
Certificate Validation in Secure Computation
and Its Use in Verifiable Linear Programming

Sebastiaan de Hoogh1, Berry Schoenmakers2, and Meilof Veeningen1

1 Philips Research
2 Eindhoven University of Technology

Abstract. For many applications of secure multiparty computation it
is natural to demand that the output of the protocol is verifiable. Verifi-
ability should ensure that incorrect outputs are always rejected, even if
all parties executing the secure computation collude. Since the inputs to
a secure computation are private, and potentially the outputs are private
as well, adding verifiability is in general hard and costly.
In this paper we focus on privacy-preserving linear programming as a
typical and practically relevant case for verifiable secure multiparty com-
putation. We introduce certificate validation as an effective technique for
achieving verifiable linear programming. Rather than verifying the com-
putation proper, which involves many iterations of the simplex algorithm,
we extend the output of the secure computation with a certificate. The
certificate allows for efficient and direct validation of the correctness of
the output. The overhead incurred by the computation of the certificate
is marginal. For the validation of a certificate we design particularly effi-
cient distributed-prover zero-knowledge proofs, fully exploiting the fact
that we can use ElGamal encryption for this purpose, hence avoiding the
use of more elaborate cryptosystems such as Paillier encryption.
We also formulate appropriate security definitions for our approach, and
prove security for our protocols in this model, paying special attention
to ensuring properties such as input independence. By means of sev-
eral experiments performed in a real multi-cloud-provider environment,
we show that the overall performance for verifiable linear programming
is very competitive, incurring minimal overhead compared to protocols
providing no correctness guarantees at all.

1 Introduction

When outsourcing a computation to the cloud, we want to be sure that the result
is correct. But if the computation involves confidential inputs, e.g., of multiple
mutually distrusting inputters, we also want to guarantee the privacy of the
inputs. For instance, solving linear programs is useful for optimising global profits
in supply chains [CdH10] or financial benchmarking [DDN+15]; confidentiality is
important because the inputs are sensitive information from multiple companies
but correctness is important because the outcome represents financial value.

Separately, privacy and correctness can each be achieved. Correctness can be
achieved by replicating a computation and comparing the results [CL02] (but

this only protects against uncorrelated failure); or by relying on the use of trusted
hardware by the worker [SZJVD04]. Alternatively, correctness can be achieved
without assuming uncorrelated failure or trusted hardware, by instead producing
cryptographic proofs of correctness (e.g., [PHGR13]).

Achieving privacy is hard when outsourcing to a single cloud worker, but
feasible if the computation is distributed between several workers. Indeed, having
a single worker perform arbitrary computations on encryptions requires fully
homomorphic encryption, a cryptographic primitive that is still impractical for
realistic applications. But distributing computations between multiple workers
in a privacy-preserving way is possible, and getting more and more practical,
using multiparty computation protocols (e.g., [BD09,DKL+13]). Such protocols
guarantee privacy and correctness up to a certain threshold of corrupted workers.
The inputters can pick workers run at different cloud providers, thereby reducing
the risk that too many of them collude or are compromised.

Unfortunately, using such techniques has a major drawback: apart from in-
putters having to trust the choice of workers for privacy, also recipients have to
trust the choice of workers for correctness of their result. However, requiring this
trust by the recipients is undesirable: it means recipients (potentially anybody,
if the computation result is public) need to be involved in assessing the trust-
worthiness of workers; and the result may simply have too much value to allow
the possibility of incorrectness.

In theory, privacy and correctness can be achieved by producing crypto-
graphic proofs of correctness in a multi-party way. Indeed, this is the basic idea
behind recent universally verifiable [SV15] (or publicly auditable [BDO14]) mul-
tiparty computation protocols. (Correctness holds regardless of the workers, but
privacy only holds up to a certain maximum of corruptions: we cannot hope to
circumvent this in outsourcing scenarios without resorting to fully homomorphic
encryption.) However, producing correctness proofs in a multi-party way is too
expensive for realistic computations such as linear programming, requiring zero-
knowledge proofs involving threshold Paillier encryptions [SV15] or somewhat
homomorphic encryptions [BDO14]. Moreover, existing approaches need secure
distributed set-up of these threshold cryptosystem, which is hard in practice.

1.1 Our Contribution

In this paper, we present certificate validation as a general technique for achiev-
ing verifiable secure computation, and we demonstrate this in detail for verifiable
linear programming. While solving a linear program, e.g., by means of the sim-
plex algorithm, is complex and time-consuming, we make the critical observation
that the so-called “dual solution” of a linear program allows one to efficiently
verify the optimality of the result, without redoing the computation of the result.
Thus, we show how to use fast multiparty computation techniques for the com-
putation itself, while limiting the use of slower verifiable techniques to prove the
optimality of the result. We avoid the use of expensive encryption schemes such
as Paillier’s cryptosystem by combining the computation stage and the valida-
tion stage in a new way, enabling the use of ElGamal encryption (implemented

using elliptic curves). We show how to enforce inputters to choose their inputs
independently, and we prove security in a rigorous security model.

Concretely, our instantiation is with n = 3 workers (but can be easily gener-
alised to n = 2t + 1 workers). We distribute the computation between all three
workers using protocols that guarantee privacy if they do not collude or act ma-
liciously (i.e., deviate from the protocol). Then, two (in general, t + 1) of the
workers perform certificate validation to guarantee to anybody that the found
solution is correct. Hence, we reach a compromise between passive and active
security. One the one hand, we provide more security than passively secure mul-
tiparty computation because we guarantee correctness (in the sense that the
solution is valid with respect to the certificate) regardless of corruptions. On the
other hand, we provide less security than actively secure multiparty computation
because we do not guarantee privacy if workers collude or act maliciously.

With our new protocol, we are able to demonstrate, for the first time, that
certificate validation leads to practically feasible performance. We have imple-
mented our protocol and tested its performance in a linear programming case
study, performed in a real multi-cloud-provider environment. As mentioned, our
security is in between passive and active; our experiments show that our per-
formance is in fact much closer to passive, adding only little overhead in cases
where using active security would be much slower.

1.2 Related Work

Verifiable computation, i.e., the question of how to verify correctness of com-
putations performed by untrusted parties (without privacy) has a long history
in the literature (e.g., [DFK+92, AS98, GKR08]). Recently, major practical im-
provements in efficiency (e.g., [PHGR13]) have shown that in some cases it is
possible in practice to verify a computation faster than performing it.

Combining verifiability with privacy has traditionally only been considered
for particular applications such as e-voting [CF85,SK95], but recent works [dH12,
BDO14,SV15] have also started studying the problem of verifiability for general
multiparty computation. In essence (like in our work) the correctness proofs
of these works rely on zero-knowledge proofs of correct multiplication and de-
cryption: of Paillier encryptions in [dH12,SV15], and of somewhat homomorphic
encryptions in [BDO14]. Compared to these works, this work proposes a private
multiplier approach that enables the use of the much more efficient ElGamal
encryption scheme (besides introducing the approach of certificate validation).

Another recent line of work has combined verifiability and privacy when out-
sourcing computations to a single worker. However, known constructions in this
line of work are unfortunately inpractical due to their use of costly primitives,
e.g., fully homomorphic encryption and verifiable computation [LTV12,FGP14];
or functional encryption and garbled circuits [GKP+13]. Indeed, because such
constructions require a single party to compute on encrypted data, even without
offering verifiability they are inherently much heavier than our approach.

A final line of work on outsourcing computation combines privacy with “par-
tial” verifiability in the sense that also correctness is only guaranteed if not all

I/P/R inputters/workers/recipients
party/ies P do S party/ies P concurrently perform S
Encpk(x; r) ElGamal encryption of x with public key pk, randomness r
Decsk(x) ElGamal decryption with key (share) sk
p prime order for ElGamal
⊕,⊗ homomorphic addition/multiplication of ElGamal ciphertexts
send(v;P); recv(P) send/receive v over secure, private channel (no P means P1/P2)
bcast(v) share v on bulletin board
ZkVer(Σ; v;π; a) Fiat-Shamir proof verification (p. 6)
a ∈R S sample a uniformly random from S
[x], [x′] own/other party’s additive share of x (for two workers)
H cryptographic hash function

Fig. 1. Notation in algorithms and protocols

workers collude. This is the case for normal multiparty computation protocols ap-
plied in an outsourcing setting (e.g., [JNO14,DDN+15]), but also for specialised
outsourcing protocols like [KMR11,ACG+14]. Compared to these works, we do
offer correctness if all workers collude (without relying on a trusted set-up).

Finally, using short certificates to prove correctness of a larger operation has
been proposed before. For instance, it was used to prove the correct execution
of graph algorithms in [ZPK14]; see also [TT10] and its references. As far as
we know, we are the first to propose the use of certificates for verifiability of
multiparty computation. The certificates mentioned in these works may be useful
for achieving verifiability of these computations in a privacy-preserving setting.

Outline. We first present a protocol for proving and verifying that a set of
encryptions satisfies some given polynomial relations (Section 2). We then show
how to combine this protocol with fast, non-verifiable multiparty computation
(Section 3). We show with experiments that this gives rise to practical verifiable
secure linear programming (Section 4). We finish with a discussion of related
and future work (Section 5). Figure 1 shows notation used in this paper.

2 Proving Relations on ElGamal Encryptions

The main idea of our approach is compute a function using multiparty compu-
tation; and then prove correctness of the result by proving that the input and
result satisfy a number of polynomial relations with a private multiplier-based
protocol on ElGamal encryptions. Suppose that in the computation, a collection
X1, . . . , Xn of ElGamal encryptions has been produced representing the inputs
and outputs of the computation, whose correctness we now want to prove. Say
these ElGamal encryptions are encrypted under a private key s that is addi-
tively shared with threshold t (usually, t = 1), i.e, t + 1 workers have shares
[s]1, . . . , [s]t+1 such that s = [s]1 + . . . + [s]t+1. Suppose the t + 1 workers have
also additively shared the plaintexts and randomness of these encryptions. Then

the workers will together prove in zero knowledge that the encryptions satisfy
certain relations, without learning any information about the encrypted values.

The overall approach for producing this proof is the following. For each poly-
nomial relation r(x1, . . . , xn) = 0 in values x1, . . . , xn, the workers produce an
encryption R of the left-hand side value. This requires additions, multiplications
by a constant, and multiplications of two encryptions. The first two can be com-
puted locally using homomorphic properties of ElGamal. Multiplications of an
encryption Y by an encryption Xi of a shared plaintext xi can be performed
verifiably by letting the workers verifiably multiply their shares, and combining
correctness proofs on the shares into an overall correctness proof using the mul-
tiparty Fiat-Shamir transform [SV15]. Finally, a proof that R decrypts to zero
is made by homomorphically combining decryption proofs using shares [s]i.

