohlf, 1994]. The
procedure is performed separately for each activity type. First, frequencies fMi
and fVi for the count i are collected for both model and validation data. Va-
lidation data frequencies fVi are then used to get count proportions pVi and
in turn validation frequencies sVi scaled to match the sum of model’s frequen-
cies (

∑
i s
V
i =

∑
i f

M
i ). Using fMi and sVi chi-square statistic is computed as

χ2 =
∑
i

(
fMi − sVi

)2
/sVi .

Activity Sequences: We also compare activity sequence distributions. The
method is based on the well-established text mining techniques [Cavnar et al., 1994]
[Manning, 1999]. Particularly, we compare n-gram profiles using chi-square statis-
tic. N-gram is a continuous subsequence of the original sequence having a length
exactly n. Consider an example activity schedule consisting of the following activ-
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ity sequence: 〈none, sleep, work, leisure, sleep, none〉2. The set of all 2-grams
(bigrams) is then: {〈none, sleep〉, 〈sleep, work〉, 〈work, leisure〉, 〈leisure, sleep〉,
〈sleep, none〉}. We create an n-gram profile by counting frequencies of all n-grams
in a range n ∈ {1, 2, · · · , k} for all activity schedules. All the N n-grams are then
sorted by their counts in a decreasing order so that the counts are fi ≥ fj for
any two n-grams i and j where 1 ≤ i < j ≤ N (for a tie fi = fj one should
sort in the lexicographical order). We only work with a proportion P of n-grams
having the highest count in the profile. More precisely, we take only the first M
n-grams, where M is the highest value for which

∑M
i=1 fi ≤ P

∑N
i=1 fi is true.

In order to compare n-gram profiles of model and validation data, we employ
chi-square statistic matching both profiles by the corresponding n-grams (only
n-grams found in both profiles are considered).

B1. Trips in Time: The validation of trips in time consists of two sub-steps:
a comparison of mode distributions for a given time of day and a comparison of
travel time distributions for selected modes.

Modes by Time of Day: The comparison of mode distributions for a given
time of day, i.e., p(mode|time range), is based on exactly the same approach
which we used to compare activity counts (validation step A3): the χ2 statistic
is computed for mode frequencies of trips starting in a selected time interval.
We suggest computing χ2 statistic for twenty four one-hour intervals per day,
although other partitionings are possible.

Travel Times per Mode: Travel time distributions for modes p(travel time|mode)
are validated in the same way as activities in time (see validation step A1) using
Kolmogorov-Smirnov statistic dKS .

B2. Trips in Space: In order to validate trip distributions in space, we pro-
pose a symmetrical dissimilarity measure based on O-D matrix comparison. The
algorithm is realized in three consecutive steps. First, O-D matrices are rear-
ranged to use a common set of origins and destinations. Second, both matrices
are scaled to make trip counts comparable. Third, RMSE for all elements which
have non zero trip count in either of the matrices is computed.

The algorithm starts with two O-D matrices: model matrix M and validation
matrix V . Each element Mij (or Vij) represents a count of trips between origin
i and destination j. The positional information (i.e., latitude/longitude or other
type of coordinates) is denoted mi,mj ∈ CM for model and similarly vi, vj ∈ CV
for validation data where CM and CV are sets of all possible coordinates (e.g.,
all traffic network nodes).

Note that in most practical cases CM 6= CV . As an example we can have
precise GPS coordinates generated by the model, however, only approximate or
aggregated trip locations from validation travel diaries. As we have to work with
the same locations in order to compare the O-D matrices, we need to select a
common set of coordinates C. In practice, this would be typically the validation
data location set (C = CV ) while all locations from CM must be projected to

2 Note, that none activities are added to the beginning and end of the activity schedule
in order to preserve information about initial/terminal activity.
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it by replacing each mi by its closest counterpart in C. This might eventually
lead to resizing of the O-D matrix M as more origins/destinations might get
aggregated into a single row/column.

In many cases the total number of trips in M and V can be vastly different.
The second step of the algorithm scales both M and V to a total element sum
of one: M ′ij =

Mij∑
i

∑
j Mij

and V ′ij =
Vij∑

i

∑
j Vij

. Each element of both M ′ij and V ′ij
now represents a relative traffic volume between origin i and destination j.