In the remainder of this section, we review the threshold homomorphic ElGa-
mal cryptosystem and associated proofs of correct multiplication and decryption,
and the multiparty variants from [SV15]. We then discuss how to use these mul-
tiplication and decryption proofs to obtain an overall proof that the polynomial
relations hold. In Appendix A, we give an explicit two-party protocol.

2.1 Threshold ElGamal and Zero-Knowledge Proofs

First, recall the additively homomorphic ElGamal cryptosystem [El 85]. Given
a generator g of a discrete logarithm group of size p (p prime), public keys
are group elements h such that s = logg h is unknown; the private key is s;
encryption of m ∈ Zp with randomness r ∈ Zp is (gr, gmhr); and decryption
of (a, b) is gm = ba−s. This cryptosystem is indeed additively homomorphic: if
(a, b) encrypts m and (a′, b′) encrypts m′, then (a · a′, b · b′), denoted (a, b) ⊕
(a′, b′), encrypts m + m′. Moreover, if (a, b) encrypts m, then (aα, bα), denoted
(a, b)⊗α, encrypts mα; and (aαgr, bαhr) is a random encryption of mα. Because
ElGamal decrypts to gm and not to m, it is only possible to decrypt small values
for which the discrete logarithm problem with respect to g is feasible. Suitable
discrete logarithm groups include groups of points on elliptic curves, e.g., [Nat99].
ElGamal is turned into a threshold cryptosystem [Ped91] in which two parties
together can perform decryption, by sharing the private key s as s = s1 + s2:
parties can publish their decryptions D1 = ba−s1 , D2 = ba−s2 , from which the
overall decryption is computed as gm = b(b−1D1)(b−1D2).3 Public key shares
hi = gsi are published that are used to prove correctness of decryption shares.

The correctness of decryption shares and multiplications can be proven us-
ing Σ-protocols [CDS94]. Recall that a Σ-protocol for a binary relation R is a
three-move protocol in which a potentially malicious prover convinces a hon-
est verifier that he knows a witness w for statement v such that (v, w) ∈ R.
First, the prover sends an announcement to the verifier; the verifier responds
with a uniformly random challenge; and the prover sends his response, which
the verifier verifies. For our purposes, we need three standard Σ-protocols: proof

3 Of course, parties can alternatively share a−s1 , a−s2 ; we prefer our description be-
cause it treats decryption and decryption shares uniformly.

of plaintext knowledge ΣPK, proof of correct multiplication ΣCM, and proof of
correct decryption ΣCD. ΣPK proves knowledge of plaintext y and randomness
r used in the statement (a, b) = (gr, hrgy). ΣCM proves the following: given
a statement consisting of encryptions (a1, b1), (a2, b2), and (a3, b3), the prover
knows (y, r, s) such that a2 = gr and b2 = hrgy (i.e., (a2, b2) encrypts plaintext
y with randomness r); and a3 = ay1g

s and b3 = by1h
s (i.e., (a3, b3) encrypts the

product encryption, randomised with s). For ΣCD, recall that the decryption of
plaintext (a, b) with private key (share) s is D = ba−s. Correctness of D with
respect to public key (share) h is proven by proving knowledge of the value s
such that h = gs and b = Da−s using a standard equality proof.

Σ-protocols can be used to obtain non-interactive zero-knowledge proofs us-
ing the well-known Fiat-Shamir heuristic [FS86]. Namely, a party proves knowl-
edge of a witness for statement v by generating announcement a; setting chal-
lenge c = H(v||a||aux) with some auxiliary information aux; and using this
to computing response r. The proof (a, c, r) can be verified by checking that
(a, c, r) verify, and H(v||a||aux) gives c. If a follows from c and r, then the
proof can be shortened to (c, r), which is accept if ZkVer(Σ; v; c, r; aux) holds,

where ZkVer(Σ; v; c, r; aux) := (H(v||Σ.rea(v; c; r)||aux)
?
= c). Security is in

the random oracle model, an idealised model of hash functions. To prove multi-
ple statements vi, the same challenge can be used for all the proofs by computing
announcements ai and setting c = H(v1||a1||v2||a2|| . . . ||aux).

For our Σ-protocols ΣPK, ΣCD and ΣCM, homomorphisms [SV15] exist that
allow provers to combine proofs for different statements into one single proof.
Suppose we have an encryption X and a series of encryptions Yi, Zi such that Zi
is an encryption of the product of the plaintexts of X and Yi. Then separate in-
stances of ΣCM can be used to prove that the Zi are indeed product encryptions.
However, if the transcripts (ai, c, ri) of these proofs all share the same challenge,
then these transcript can be “homomorphically combined” into one transcript
that proves that ⊕Zi is the product encryption of X and ⊕Yi. The combination
function simply takes the product of all elements of the announcement, and the
sum of all elements of the response. If a verifier is just interested in X, ⊕Yi and
⊕Zi then the verifier no longer needs to verify the individual proofs. Similarly, a
homomorphism for ΣPK combines proofs of plaintext knowledge for (ai, bi) into
a proof of knowledge for (

∏
ai,
∏
bi). That is, it combines proofs of knowledge

of the plaintexts of Xi into one proof of (collective) knowledge of the plaintext of
⊕Xi. A homomorphism for ΣCD combines proofs of correct decryption of (a, b)
to shares Di with respect to public key shares hi into a proof of correct de-
cryption of (a, b) to b

∏
(b−1di) with respect to public key h =

∏
hi. Also these

homomorphisms also take the announcements’ product and the responses’ sum.

Using the above homomorphisms, it is possible to obtain non-interactive
zero-knowledge proofs of combined statements. Suppose parties with statements
v1, . . . , vt want to produce a series of proofs for combined statement v. They
exchange announcements a1, . . . , at for their shares v1, . . . , vt; compute com-
bined announcement a; take challenge h = H(v||a||aux); and exchange responses
r1, . . . , rt. The combined r with the challenge h proves collective knowledge of the

witness corresponding to statement v. For security reasons, parties should not
not be able to choose ai based those of others. To ensure this, before exchanging
ai the parties should first exchange commitments to these values. As above, it is
possible to use the same challenge for multiple combined proofs. [SV15] proves
the desirable notions of soundness and zero knowledge.

2.2 Proving and Verifying Polynomial Relations

We now present an overview of our PolyProve protocol for producing a proof
that ElGamal encryptions X1, . . . , Xn satisfy a given set of polynomial relations.
PolyProveE,G(pk; [pk]; [sk];X1, . . . , Xn; [x1], . . . , [xn]; [r1], . . . , [rn]) has two sets
of inputs. First, the ElGamal public key pk and secret-shares [pk], [sk] of this key
and the corresponding private key. Second, encryptions X1, . . . , Xn, and secret-
shares of the respective plaintexts [xi] and randomness [ri]. The set of relations
to be proven is formalised by structures E and G. E is a set of equations xj = 0
(1 ≤ j ≤ N for some N ≥ n). G is an arithmetic circuit to compute values xj
for j > n. Specifically, G consists of gates xk = v, xk = xi + xj , xk = xi · v,
and xk = xi · xj (v any constant). For multiplication xk = xi · xj , we require
1 ≤ j ≤ n: for these encryptions the workers have shared the randomness, which
we will need to produce the proof. (Clearly, any set of polynomial relations can
be described by such E and G.) The protocol proceeds in the following steps:

– The first step of the protocol is to evaluate the circuit to obtain encryptions
Xn+1, . . . , XN . All gates except xk = xi · xj can be evaluated locally; for
xk = xi · xj , the parties use their additive shares of the plaintext of Xj to
obtain shares ofXk, randomised using randomness [sk]. The parties exchange
these shares so that, at the end of this step, all parties know all encryptions
X1, . . . , XN .

– Then, the parties use the multiparty Fiat-Shamir transform to produce com-
bined proofs of correctness of the multiplications in the arithmetic circuit G
for Xn+1, . . . , XN .

– After verifying the correctness of all multiplication proofs, the parties can
now safely decrypt encryptions Xj for all equations xj = 0: first, they pro-
duce decryption shares with associated proofs of correctness, and then they
use the multiparty Fiat-Shamir transform to produce a proof that the combi-
nation of the decryption shares produces zero. (Note that it is not necessary
to exchange the decryption shares since the result is zero by assumption.)

We remark that in the case of two parties, a slight optimization to the mul-
tiparty Fiat-Shamir transform is possible. Namely, instead of each party having
to commit to each announcement before opening it, it is sufficient for the first
worker to commit to its announcement; the second party to provide its announce-
ment; and the first party to open its commitment. In Appendix A we explicitly
give the above PolyProve algorithm which includes this optimization.

The corresponding algorithm PolyVerE,G(pk;X1, . . . , Xn;π) checks if the
proof π produced by PolyProve is correct. The algorithm takes as arguments

the public key pk, encryptions X1, . . . , Xn, and proof π as above. First, it com-
putes missing encryptions in {Xn+1, . . . , XN}, i.e., of gates that are not inputs
or multiplication results, using the homomorphic properties of ElGamal. Then,
it verifies all multiplication and decryption proofs. Using the above techniques,
this check corresponds to recomputing the announcements and checking if every-
thing hashes to the correct multiplication proof and decryption proof challenges.
Details appear in Appendix A.

3 Combining Computation and Validation

We now present our main protocol for privacy-preserving outsourcing with cor-
rectness guarantees. We compute a solution and a so-called “certificate” using
normal multiparty computation, and then produce a proof that the solution is
valid with respect to the certificate using the above ElGamal-based proofs.

3.1 Certificates and Validating Functions

To efficiently validate a computation result, we use certificates. In complexity
theory, a certificate is a proof that a value lies in a certain set, that can be
verified in polynomial time (see [Hro01]):

Definition 1. Let S1,S2 be sets and X ⊆ S1. A polynomial time computable
predicate φ ⊆ S1×S2 is called a validating function for X if X = {w ∈ S1 | ∃c ∈
S2 : φ(w, c)}. If φ(w, c), then c is a certificate of the fact that w ∈ X .

E.g., let S1 = {x ∈ N | ∃y ∈ Z : y2 = x} be the squares, then φ(x, y) := x
?
= y2

is a validating function, and, ±2 are certificates of the fact that 4 ∈ S1.
In our case, a computation is given by a computation function (a, r) = f(x)

and a validating function φ(x,a, r). Here, on input x, function f computes
function output r and certificate a; validating function φ checks that r is a valid
output with respect to x and a. We require that if (a, r) = f(x), then φ(x,a, r),
but we do not demand the converse: the outcome of the computation might not
be unique, and φ might merely check that some correct solution was found,
not that it was produced according to algorithm f . (For instance, a square root
finder may return the positive square root while negative square root is also
valid.) In our case study, we use that the optimality of a solution to a linear
program can be efficiently validated using a certificate, but this concept is more
generally applicable: for instance, see [TT10,ZPK14] and references therein.

3.2 Security Properties

We now provide a high-level overview of our setting and the relevant secu-
rity properties. We consider a setting in which m inputters I1, . . . , Im want
to perform a computation on their respective inputs x = x1, . . . , xm. As above,
the computation is given by a function (a, r) = f(x) and validating function

Table 1. Security properties and conditions on workers

Property Satisfied if...

Correctness Always
Input independence Always
Privacy No malicious and ≤ t colluding workers
Independence of robustness No malicious and ≤ t colluding workers

φ(x,a, r), where r is the outcome of the computation and a is the certificate.
We assume that φ is given as a set of polynomial relations. The computation
is distributed among n workers P1, . . . ,Pn, using (t, n) Shamir sharing with
n = 2t + 1. One single recipient R obtains the result (we later discuss changes
when multiple parties need to get the result).

We will guarantee different security properties in different situations. We
require correctness of the computation result, in the sense that it satisfies φ,
regardless of which parties are corrupted.4 Privacy means that nobody learns
information about the honest parties’ inputs (apart from the recipient learning
the function result); we guarantee it if the workers are non-malicious (i.e., they do
not deviate from the protocol) and do not collude with each other (they may col-
lude with inputters or the recipient). Input independence means that corrupted
inputters cannot choose their input depending on honest inputs (note that this
is not implied by privacy as we also want to prevent corrupted inputters from
copying honest inputs); we guarantee this property regardless of which parties
are corrupted. A final property often considered in this setting is robustness, i.e.,
the guarantee that parties cannot stop the computation from reaching a result;
we do not aim for this property, and in fact, any inputter can make the com-
putation break down by providing incorrect inputs. However, we do guarantee
independence of robustness in the sense that parties cannot decide to make the
computation break down depending on the inputs of honest inputters, if none of
the workers collude or act maliciously.

Our security guarantees indeed (as said before) lie strictly between active
and passive security for multiparty computation. Indeed, passively secure pro-
tocols do not guarantee correctness or input independence if there are malicious
workers (which we do); but actively secure protocols guarantee correctness, pri-
vacy, and independence of robustness also with malicious workers (which we do
not). We summarise our security properties, and the conditions on the workers
under which they are satisfied, in Table 1. In Section 3.4, we will formalise these
properties and state a security theorem for our protocol.

3.3 The VerMPC Protocol

We now present our VerMPC protocol providing the above security guarantees.
To compute (a, r) = f(x), we use passively secure multiparty computation

protocols based on (t, n)-Shamir sharing with n = 2t + 1. In these protocols,

4 As mentioned, depending on φ this may not imply the result is computed using f .

 ([a],[r])=f([x])
 make A,R,
 π: φ(X, A, R)=1
5.

4.

3.

 publish X
 share [x]
 check [x]=X

1.

2. 2.

6.

7.

 send A,π
 reconstruct [r]

bulle�n
board

inpu�ers recipient

1.

2.

3. 4. 5.

4. 4.

6.
6.7.

worker 1

worker 3

worker 2

Fig. 2. VerMPC protocol with three workers (dotted lines are private, secure channels)

private values are information-theoretically shared between the n parties such
that t + 1 parties are needed to recover the value. Protocols exist to, e.g., mul-
tiply, bit-decompose, compare, and open these shared values (see [dH12] for an
overview); these protocols are secure against passively corrupted, non-colluding
workers. Note that the computation of f involves n parties and uses Shamir
shares, whereas PolyProve involves t+1 parties and uses additive shares. It is
easy to switch between the two: t+1 parties holding additive shares can Shamir-
share them among all n; and t + 1 of the n parties holding Shamir shares can
locally convert them to additive shares by Lagrange interpolation.

Given a multiparty computation protocol to compute ([a1], . . . , [r1], . . . , [rl])←
f([x1], . . . , [xm]) and the protocol PolyProveEφ,Gφ(X1, . . . ; [x1], . . . ; [rx,1], . . .)
to prove that this result is correct, the question is how to combine them in a se-
cure way. Figures 2, 3 show our VerMPC protocol, for concreteness instantiated
with three workers (t = 1, n = 3). It consists of the following steps:

Step 1. First, the inputters announce their inputs. Each inputter encrypts its
input (line 3), and makes a proof of knowledge of the corresponding plaintext
(lines 4). These encryptions and proofs are posted on a bulletin board. To prevent
corrupted inputters from adaptively choosing their input based on the inputs of
others, this happens in two rounds: first, each inputter provides a hash as com-
mitment to its input; having received the commitments of the other inputters, it
then reveals the actual encrypted input and proof (line 6). If anybody provides
an incorrect input or proof, the protocol is terminated (line 7).

Step 2. Next, the inputters provide additive secret shares of the plaintext x and
randomness s of the encryption to the t+ 1 workers who will later perform the
PolyProve protocol (line 8).

Step 3. The t+1 workers check if the provided sharing of the input is consistent
with the encryptions that were posted in step 1. (Without this check, the recip-
ient could learn information of the function output both on the encrypted and
the secret-shared inputs, which should not be possible.) They do this by simply

Require: pk/sk ElGamal public/private keys shared by P1, P2; x = x1, . . . , xm inputs
Ensure: Recipient R returns either r with φ(x,a, r) for some a, or ⊥

1: protocol VerMPCf,φ(pk; [pk]; [sk]; {xi}i∈I)
2: parties I1, . . . , Im do . step 1
3: rx,i ∈R Zp; Xi ← Encpk(xi; rx,i)
4: (ai, si)← ΣPK.ann(Xi;xi, rx,i); ci ← H(Xi||ai||i)
5: ri ← ΣPK.res(Xi;xi, rx,i; ai; si; ci); πx,i ← (ci, ri)
6: hi ← H(i||Xi||πx,i); bcast(hi); bcast(Xi, πx,i)
7: if ∃j : hj 6= H(j||Xj ||πx,j) ∨ ¬ZkVer(ΣPK;Xj ;πx,j ; j) then return ⊥
8: x′i ∈R Zp; r′x,i ∈R Zp; send(x′i, r

′
x,i;P1); send(xi − x′i, rx,i − r′x,i;P2) . st 2

9: parties {P1,P2} do
10: for all 1 ≤ i ≤ m do
11: [xi], [rx,i]← recv(Ii); [Xi]← Encpk([xi]; [rx,i]); send([Xi]) . step 3
12: [X ′i]← recv(); if Xi 6= [Xi]⊕ [X ′i] then return ⊥
13: parties {P1,P2,P3} do ([a1], . . . , [ak], [r1], . . . , [rl])← f([x1], . . . , [xm]) . st 4
14: parties {P1,P2} do . step 5
15: for all 1 ≤ i ≤ k do
16: [ra,i]∈RZp;[Ai]←Encpk([ai]; [ra,i]);send([Ai]);[A

′
i]←recv();Ai←[Ai]⊕[A′i]

17: for all 1 ≤ i ≤ l do
18: [rr,i]∈RZp;[Ri]←Encpk([ri]; [rr,i]);send([Ri]);[R

′
i]←recv();Ri←[Ri]⊕ [R′i]

19: π ← PolyProveEφ,Gφ(pk; [pk]; [sk];X1, . . . , Rl; [x1], . . . ; [rx,1], . . .)
20: send({[ri], [rr,i]}i=1,...,l;R) . step 6

21: party P1 do send(A1, . . . , Ak, π;R) . step 7
22: party R do
23: {[ri](1), [rr,i](1)}i=1,...,l ← recv(P1); {[ri](2), [rr,i](2)}i=1,...,l ← recv(P2)
24: (A1, . . . , Ak, π)← recv(P1)
25: for all 1 ≤ i ≤ m do if ¬ZkVer(ΣPK;Xi;πx,i; j) then return ⊥
26: for all 1 ≤ i ≤ l do Ri ← Encpk([ri]

(1) + [ri]
(2); [rr,i]

(1) + [rr,i]
(2))

27: if ¬PolyVerEφ,Gφ(pk;X1, . . . , Rl;π) then ret (r1, . . . , rl) else ret ⊥

Fig. 3. VerMPC protocol with three workers

encrypting their shares of the inputs using their shares of the randomness; ex-
changing the result; and checking correctness using the homomorphic property
of the cryptosystem (lines 11–12). (Note that this works because ElGamal is not
only homomorphic in the plaintext but also in the randomness.)

Step 4. Then, the actual computation takes place (line 13). This is the only step
that involves the additional workers. The t + 1 workers holding additive shares
of the input Shamir-share them between all n workers; then the computation is
performed between the n workers; and finally, P1, . . . ,Pt+1 locally convert their
Shamir shares to additive shares [ai], [ri].

Step 5. t + 1 workers produce the encrypted result and prove its correctness:
They exchange encryptions of their respective additive shares of the certificate
and result (line 15–18). They run the PolyProve protocol from Section 2.2 to
obtain a proof that φ(X,A,R) = 1 (line 19). The arithmetic circuit for φ should
be such that each certificate value Ai and result value Ri occurs at least once as

1: function IVerMPCf,φ

2: for all honest inputters Ii do get xi from party Ii . input phase
3: for all corrupted inputters Ii do get xi from adversary S
4: if < t passively corrupted workers then . computation phase
5: compute result, certificate r;a← f(x)
6: else if ≥ t passively corrupted workers then
7: send honest inputs {xi}i∈I\C to adversary S
8: compute result, certificate r;a← f(x)
9: if active inputter, S sends ⊥ then r ← ⊥, . . . ,⊥

10: else . actively corrupted workers
11: send honest inputs {xi}i∈I\C to adversary S
12: get result, certificate r;a from adversary S
13: if any xi is ⊥ or φ(x;a; r) does not hold then set result r ← ⊥, . . . ,⊥
14: send result r to recipient R . result phase

Fig. 4. Security guarantees captured by ideal-world trusted party

right-hand side of a multiplication: because the workers prove knowledge of these
right-hand sides, this guarantees that they know the corresponding plaintexts.
Step 6. The workers send their additive shares of the result and the randomness
of their encryption shares [Ri] to the recipient (line 20).
Step 7. One worker sends the encryptions of the certificate and proof of cor-
rectness (line 21). The recipient checks the proofs of knowledge provided by the
inputters (read from the bulletin board) (line 25); computes the encrypted re-
sult R1, . . . , Rl from its shares (line 26); and calls PolyVer to verify correctness
(line 27): if the proof verifies, plaintext r1, . . . , rl is the computation outcome.