Finally, we compute the O-D matrix distance using the following equation:

dOD =

√√√√ ∑
i

∑
j

(
M ′ij − V ′ij

)2∣∣{(i, j) : M ′ij > 0 ∨ V ′ij > 0
}∣∣ . (1)

Note that the equation is RMSE computed over all origin-destination pairs which
appear either in M ′ij , V

′
ij or in both. We have decided to ignore the elements

which are zero in both matrices as these might represent trips which might not
be possible at all (i.e., not connected by the transport network). Possible values
of dOD lie in interval [0, 1] (the upper bound is given by M ′ij ≤ 1 and V ′ij ≤ 1).

B3. Mode for Target Activity Type: The validation of the mode choice for
target activity type is again based on χ2 statistic. Here, we collect counts per
each mode for each target activity of choice.

4 VALFRAM Evaluation

In general, we expect a statistical validation framework to meet three key con-
ditions:

1. The framework quantifies the precision of the validated models in a way
which allows comparing model’s accuracy in replicating different aspects of
the beahviour of the modelled system.

2. Data required for validation are available.
3. Validation results produced by the framework correlate with the expectations

based on expert insight and face validation.

VALFRAM meets conditions 1 and 2 for activity-based models by explic-
itly expressing the spatial, temporal and structural properties of activities and
trips, using only travel diaries and O-D matrices. To evaluate it with respect
to condition 3, we have built three different activity-based models, formulated
hypotheses about them based on our expert insight and used VALFRAM to
validate both of them.

4.1 Evaluation Models

The first model, denoted MA (model A), is a rule-based model inspired by ALBA-
TROSS3 [Arentze and Timmermans, 2000]. The second model, denoted MB, is a

3 Although we call MA the rule-based model, it estimates activity count, durations
and occasionally start times using linear-regression models based on data. All other
activity schedule properties are based on rules constructed using expert knowledge.
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fully data-driven model based on Recurrent Neural Networks (RNNs). More spe-
cifically, the model employs fully-connected Long-Short Term Memory (LSTM)
units [Hochreiter and Schmidhuber, 1997] and several sets of softmax output
units. Given the training dataset based on travel diaries, the model is trained to
repetitively take current activity type and its end time as input in order to pro-
duce a trip (including trip duration and main mode) and the following activity
(defined by type and duration). As MB is currently unable to generate spatial
component of the schedules (e.g., activity locations), VALFRAM steps A2 and
B2 are evaluated on a predecessor of MA denoted M′A (model A′). M′Auses a less
sophisticated approach to select activity locations.

All MA, MB and M′A models were used to generate a sample of 100,000 ac-
tivity schedules. Our validation set V contained approximately 1,800 schedules.
Such a disproportion is typical in reality, since obtaining real-world data tends
to be more costly than obtaining synthetic data from model. All the data used in
this study cover a single workday. An overview of the modelled area is depicted
in Figure 2b.

In the following text we present five hypotheses based on our insight of mo-
dels. Note that all VALFRAM steps A1 through B3 are performed in order to
evaluate them.

4.2 Test Hypotheses

Hypothesis 1: The rule-based model MA uses very simple linear classifier for
decisions on activity start times, so it will likely perform worse than the RNN-
based model in their assignment. On the other hand, the activity scheduler in
MA performs schedule optimization, during which it adapts activity durations
according to rules psychologically plausible. This should produce more realistic
behaviour than the purely data-driven RNN model4.

Step A1 of VALFRAM confirms the hypothesis. Figure 3a depicts the distri-
butions p(start|work) for validation data V and models MA and MB. The values
dAKS > dBKS indicate the higher precision of the RNN model, with the most sig-
nificant difference in the case of work and school activities. On the other hand,
Figure 3b shows that MA outperforms MB in terms of activity durations.
Hypothesis 2: Activity sequences of real-world system tend to be harder to
replicate using simple rule-based models than robust data-driven approaches.

Results of the step A3 (activity counts) for all the activity types are shown
in Table 2. The data-driven model MB outperforms MA with the exception
of the leisure activity (which we later found to be insufficiently covered by
the RNN training data). Note that both MA and MB give the same χ2 value
for the sleep activity which is caused by the fact that both models generate
daily schedules having strictly two sleep activities in the current setup. For the
step A3 (activity sequences) we got the following results for both models using
the proportion P = 0.9 and k = 11 (same as the longest sequence in data):

4 At least given the limited size of the RNN training dataset.
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sleep work school leisure shop

Model A
Model B

0

0.5

1
dKS

(a) start time

sleep work school leisure shop
0

0.5

1
dKS

(b) duration

Fig. 3: An example of activity in time comparison. The values of dKS are shown
for both models MA and MB. MB outperforms MA on start times while the
situation is the opposite for durations.

χ2 ≈ 8.4 × 105 for MA and χ2 ≈ 2.6 × 105 for MB showing superiority of the
RNN model.