3.4 Formal Security Model and Theorem

To formally state and prove the security of our protocol, we use the standard for-
malism used for multiparty computation: the ideal/real world paradigm [Can98].
We demand that the outputs of the recipient and the adversary in a protocol
execution are distributed similarly to those outputs in an ideal world where the
function is computed by an incorruptible trusted party. Because we provide dif-
ferent security guarantees under different conditions (Table 1), depending on
the number and type of corruptions, the trusted party gives the adversary the
chance to learn inputs or manipulate outputs (cf. [SV15, BDO14]). In the ideal
world, the adversary has no chances to break privacy or correctness apart from
those explicitly given to it by the trusted party. If for every real-world adversary
A there is an ideal-world adversary SA such that the real-world outputs are dis-
tributed the same as in the ideal world, then also real-world adversaries cannot
learn or influence more than allowed by the ideal-world trusted party.

Figure 4 shows the algorithm IVerMPCf,φ of the ideal-world trusted party
that captures the privacy and correctness guarantees discussed in Section 3.2. In
the input phase, the trusted party obtains the inputs from the honest inputters
(line 2) and then asks the adversary to provide the inputs on behalf of the

corrupted inputters (line 3). In particular, regardless of corruptions, corrupted
inputters cannot choose their inputs depending on those of honest inputters: this
captures input independence. (However, they can provide ⊥ in which case the
whole computation will fail, capturing that we do not guarantee robustness.)

In the computation phase, we distinguish three different cases. The first, sim-
plest case is when there are fewer than t passively corrupted workers: in this
case, the trusted party simply evaluates the function f (line 5), capturing cor-
rectness. In the second case, if there are at least t corrupted workers but they
are all passive, then we can no longer guarantee privacy, so the trusted party
sends the inputs to the adversary (line 7). The trusted party then computes f
(line 8). If there are any actively corrupted inputters, then we do not guarantee
independence of robustness. Namely, the ≥ t corrupted workers learn the honest
inputs before the corrupted inputters provide their input shares, so the corrupted
inputters can stop participating (but not change their inputs) depending on the
honest inputs. We capture this by letting the trusted party ask S whether it
wants to send ⊥, in which case it sets all inputs to ⊥ (line 9). In the third case,
if there are actively corrupted workers, then the passively secure protocols we
use guarantee neither privacy nor correctness, so the trusted party provides the
inputs to the adversary (line 11) and asks it to provide the computation result
(line 12). Finally, in the result phase, the trusted party checks if the computa-
tion result satisfies φ, and otherwise sets the result to ⊥, capturing correctness
(line 13). The result is then sent to R (line 14).

We now precisely define the real-world and ideal-world execution models. Let
C be a set of corrupted parties, of which A are actively corrupted. Let k be a
security parameter. Let adversary A be a probabilistic polynomial time Turing
machine. Define real-world execution

RealC,A
VerMPCf,φ,A(k;x1, . . . , xm)

as the distribution consisting of the output of the recipient R and the adversary
A in a protocol run. This run consists of a secure set-up of the threshold ElGamal
cryptosystem, returning public key pk shared as threshold public/private keys
[pk], [sk]; followed by an execution of the protocol VerMPCf,φ(pk; [pk]; [sk]; {xi}i∈I)
with adversary A. We assume the communication model of [Can98], i.e., a fully
connected, synchronous network with rushing; parties can use private chan-
nels and a bulletin board, and all communication is ideally authenticated (see
[Can98,SV15] for details).

Similarly, the ideal-world execution given set C of corrupted parties of which
A active, adversary S, security parameter k, and inputs x1, . . . , xm is called

IdealC,A
IVerMPCf,φ,S(k;x1, . . . , xm);

it is defined as the distribution consisting of the outputs of the recipient R
and the adversary S in an ideal-world protocol execution. In this execution, all
parties communicate securely with an incorruptible trusted party T executing
algorithm IVerMPCf,φ (Figure 4). Honest inputters send their inputs to T ; a

honest recipient gets its output from T ; and the adversary S can send arbitrary
messages to T and return an arbitrary value.

Definition 2. Protocol Π is a t-passively secure multiparty computation proto-
col with certificate validation if, for all probabilistic polynomial time adversaries
corrupting set C of parties and actively corrupting A ⊆ C, there exists a proba-
bilistic polynomial time adversary S such that for all possible inputs x:

RealC,AΠ,A(k;x) ≈ IdealC,A
IVerMPCf,φ,S(k;x),

where ≈ denotes computational indistinguishability in security parameter k.

Theorem 1. Protocol VerMPC is a 2-passively secure multiparty computation
protocol with certificate validation in the random oracle model assuming the de-
cisional Diffie-Hellman problem in the group used for ElGamal encryption is
hard.

We prove this theorem in Appendix B.
Because we use the Fiat-Shamir heuristic for non-interactive zero-knowledge

proofs, our construction is only secure in the random oracle model. In this model,
evaluations of the hash function H are modelled as queries to a “random oracle”
O that evaluates a perfectly random function. Although security in the random
oracle model does not generally imply security in the standard model, the model
is commonly used to devise simple and efficient protocols, and no security prob-
lems due to its use are known. In particular, our variant of the model [SV15]
assumes that the random oracle has not been used before the protocol starts:
in practice, it should be instantiated with a keyed hash function, with every
computation using a fresh random key.

3.5 Extensions

Input range checking. The multiparty computation protocols used to compute
f may only guarantee correctness and privacy if their inputs x are bounded,
e.g., −2k ≤ x ≤ 2k. To guarantee that the inputs of corrupted parties lie in this
range, it is possible to use statistically secure additive shares over the integers in
line 8 of the protocol, i.e., by choosing x′i at random from [−2k−1, . . . , 2k−1]. The
workers check if the shares they receive in line 11 lie in this range. Privacy of
honest inputs is guaranteed if they are smaller than 2k−1 by a statistical security
parameter.
Multiple recipients and universal verifiability. In our model, only one
party learns the result. If multiple parties need to learn the result, then the
encrypted outputs R1, . . . , Rl should be posted on a bulletin board to ensure
consistency. Note that we cannot guarantee fairness as the workers can always
choose to send their shares of the result to some recipients but not others.

At the end of the protocol, the recipient obtains not only the result; but also a
non-interactive zero-knowledge proof that this result is correct. In particular, the
recipient can also convince third parties that the encrypted outputs R1, . . . , Rl

are correct. In effect, this protocol achieves what is known as “universal” verifi-
ability [dH12,SV15], although some small changes are needed to obtain security
in a [SV15]-like model.
Basing it on Commitments. Verifiability by certificate validation can be
based on Pedersen commitments instead of ElGamal encryptions. This requires
a few changes; in particular, to prove that a commitments is zero, one needs
to know the randomness, hence the randomness of product commitments needs
to be computed in a multiparty way. Using Pedersen commitments likely leads
to smaller proofs and quicker verification. Also, it is no longer needed to dis-
tribute decryption keys to the workers, hence a computation can be outsourced
to anybody without preparation. On the other hand, when using Pedersen com-
mitments, whoever knows the trapdoor logg h used to set up the commitment
scheme, can produce correctness proofs of incorrect computation results. (In the
present construction, knowing the trapdoor breaks privacy but not correctness.)
Load Balancing of the 2PC. In the present protocol, two of the three workers
produce the proof in line 19 while the third worker does nothing. If it is important
to balance the computation load, then it is possible to let the three pairs of
workers each produce one third of this proof.
Reducing Memory Load with Less Batching. In the present setup, all mul-
tiplication proofs and all decryption proofs share the same challenge. Although
this gives the smallest proofs and fastest computation, it also means that the
announcements for all those proofs need to be in memory at the same time.
Memory usage can be reduced at the expense of a slight increase in proof and
computation time by splitting the set of all equations into “blocks” and executing
PolyProve and PolyVer for each block.

4 Secure and Verifiable Linear Programming

To demonstrate the feasibility of our approach, we apply it to linear program-
ming. Linear programming is a broad class of optimisation problems occurring
in many applications; for instance, it can be used for optimising global profits
in supply chains [CdH10] or balancing risks in financial portfolios. Precisely, the
problem is to minimise the output of a linear function, subject to linear con-
straints on its variables. One instance of this problem is called a linear program
(LP); it is given by a matrix A and vectors b and c. The vector c = (c1, . . . , cn)
gives the linear function c ·x = c1 ·x1 + . . .+ cn ·xn in variables x = (x1, . . . , xn)
that needs to be minimised. The matrix A and vector b give the constraints
A · x ≤ b that need to be satisfied. A has n columns, and A and b have m
rows, where m is the number of constraints. In addition to these constraints, we
require /xi ≥ 0. For instance, the LP

/A =

(
1 2 1
1 −1 2

)
, b =

(
2
1

)
, c =

−10
3
−4


represents the problem to find x1, x2, x3 satisfying x1 + 2x2 + x3 ≤ 2, x1 − x2 +
2x3 ≤ 1, and x1, x2, x3 ≥ 0, such that −10x1 + 3x2 − 4x3 is minimal.

To find the optimal solution of a linear program, typically an iterative algo-
rithm called the simplex algorithm is used. Each iteration involves several com-
parisons and a Gaussian elimination step, making it quite heavy for multiparty
computation. For relatively small instances, passively secure linear programming
is feasible [BD09, CdH10]; but actively secure MPC much less so when includ-
ing preprocessing (as we discuss later). Fortunately, given a solution x to an LP,
there is an easy way to prove that it is optimal using the optimal solution p of the
so-called dual LP “maximise b ·p such that A ·p ≤ c,p ≤ 0”. Namely, it is well
known that solutions (x1

q , . . . ,
xn
q) and (p1q , . . . ,

pm
q) (x ∈ Zn,p ∈ Zm, q ∈ N+)

are both optimal if the following conditions hold:

q ≥ 1; p · b = c · x; A · x ≤ q · b; x ≥ 0;

AT · p ≤ q · c; p ≤ 0.

Also, the simplex algorithm for finding x turns out to also directly give p. To turn
the above criterion into a set of polynomial equations, we define the certificate
to consist of bit decompositions of (q · b−A ·x)i, xi, (q · c−AT · p)i, and −pi,
and prove that each bit decomposition b0, b1, . . . sums up to the correct value
v (with equation v = b0 + 2 · b1 + . . .) and contains only bits (with equations
bi · (1− bi) = 0).

4.1 Cloud Experiments

To assess the performance of our solution, we have performed experiments in a
realistic cloud outsourcing setting. Our experiments used a specially developed
prototype implementation of our protocols. We took the simplex implementation
from the TUeVIFF distribution of VIFF5, and modified it to produce the certifi-
cate of correctness, i.e., the dual solution and required bit decompositions. We
implemented the VerMPC protocol from Section 3.3 using SCAPI [EFLL12].
SCAPI is a high-level cryptographic library that supports ElGamal encryp-
tion, Σ-protocols ΣPK and ΣCD, and the Fiat-Shamir heuristic; to implement
VerMPC, we needed to add threshold decryption, ΣCM, and the PolyProve
and PolyVer protocols from Section 2.2. For ElGamal we use the NIST P-224
elliptic curve, supported in SCAPI through the MIRACL library.

To obtain a realistic outsourcing setting, we have deployed the three workers
on three different cloud instances from different providers on different continents.
See Table 2 for their specifications. In this setup, the inputters and recipient do
not have to rely on any single cloud provider or jurisdiction for their privacy: they
simply have to assume that the different instances do not collude. All machines
ran Ubuntu 14.04.2 LTS. The recipient ran Windows 7 on an Intel i5-5300 (2.30
GHz). The VIFF part of the computation (i.e., step 4) requires authenticated
and private channels; these were implemented using SSL. We did not implement
steps 1–3 as they contribute minimally to the overall performance of the protocol.

5 Available at http://www.win.tue.nl/~berry/TUeVIFF/

Table 2. Specifications of the workers used in our cloud experiments

Location Provider Instance Processor Memory e/hour

1 Ireland Amazon EC2 m3.medium Xeon @ 2.50GHz 3.75 GB e0.067

2 Virginia MS Azure Standard D1 Xeon @ 2.20GHz 3.5 GB e0,070

3 Taiwan Google GCE n1-standard-1 Xeon @ 2.50GHz 3.75 GB e0.050

●

●

●

●

●

●

■

■

■

■

■

■

◆

◆

◆
◆

◆

◆

▲

▲

▲
▲

▲

▲

● VIFF compute

■ VIFF compute+cert

◆ PolyProve

▲ PolyVer

5x5

(60,31,4)

20x20

(85,40,9)

48x70

(66,34,25)

48x70

(128,65,48)

103x150

(125,61,62)

288X202

(170,93,176)

10

100

1000

104

→ Size of linear program (bits comp,bits ver, # iterations)

→
C
om
pu
ta
tio
n
tim
e
(s
)

Fig. 5. Computation times of VerMPC on various LPs (the x-axis shows the LP size,
bit length for VIFF, bit length for the certificate, and number of iterations)

We ran our experiments on several LPs: randomly-generated small LPs and
larger LPs based on Netlib test programs6. We measured the time for VIFF to
solve the LP and to compute the certificate (this depends on the LP size, number
of iterations needed, and the bit length for internal computations); the time for
PolyProve to produce a proof; and for PolyVer to verify it (this depends on
the LP size and bit length for the proof).7

Figure 5 shows the performance numbers of our experiments. For the LPs in
our experiments, we find that producing a proof adds little overhead to comput-
ing the solution, and that verifying the proof is much faster than participating
in the computation. As a consequence, for the recipient, outsourcing both guar-
antees correctness and saves time compared to participating in the computation.
Already in a party with three inputters/recipients, privacy-preserving outsourc-
ing makes sense; with more inputters/recipients, this performance effect is even
bigger because computation scales linearly in the number of parties involved.

6 http://www.netlib.org/lp/data/; coefficients rounded for performance
7 We took the minimal bitlengths needed for correctness. In practice, these are not

known in advance: for VIFF, one takes a safe margin; for the proof, one can reveal
and use the maximal bit length of all bit decompositions in the certificate.

In general, one expects the difference between computing the solution and
proving its correctness to be more pronounced for larger problems: indeed, both
the computation and the correctness verification scale in the size of the LP; but
computation additionally scales in the number of iterations needed to reach the
optimal solution. This number of iterations typically grows with the LP size.
However, we only found this for the biggest linear program, where proving is
over four times faster than computing; for the other programs, this factor was
around two. An explanation for this is that also the bitlength of solutions (which
influences proving time) typically grows with the number of iterations.

4.2 Certificate Validation versus Active Security

As discussed, the security guarantees of our model lie in between passive secu-
rity (that does not guarantee correctness in case of active attacks) and active
security (that also guarantees privacy in this case). Above we showed that the
overhead of our approach compared to passive security is small; we now compare
our performance to that of active security. To get an idea of the performance
difference between our approach and active security, we have solved several of
our LP instances with an LP solver based on the state-of-the-art SPDZ pro-
tocols [DKL+13]. SPDZ combines a slow preprocessing phase, in which many
random values are shared between workers, with a fast on-line phase with com-
plexity comparable to passively secure protocols. Hence, after preprocessing has
been performed, SPDZ can perform a computation with full privacy and correct-
ness guarantees in about the same time as VIFF (in fact, due to a more efficient
implementation, the tested implementation is even faster).

However, preprocessing is slow. No public implementation of the preprocess-
ing phase is available, but it is possible to estimate the time it takes by measuring
the amount of randomness needed for the on-line phase and combining this with
available preprocessing performance figures [DKL+13]. Even with estimates that
are very generous to SPDZ, one finds that the SPDZ preprocessing time is at
least 15 times more than the VIFF computation time. For instance, for the first
48-by-70 linear program, we estimate that preprocessing for an actively secure
computation takes at least 13 hours; conversely, for out implementation, com-
putation and proving time is close to 35 minutes and verification time is 3.7
minutes. Also, note that the SPDZ timings from [DKL+13] were on a local net-
work whereas our workers are spread over the world; and that the SPDZ timings
were for two parties and SPDZ preprocessing scales linearly with the number of
parties involved, including all inputters and recipients (whereas our performance
does not depend on the number of inputters and recipients). Clearly, outsourcing
with certificate validation has favourable performance compared to using SPDZ.

5 Concluding Remarks

In this paper, we have shown how to use certificate validation to obtain cor-
rectness guarantees for privacy-preserving outsourcing. In particular, we effi-

ciently instantiate this idea by combining passively secure three-party computa-
tion with ElGamal-based proofs. For linear programming, verifying results takes
much less time than participating in an actively secure computation; in fact, it
even takes less time than participating in a passively secure computation with-
out any correctness guarantees. Hence, for computations on inputs of mutually
distrusting parties, privacy-preserving outsourcing with correctness guarantees
provides a compelling combination of correctness (always) and privacy (against
semi-honest, non-collaborating cloud workers) guarantees.

We see several directions for improvement of our work. We have used pas-
sively secure protocols for computation; using protocols that guarantee privacy
(but not correctness) also against active attacks would offer stronger protection,
possibly at a low performance cost. Our implementation can be optimised, and
our alternative construction using Pedersen commitment should have smaller
proofs and faster verification. Much bigger speed-ups, however, (especially for
linear programming) would come from using efficient zero-knowledge proofs for
specific tasks, e.g., for showing that certain values are positive. In particular,
range proofs are much faster to verify than our bit-wise proofs; the work of
Keller et al. [KMR12] suggests ways of distributing these proofs that could be
adapted to our setting. Alternatively, it may be possible to achieve even faster
certificate validation by combining verifiable outsourcing techniques with the
privacy guarantees of multiparty computation.

References

[ACG+14] P. Ananth, N. Chandran, V. Goyal, B. Kanukurthi, and R. Ostrovsky.
Achieving Privacy in Verifiable Computation with Multiple Servers - With-
out FHE and without Pre-processing. In Proceedings of PKC ’14, 2014.

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: A new characteri-
zation of NP. J. ACM, 45(1):70–122, 1998.

[BD09] P. Bogetoft and Dan Lund Christensen, et al. Secure Multiparty Compu-
tation Goes Live. In Proceedings of Financial Crypto ’09, 2009.

[BDO14] C. Baum, I. Damg̊ard, and C. Orlandi. Publicly Auditable Secure Multi-
Party Computation. In Proceedings of SCN ’14, 2014.

[Can98] R. Canetti. Security and Composition of Multi-party Cryptographic Pro-
tocols. Journal of Cryptology, 13:2000, 1998.

[CdH10] O. Catrina and S. de Hoogh. Secure multiparty linear programming using
fixed-point arithmetic. In Proc. of ESORICS ’10, pages 134–150, 2010.

[CDS94] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Proceedings of
CRYPTO ’94, 1994.

[CF85] J. Cohen and M. Fischer. A Robust and Verifiable Cryptographically Secure
Election Scheme. In Proceedings of FOCS ’85, pages 372–382. IEEE, 1985.

[CL02] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems, 20(4):398–461, 2002.

[DDN+15] I. Damg̊ard, K. Damg̊ard, K. Nielsen, P. S. Nordholt, and T. Toft. Confi-
dential benchmarking based on multiparty computation. IACR Cryptology
ePrint Archive, 2015:1006, 2015.

[DFK+92] C. Dwork, U. Feige, J. Kilian, M. Naor, and S. Safra. Low communication
2-prover zero-knowledge proofs for NP. In Proceedings of CRYPTO ’92,
pages 215–227, 1992.

[dH12] S. de Hoogh. Design of large scale applications of secure multiparty com-
putation: secure linear programming. PhD thesis, Eindhoven University of
Technology, 2012.

[DKL+13] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart.
Practical Covertly Secure MPC for Dishonest Majority - Or: Breaking the
SPDZ Limits. In Proceedings of ESORICS ’13, 2013.

[EFLL12] Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell. SCAPI: The Se-
cure Computation Application Programming Interface. Cryptology ePrint
Archive, Report 2012/629, 2012:629, 2012.

[El 85] T. El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

[FGP14] D. Fiore, R. Gennaro, and V. Pastro. Efficiently Verifiable Computation
on Encrypted Data. In Proceedings of CCS ’14, 2014.

[FS86] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Proc. of CRYPTO ’86, 1986.

[GKP+13] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zel-
dovich. Reusable garbled circuits and succinct functional encryption. In
Proc. of STOC ’13, 2013.

[GKR08] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation:
interactive proofs for muggles. In Proc. of STOC ’08, pages 113–122, 2008.

[Hro01] J. Hromkovic. Algorithmics for hard problems - introduction to combinato-
rial optimization, randomization, approximation, and heuristics. Springer,
2001.