Model sleep work school leisure shop

MA 21468.1 2889.3 542.2 1750.3 974.2

MB 21468.1 255.7 293.8 4625.7 773.8

Table 2: Activity counts for selected activities (χ2 statistic). Model MB outper-
forms model MA with the exception of the leisure activity type.

Hypothesis 3: While rule-based model optimizes the whole daily activity plans,
RNN-based model works sequentially and schedules new activity based only on
the previous ones. Therefore, it will be less precise towards the end of the day.

By a further analysis of step A3 (activity sequences), which involved the
comparison of a set of n-grams having highest frequency difference, we have,
indeed, found that the RNN model tends to be less precise towards the end of
the generated activity sequence resulting in schedules not ended by the sleep

activity in a number of cases. Moreover, Figure 4 shows a comparison of mode by
time of day selection χ2 values (step B1) for MA and MB showing that although
MB is initially more precise it eventually degrades and the rule-based model MA

prevails.
Hypothesis 4: Unlike the rule-based model, the RNN model has no access to
trip-planning data (i.e., transport network, timetables) which will decrease its
performance in selecting trip modes.

For the step B1 (travel times per mode) we got dAKS = 0.22 < dBKS = 0.31
for car and dAKS = 0.37 < dBKS = 0.43 for public transport modes. Results of
the step B3 are summarized in Table 3 also supporting the superiority of MA in
modelling mode selection.
Hypothesis 5: Model M′A will be inferior to MA as it uses an oversimplified
activity location selection.

For the step A2 this is clearly demonstrated in Figure 5 by dAecdf < dA
′

ecdf for
the leisure and shop activities (only activity types affected by the algorithm
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χ2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Model A
Model B

0

1000

2000

3000

4000

interval start

Fig. 4: Modes by the time of day. The figure shows a comparison of χ2 values
for car and public transport modes for one hour intervals between 3:00 and
23:00.

Model sleep work school leisure shop

MA 562 1371.7 1120 12817.3 5

MB 2875.2 3437.9 7286.2 475.1 2507.3

Table 3: Transport mode selection for target activity type (χ2 statistic). Model
MA outperforms model MB in four out of five activity types.

selecting activity locations). For the step B2 we get dAOD = 3.7× 10−4 < dA
′

OD =
4.8× 10−4 which again supports the hypothesised improvement of A over A′.

sleep work school leisure shop

Model A
Model A'

0.00

0.02

0.04

0.06

0.08

decdf

Fig. 5: Activities in space: comparison of Model A to Model A′. M′A is inferior

to MA for flexible activities (dAecdf < dA
′

ecdf ) based on 18× 31 ECDF matrices.

5 Conclusion

We have introduced a detailed methodological framework for data-driven statis-
tical validation of multiagent activity-based transport models. The VALFRAM
framework compares activity-based models against real-world travel diaries and
origin–destination matrices data. The framework produces several validation
metrics quantifying the temporal, spatial and structural validity of activity sched-
ules generated by the model. These metrics can be used to assess the accuracy
of the model, guide model development or compare the model accuracy to other
models. We have applied VALFRAM to assess and compare the validity of three
activity-based transport models of a real-world region comprising around 1 mil-
lion inhabitants. In the test application, the framework correctly identified strong
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and weak aspects of each model, which confirmed the viability and usefulness of
the framework.
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Klügl, 2009. Klügl, F. (2009). Agent-based simulation engineering. PhD thesis, Habil-
itation Thesis, University of Würzburg.

Law, 2007. Law, A. M. (2007). Simulation modeling and analysis, 4th edition.
McGraw-Hill New York.

Law, 2009. Law, A. M. (2009). How to build valid and credible simulation models. In
Simulation Conference (WSC), Proceedings of the 2009 Winter, pages 24–33. IEEE.

Manning, 1999. Manning, C. D. (1999). Foundations of Statistical Natural Language
Processing. MIT press.

Smith et al., 1995. Smith, L., Beckman, R., Anson, D., Nagel, K., and Williams, M. E.
(1995). Transims: Transportation analysis and simulation system. In Fifth National
Conference on Transportation Planning Methods Applications-Volume II: A Com-
pendium of Papers Based on a Conference Held in Seattle, Washington.

Sokal and Rohlf, 1994. Sokal, R. R. and Rohlf, F. J. (1994). Biometry: The Principles
and Practices of Statistics in Biological Research. W. H. Freeman, 3rd edition.


	Data Driven Validation Framework for Multi-agent Activity-based Models