[JNO14] T. P. Jakobsen, J. B. Nielsen, and C. Orlandi. A framework for outsourcing
of secure computation. In Proceedings of CCSW ’14, pages 81–92, 2014.

[KMR11] S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party com-
putation. IACR Cryptology ePrint Archive, 2011:272, 2011.

[KMR12] M. Keller, G. L. Mikkelsen, and A. Rupp. Efficient Threshold Zero-
Knowledge with Applications to User-Centric Protocols. In Proceedings
of ICITS ’12, 2012.

[LTV12] A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In
Proceedings of STOC ’12, pages 1219–1234, 2012.

[Nat99] National Institute of Standards and Technology. Recommended elliptic
curves for federal government use, 1999. Available at http://csrc.nist.

gov/encryption.
[Ped91] T. P. Pedersen. A Threshold Cryptosystem without a Trusted Party (Ex-

tended Abstract). In Proceedings of EUROCRYPT ’91, 1991.
[PHGR13] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly Prac-

tical Verifiable Computation. In Proceedings of S&P ’13, 2013.
[SK95] K. Sako and J. Kilian. Receipt-Free Mix-Type Voting Scheme—A Practical

Solution to the Implementation of a Voting Booth. In Proceedings of EU-
ROCRYPT ’95, volume 921 of Lecture Notes in Computer Science, pages
393–403. Springer, 1995.

[SV15] B. Schoenmakers and M. Veeningen. Universally Verifiable Multiparty
Computation from Threshold Homomorphic Cryptosystems. Cryptology
ePrint Archive, Report 2015/058, 2015.

1: . Relation: R = {(a, b; y, r) | a = gr ∧ b = hrgy}
2: function ΣPK.ann(a, b; y, r) . Announcement
3: u, v ∈R Fq; c← gv; d← hvgu; return (c, d;u, v)

4: function ΣPK.res(a, b; y, r; c, d;u, v; e) . Response
5: k ← u+ e · y; l← v + e · r; return (k, l)

6: function ΣPK.sim(a, b; e) . Simulator
7: k, l ∈R Fq; a← gla−e; b← hlgkb−e

8: return (a, b; e; k, l)

9: function ΣPK.ext(a, b; c, d; e; e′; k, l; k′, l′) . Extractor
10: y ← (k − k′)/(e− e′); r ← (l − l′)/(e− e′)
11: return (y, r)

12: function ΣPK.rea(a, b; e; k, l) . Announcement recomputation
13: c← gla−e; d← hlgkb−e; return (c, d)

14: function ΣPK.ver(a, b; c, d; e; k, l) . Verification

15: return ae
?
= glc−1 ∧ be

?
= hlgkd−1

Fig. 6. ΣPK: Proof of plaintext knowledge

[SZJVD04] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design and Implemen-
tation of a TCG-based Integrity Measurement Architecture. In Proceedings
of Usenix Security ’04, 2004.

[TT10] R. Tamassia and N. Triandopoulos. Certification and authentication of
data structures. In Proceedings of AMW ’10, 2010.

[ZPK14] Y. Zhang, C. Papamanthou, and J. Katz. ALITHEIA: towards practical
verifiable graph processing. In Proceedings of CCS ’14, pages 856–867, 2014.

A Details of the PolyProve Protocol

In this Appendix, we present the details of the protocols presented in Section 2.2,
specifically in the two-party setting that we have implemented.

A.1 Preliminaries

A Σ-protocol for a binary relation R is a three-move protocol in which a po-
tentially malicious prover convinces a honest verifier that he knows a witness w
for statement v such that (v, w) ∈ R. First, the prover sends an announcement
(computed using algorithm Σ.ann) to the verifier; the verifier responds with a
uniformly random challenge; and the prover sends his response (computed using
algorithm Σ.res), which the verifier verifies (using predicate Σ.ver).

Definition 3. Let R ⊂ V ×W be a binary relation with language LR = {v ∈
V | ∃w ∈W : (v, w) ∈ R}. Let Σ be a collection of probabilistic polynomial time
algorithms Σ.ann, Σ.res, Σ.sim, Σ.ext, and polynomial time predicate Σ.ver. Let
C be a finite set called the challenge space. Σ is a Σ-protocol for relation R if:

1: . Relation: R = {(a1, b1, a2, b2, a3, b3; y, r, s) |
2: . a2 = gr ∧ b2 = hrgy ∧ a3 = ay1g

s ∧ b3 = by1h
s}

3: function ΣCM.ann(a1, b1, a2, b2, a3, b3; y, r, s) . Announcement
4: u, v, w ∈R Fq; a← gv; b← hvgu; c← au1g

w

5: d = bu1h
w

6: return (a, b, c, d;u, v, w)

7: function ΣCM.res(. . . ; y, r, s; . . . ;u, v, w; e) . Response
8: k ← u+ e · y; l← v + e · r; m← w + e · s
9: return (k, l,m)

10: function ΣCM.sim(a1, b1, a2, b2, a3, b3; e) . Simulator
11: k, l,m ∈R Fq
12: a← gla−e2 ; b← hlgkb−e2

13: c← ak1g
ma−e3 ; d← bk1h

mb−e3

14: return (a, b, c, d; e; k, l,m)

15: function ΣCM.ext(. . . ; . . . ; e; e
′; k, l,m; k′, l′,m′) . Extractor

16: y ← (k − k′)/(e− e′); r ← (l − l′)/(e− e′)
17: s← (m−m′)/(e− e′)
18: return (y, r, s)

19: function ΣPK.rea(a1, b1, a2, b2, a3, b3; e; k, l,m) . Announcement recomputation
20: a← gla−e2 ; b← hlgkb−e2

21: c← ak1g
ma−e3 ; d← bk1h

mb−e3

22: return (a, b, c, d)

23: function ΣCM.ver(a1, b1, a2, b2, a3, b3;
24: a, b, c, d; e; k, l,m) . Verification

25: return ae2
?
= gla−1 ∧ be2

?
= hlgkb−1 ∧

26: ae3
?
= ak1g

mc−1 ∧ be3
?
= bk1h

md−1

Fig. 7. ΣCM: Proof of correct multiplication

Completeness If (a, s) ← Σ.ann(v;w), c ∈ C, and r ← Σ.res(v;w; a; s; c),
then Σ.ver(v; a; c; r).

Special soundness If v ∈ V , c 6= c′, and Σ.ver(v; a; c; r) and Σ.ver(v; a; c′; r′)
both hold, then w ← Σ.ext(v; a; c; c′; r; r′) satisfies (v, w) ∈ R.

Special honest-verifier zero-knowledge If v ∈ LR, c ∈ C, then (a, r) ←
Σ.sim(v; c) has the same probability distribution as (a, r) obtained by (a, s)←
Σ.ann(v;w), r ← Σ.res(v;w; a; s; c). If v /∈ LR, then (a, r) ← Σ.sim(v; c)
satisfies Σ.ver(v; a; c; r).

Completeness states that a protocol between a honest prover and verifier suc-
ceeds; special soundness essentially means that a successful prover must know the
witness; special honest-verifier zero-knowledge essentially means that a honest
verifier does not learn anything about a witness. For many Σ-protocols, the an-
nouncement a can be computed from the challenge c, statement v, the response r,
denoted Σ.rea(v; c; r). (This will be useful for concisely storing non-interactive
proofs.) Finally, we need that announcements are “non-trivial” [SV15] in the
sense that they are random from a large space. Our Σ-protocols satisfy this.

1: . Relation: R = {(a, b,D, h; s) | D = ba−s ∧ h = gs}
2: function ΣCD.ann(a, b,D, h; s) . Announcement
3: u ∈R Fq; c← au; d← gu; return (c, d;u)

4: function ΣCD.res(a, b,D, h; s; c, d;u; e) . Response
5: f = u+ e · s; return f

6: function ΣCD.sim(a, b,D, h; e) . Simulator
7: f ∈R Fq; c← afDeb−e; d← gfh−e

8: return (b, c; e; f)

9: function ΣCD.ext(a, b,D, h; c, d; e; e′; f ; f ′) . Extractor
10: s← (f − f ′)/(e− e′); return s

11: function ΣPK.rea(a, b,D, h; e; f) . Announcement recomputation
12: c← afDeb−e; d← gfh−e; return (c, d)

13: function ΣCD.ver(a, b,D, h; c, d; e; f) . Verification

14: return beD−e
?
= afc−1 ∧ he = gfd−1

Fig. 8. ΣCD: Proof of correct decryption (share)

For our purposes, we need three Σ-protocols: proof of plaintext knowledge
ΣPK, proof of correct multiplication ΣCM, and proof of correct decryption ΣCD.
These protocols are standard; we give them here for completeness. ΣPK (Fig-
ure 6) proves knowledge of plaintext y and randomness r used in encryption
(a, b) = (gr, hrgy). ΣCM (Figure 7) proves the following: given encryptions
(a1, b1), (a2, b2), and (a3, b3), the prover knows (y, r, s) such that a2 = gr and
b2 = hrgy (i.e., (a2, b2) encrypts plaintext y with randomness r); and a3 = ay1g

s

and b3 = by1h
s (i.e., (a3, b3) encrypts the product encryption, randomised with

s). For ΣCD, recall that the decryption of plaintext (a, b) with private key (share)
s is D = ba−s. Correctness of D with respect to public key (share) h is proven
by proving knowledge of the value s such that h = gs and b = Da−s using a
standard equality proof (Figure 8).

We say that ΣCM has a homomorphism [SV15] ΦCM consisting of a statement
combining function ΦCM.stmt({(X,Yi, Zi)}) = (X,⊕Yi,⊕Zi)), an announce-
ment combining function ΦCM.ann({(ai, bi, ci, di)}) = (

∏
ai,
∏
bi,
∏
ci,
∏
di),

and a response combining function ΦCM.resp({(ki, li,mi)}) = (
∑
ki,
∑
li,
∑
mi).

Similarly, a homomorphism ΦPK for ΣPK combines proofs of plaintext knowledge
for (ai, bi) into a proof of knowledge for (

∏
ai,
∏
bi). That is, it combines proofs

of knowledge of the plaintexts of Xi into one proof of (collective) knowledge of
the plaintext of ⊕Xi. Homomorphism ΦCD for ΣCD combines proofs of correct
decryption of (a, b) to shares Di with respect to public key shares hi into a proof
of correct decryption of (a, b) to b

∏
(b−1di) with respect to public key h =

∏
hi.

Like ΦCM, these homomorphisms also take the product of the announcements
and the sum of the responses. (Homomorphisms need to satisfy two technical
properties discussed in [SV15]; we mention without proof that these properties
hold for the homomorphisms in this paper.)

Σ-protocols can be used to obtain non-interactive zero-knowledge proofs us-
ing the well-known Fiat-Shamir heuristic [FS86]. Namely, a party proves knowl-

edge of a witness for statement v by generating announcement a using Σ.ann;
setting challenge c = H(v||a||aux) with some auxiliary information aux; and
computing response r with Σ.res. The proof (a, c, r) can be verified by checking
that

H(v||a||aux)
?
= c ∧Σ.ver(v; a; c; r).

If Σ.rea is defined, then the proof can be shortened to (c, r), which a verifier
accepts if ZkVer(Σ; v; c, r; aux) holds, where

ZkVer(Σ; v; c, r; aux) := (H(v||Σ.rea(v; c; r)||aux)
?
= c).

Security holds in the random oracle model, an idealised model of hash functions.
If a party needs to prove multiple statements vi at the same time, then it is
possible to use the same challenge for all the proofs by computing announcements
ai and setting c = H(v1||a1||v2||a2|| . . . ||aux).

The above homomorphisms can be exploited to obtain non-interactive zero-
knowledge proofs of combined statements. Suppose two parties want to produce a
series of proofs for statements vi = Φ.stmt({v′i, v′′i }). They exchange announce-
ments a′i, a

′′
i for their shares v′i, v

′′
i of vi; compute ai = Φ.ann({a′i, a′′i }); take

challenge h = H(v1||a1||v2||a2|| . . . ||aux); and exchange responses r′i, r
′′
i . Taking

ri = Φ.resp({r′i, r′′i }), the challenge h and responses ri prove collective knowl-
edge of witnesses corresponding to statements vi. For security reasons, the second
party should not be able to choose a′′i based on a′i. To ensure this, the first party
can first provide a hash of its announcements; the second party then provides
its announcements, after which the first party opens the hash. This construction
satisfies the desirable notions of soundness and zero knowledge [SV15].

A.2 Details of PolyProve and PolyVer

Figure 9 shows our PolyProve protocol for producing a proof that ElGamal
encryptions X1, . . . , Xn satisfy a given set of polynomial relations in the two-
party setting. The protocol has two sets of inputs. First, the ElGamal public
key pk and secret-shares [pk], [sk] of this key and the corresponding private key.
Second, encryptions X1, . . . , Xn, and secret-shares of the respective plaintexts
[xi] and randomness [ri]. The set of relations to be proven is formalised by
structures E and G. E is a set of equations xj = 0 (1 ≤ j ≤ N for some N ≥ n).
G is an arithmetic circuit to compute values xj for j > n. Specifically, G consists
of gates xk = v, xk = xi + xj , xk = xi · v, and xk = xi · xj (v any constant).
For multiplication xk = xi · xj , we require 1 ≤ j ≤ n: for these encryptions the
workers have shared the randomness, which we will need to produce the proof.
(Clearly, any set of polynomial relations can be described by such E and G.)

The first step of the protocol is to evaluate the circuit (lines 3–10) to obtain
encryptions Xn+1, . . . , XN . All gates except xk = xi · xj can be evaluated lo-
cally; for xk = xi · xj , the parties use their additive shares of the plaintext of
Xj to obtain shares of Xk, randomised using randomness [sk]. Then, the par-
ties compute announcements for the proofs of correctness of their multiplications

Require: pk/sk ElGamal public/private keys shared between parties P1, P2; Xi =
Encpk(xi; ri) a set of ElGamal encryptions; G an arithmetic circuit for xn+1, . . . , xN
with multiplication gates M⊂ G; E a set of equations xk = 0

Ensure: return proof that equations E hold for X1, . . . , XN computed according to G
1: protocol PolyProveE,G(pk; [pk]; [sk];X1, . . . , Xn; [x1], . . . , [xn]; [r1], . . . , [rn])
2: parties {P1,P2} do
3: for all gates ∈ G do . evaluate circuit and exchange multiplication proofs
4: if 〈constant gate xk = v〉 then Xk ← Encpk(v; 0)
5: if 〈addition gate xk = xi + xj〉 then Xk ← Xi ⊕Xj
6: if 〈multiplication gate xk = xi · v〉 then Xk ← Xi ⊗ v
7: if 〈multiplication gate xk = xi · xj , 1 ≤ j ≤ n〉 then
8: [rk] ∈r Zp; [Xk]← (Xi ⊗ [xj])⊕ Encpk(0; [rk])
9: send([Xk]); [X ′k]← recv(); Xk ← [Xk]⊕ [X ′k]

10: ([ak]; sk)← ΣCM.ann(Xi, [Xj], [Xk]; [xj], [rj], [rk])

11: parties P1 do
12: h← H({[ak]}k∈M); send(h); {[a′k]}k∈M ← recv(); send({[ak]}k∈M)

13: parties P2 do
14: h← recv(); send({[ak]}k∈M); {[a′k]}k∈M ← recv(); if h 6= H({[a′k]}k∈M) then fail

15: parties {P1,P2} do
16: for all mult. gates xk = xi ·xj , 1 ≤ j ≤ n inM do ak ← ΦCM.ann([ak], [a′k])
17: h1 ← H({Xi||Xj ||Xk||ak}gates xk=xi·xj ||mul)
18: for all mult. gates xk = xi · xj , 1 ≤ j ≤ n in M do
19: [rk]← ΣCM.res(Xi, [Xj], [Xk]; [xj], [rj], [rk]; [ak]; sk;h1)

20: send({[rk]}k∈M); {[r′k]}k∈M ← recv()
21: for all k ∈M do
22: rk ← ΦCM.resp([rk]; [r′k]); if ¬ΣCM.ver(Xi, Xj , Xk; ak;h1; rk) then fail

23: for all (xk = 0) ∈ E do . decrypt eqs + prove
24: [dk]← Dec[sk](Xk); ([Ak];Sk)← ΣCD.ann(Xk, [dk], [pk]; [sk])

25: party P1 do h← H({[Ak]}k∈E); send(h); {[A′k]}k∈E ← recv(); send({[Ak]}k∈E)
26: parties P2 do
27: h← recv(); send({[Ak]}k∈E); {[A′k]}k∈E ← recv(); if h 6= H({[A′k]}k∈E) then fail

28: parties {P1,P2} do
29: for all eq. (xk = 0) ∈ E do Ak ← ΦCD.ann([Ak], [A′k])
30: h2 ← H({Xk||g0||pk||Ak}equation xk=0||dec)
31: for all eq. (xk = 0) ∈ E do [Rk]← ΣCD.res(Xk, [dk], [pk]; [sk]; [Ak];Sk;h2)
32: send({[Rk]}k∈E); {[R′k]}k∈E ← recv()
33: for all equations (xk = 0) ∈ E do
34: Rk ← ΦCD.resp([Rk], [R′k]); if ¬ΣCD.ver(Xk, g

0, pk;Ak;h2;Rk) then fail

35: return (h1, {Xk, rk}k∈M, h2, {Rk}k∈E) . return mult. and decr. proofs

Fig. 9. PolyProve: Prove polynomial equations over ElGamal ciphertexts

(line 10). They use these announcements to make combined multiplication proofs
as described above: they exchange (line 12–14) and combine (line 17) their an-
nouncements; compute one overall challenge (line 17); and compute (line 18),
exchange (line 20), and combine (line 22) the responses.

Require: G is an arithmetic circuit for xn+1, . . . , xN ;M⊂ G are multiplication gates;
E is a set of equations xk = 0

Ensure: all equations in E hold for X1, . . . , XN
1: function PolyVerE,G(pk;X1, . . . , Xn;π)
2: (h1, {Xk, rk}k∈M, h2, {Rk}k∈E)← π . unpack
3: for all gates ∈ G do . determine encrypted gates
4: if 〈constant gate xk = v〉 then Xk ← Encpk(c; 0)
5: if 〈addition gate xk = xi + xj〉 then Xk ← Xi ⊕Xj
6: if 〈multiplication gate xk = xi · v〉 then Xk ← Xi ⊗ v
7: for all multiplications xk = xi · xj inM do ak ← ΣCM.rea(Xi, Xj , Xk;h1; rk)
8: for all equations xk = 0 in E do Ak ← ΣCD.rea(Xk, g

0, pk;h2;Rk)

9: return H({Xi||Xj ||Xk||ak}xk=xi·xj ||mul)
?
= h1 ∧H({Xk||g0||pk||Ak}xk=0||dec)

?
= h2

Fig. 10. PolyVer: Verify polynomial equations over ElGamal ciphertexts

The second step is to prove that, for each equation xj = 0, Xj is an en-
cryption of zero. The parties compute decryption shares [dk] (line 23) and pro-
duce a combined proof that decryption is to zero. These proofs are produced
similarly to the multiplication proofs. (Note that the multiplication and de-
cryption proofs cannot use the same challenge: for security, values Xk can be
decrypted only after the multiplication proofs have been verified.) The overall
proof π = (h1, {Xk, rk}, h2, {Rk}) consists of the encrypted products Xk, chal-
lenge h1, h2, and responses rk, Rk.

Algorithm PolyVer shown in Figure 10 shows how to check if the proof π
produced by PolyProve is correct. Specifically, the algorithm takes as argu-
ments the public key pk, encryptions X1, . . . , Xn, and proof π as above. First,
it computes missing encryptions ∈ {Xn+1, . . . , XN}, i.e., of gates that are not
inputs or multiplication results (line 3–6). Then, it computes the announcements
for all multiplication (line 7) and decryption (line 8) proofs. The overall proof π
is correct when these announcements with their respective statements hash to
challenges h1, h2 (line 9).

B Security Proof

We now prove Theorem 1. As discussed, security is defined by demanding the
existence, for every adversary A for the real protocol, of an adversary SA, called
the simulator, for the ideal-world execution. This SA should have the property
that running the real protocol with A gives output of the recipient and adversary
that are indistinguishable from performing the ideal-world execution with SA.
In the ideal world, we control the information that SA gets to work with and
we control the output for the recipient. Hence, if these are the same in the real
world, then privacy, correctness and other modelled security requirements must
hold.

We now explicitly construct simulator SA given A. Overall, SA internally
runs a copy of A. SA computes messages for A on behalf of the honest parties

based on the information it gets from the trusted party, and it uses the messages
it gets back from A to provide information to the trusted party to determine
the ideal-world output of the recipient. At the end of the protocol, SA outputs
whatever the simulated A would output in a real protocol output. Hence, to show
that the ideal- and real-world executions are indistinguishable, we need to show
both that the simulated A gets messages from SA that are indistinguishable
from a real protocol execution (implying that its output is indistinguishable as
well), and that the information that SA provides to T leads to an output for the
recipient that is the same as in the protocol execution simulated with A.

To prove our theorem, we build two different simulators. One works in the
“private” case when at most one worker is passively corrupted, in which case we
guarantee privacy. The other works in the “correct” case when either at least two
workers are passively corrupted, or some worker is actively corrupted, in which
case we do not guarantee privacy but only correctness. Our simulators, like our
protocol, are based on [SV15]; we assume familiarity with the proof techniques
used there. In particular, we refer to that work for details on the use of the
random oracle model and the use of witness extended emulation techniques to
extract witnesses from zero-knowledge proofs.

B.1 The Private Case

We now provide our simulator for the “private” case of at most one passively
corrupted worker. We will show that, assuming the decisional Diffie-Hellman
problem is hard in the group used for ElGamal encryption, the real and ideal
protocol executions are computationally indistinguishable. Note that in this case,
communication between the ideal world trusted party and simulator is as fol-
lows: the simulator sends the corrupted inputs to the trusted party T ; and if
the recipient R is corrupted, the simulator gets the result of the computation.
Simulation is as follows.

First, simulate step 1 of VerMPC using encryptions Xi of zero for the honest
inputters. For the honest inputters, note that we can perform the required proofs
of knowledge for Xi without actually knowing the plaintext and randomness by
programming the random oracle [SV15]; this will be important later on. For
the corrupted inputters, extract their plaintext xi from the provided proof of
knowledge πx,i using witness-extended emulation. If inputter i fails to provide
a correct opening of hash hi or a correct proof of knowledge, set xi = ⊥. Now,
simulate steps 2–4 of VerMPC with respect to A. In step 2, send random values
to P1 or P2, if corrupted. In step 3, for corrupted inputters run the protocol; if
any of them provides shares that are inconsistent with the encryptions Xi, set
xi = ⊥. For honest inputters, use encryption shares that add up to the values
Xi above. Provide corrupted xi to the trusted party. Simulate step 4 by using
the simulator of the underlying multiparty computation protocol, using zero as
input for the honest parties.

To simulate step 5, handle encryptions Ai line 16 as in the protocol. (I.e.,
they represent the output of the computation as performed on zero inputs of
the honest parties.) For encryptions Ri, do the same if the recipient is honest.

Otherwise, receive the results ri of the computation from the trusted party, com-
pute honest [rr,i] from the corrupted shares, and use these sharings to produce
the encryption in line 18. Finally, simulate PolyProve. Here, the Σ-protocols
can be simulated using the techniques from [SV15]. In particular, note that the
simulator does not know the witness for the honest decryption proofs (this being
the private key share of the honest worker), but it does know that each encryp-
tion Xk should decrypt to zero. Hence, it can compute the decryption shares the
honest worker based on the decryption share of the corrupt worker and simulate
its proof of correctness. Finally, if R is corrupted, provide the relevant values for
steps 6 and 7.

Proof (Proof of Theorem 1, private case). We now prove for the above simulator
SA, and in case at most one worker is passively corrupted, that

RealC,AΠ,A(k;x) ≈c IdealC,AIVerMPCf,φ,SA
(k;x).

(Here, ≈c denotes computational indistinguishability. Below, we use ≈s for
statistical indistinguishability, which of course implies computational indistin-
guishability.) In our proof, we move from Ideal to Real in steps. Note that
correctness of the output by a honest recipient is always guaranteed by con-
struction.

Ideal ≈s YAD0 YAD0 starts by computing a random encryption B of 0. For
every encryption X that Ideal computes based on zero inputs of the honest
inputters, YAD0 produces both an encryption X ′ based on the zero inputs and
X ′′ based on the actual inputs of the honest inputters. (These encryption X
are the encryptions Xi of honest parties inputs; Ai of the certificate; Ri of the
result if the recipient is honest; and multiplication results Xk from PolyProve.)
Then, YAD0 computes X as ((1	B)⊗X ′)⊕(B⊗X ′′). Note that we can indeed
use X instead of X ′ without even knowing its randomness: the encryptions are
only used to perform zero-knowledge proofs on, which we can simulate without
knowing the plaintext and randomness.

Because in both Ideal and YAD0, X is a random encryption of the same
value, Ideal is clearly statistically indistinguishable from YAD0.

YAD0 ≈c YAD1 YAD1 is exactly the same as YAD0, except that it sets B
to be a random encryption of 1. In particular, all encryptions now represent
the actual values while the secret sharing computation still uses zero inputs.
Note that this does not affect the protocol, e.g., the decryptions in PolyProve
are now performed on the outputs of the real computation instead of on the
zero-based computation, but we already forced decryption return zero anyway.
Clearly, YAD0 ≈c YAD1 follows directly from semantic security of the ElGamal
cryptosystem, i.e., from the decisional Diffie-Hellman problem in the underlying
group: if they were not, then executing YAD0/YAD1 on a given encryption B
would give a distinguisher between random encryptions of zero and one.

YAD1 ≈s YAD2 YAD2 is the same as YAD1, except that it no longer uses
random encryption B to compute encryptions as X = ((1	B)⊗X ′)⊕(B⊗X ′′);
instead, it directly uses X ′′. Statistical indistinguishability is clear.

YAD2 ≈s YAD3 YAD3 is the same as YAD3, except that also in the multi-
party computation, the actual inputs of the honest parties are used. Statistical
indistinguishability follows by the security of the multiparty computation pro-
tocols used.

YAD3 ≈s Real The only remaining difference between YAD3 and Real is that
YAD3 uses simulated zero-knowledge proofs whereas in Real, honest workers
produce zero-knowledge proofs in the regular way. However, as shown in [SV15],
this simulation can be done in a way that is statistically indistinguishable by the
adversary.

Overall, the above sequence implies Ideal ≈c Real, as we wanted to show.

B.2 The Correct Case

We now consider the “correct” case in which there are at least t passively cor-
rupted workers, or at least one actively corrupted worker. We build a simulator
SA that gives statistical indistinguishability between the real-world and ideal-
world protocol executions. Recall that the ideal-world simulator communicates
with the trusted party as follows. First, it provides the corrupted inputs, after
which it obtains the honest inputs. If there are any actively corrupted workers,
then they choose the output r,a of the multiparty computation. Otherwise, any
corrupted inputter can block the computation (but not change its output). Fi-
nally, if the recipient is corrupted then it obtains the computation result. The
simulator works as follows.

First, simulate step 1 of VerMPC. The main difficulty is that the simulator
needs to provide the inputs of the corrupted parties to the trusted party before
it learns the inputs of the honest parties. Conversely, the protocol requires pro-
viding the hash of encryptions of the honest inputs right at the beginning. The
simulation simulates providing the hash by “lazily” programming the random
oracle (cf. [SV15]). Namely, for each honest inputter, generate random hash value
hi, and broadcast it. Then, for each corrupted inputter i, receive hash value hi.
If this hash value has not been queried to the random oracle or the pre-image is
not a correct proof of knowledge for an encryption Xi, set xi = ⊥. Otherwise,
extract plaintext xi from the extracted proof with witness-extended emulation.
Now, send the corrupted inputs xi to the trusted party and receive the honest xi.
For each honest inputter i, produce encrypted input Xi and proof of knowledge
πx,i, and program the random oracle such that i||Xi||πx,i hashes to hi. Because
the adversary cannot guess this pre-image, it has likely not queried the random
oracle on it, so it cannot detect this deviation from the protocol. Broadcast the
plaintexts and proofs. Finally, for each corrupted inputter i, receive the encryp-
tion and proof of knowledge; if they are different from the ones extracted above,
set xi = ⊥.

From step 2 onwards, the simulator knows the inputs to the computation, so
it can simply perform the full protocol with respect to the adversary.

If there are no actively corrupted workers, then the simulator observes whether
the corrupted inputters deliver inconsistent sharings of their encrypted inputs,
and based on that decides whether to send > or ⊥ to the trusted party (cf. line 9
of IVerMPCf,φ).

If there is at most one corrupted worker, it is actually not directly clear
that the simulator can perform the full protocol with respect to the adversary.
Namely, it does not know the honest shares of the decryption key but needs
these to run lines 23–31 of PolyProve. However, note that in our protocol,
the simulator only has to decrypt ciphertexts of which it already knows the
plaintext. Namely, ciphertexts are built from the Xi, Ai, and Ri. It has made
the Xi for honest parties itself, and it has extracted the plaintexts of corrupted
inputters from their proofs of knowledge. For the Ai and Ri, we have assumed
that they occur at least once as the right-hand-side of a multiplication in the
PolyProve circuit. Hence, the corrupted parties have had to prove knowledge
of their contributions in lines 12–22 of PolyProve, from which the simulator
can extract their plaintexts. Now, because the simulator knows the plaintext
and the decryption keys of the corrupted workers, it can easily simulate the
decryption shares of the honest workers. Moreover, it can simulate the proofs
of correct decryption without actually knowing the decryption key as in [SV15].
If there are at least two corrupted workers, then the simulator really has all
information and it can easily simulate the protocol.

Finally, if the recipient is honest, then the simulator needs to provide the
recipient’s output r and the certificate a to the trusted party. For this, it sees
what values A1, . . . , Ak, π, r1 . . . , rm, rr,1, . . . , rr,m the recipient gets as a result
of the protocol run with A. If π is a valid proof for result r1, . . . , rm, then
A1, . . . , Ak must occur in proofs of knowledge made by the adversary, from which
the simulator can extract a1, . . . , ak. Hence, it provides r,a to the trusted party.

Proof (Proof of Theorem 1, correct case). We now prove for the above simulator
SA, and in case there are ≥ 1 actively or ≥ 2 passively corrupted workers, that:

RealC,AΠ,A(k;x) ≈s IdealC,AIVerMPCf,φ,SA
(k;x).

(Here, ≈s is statistical indistinguishability.) The two distributions consist of the
output of the adversary and recipient.

First consider the output of the adversary. There are only two differences
in the real protocol execution in Real and the protocol execution that the
simulator has performed with A in Ideal. The first difference is is that in the
input phase, the simulator programs the random oracle to be able to provide
a hash image hi without actually having determined the pre-image yet. As in
[SV15], this succeeds (in which case the view of the adversary is identical to the
real protocol) except with negligible probability. The second difference is that,
in case there is only one corrupted worker, the simulator simulates decryption
proofs instead of computing them. Also this simulation succeeds except with

negligible probability; and if it does, it gives a view for the adversary that is
identical to the real protocol. Hence, the adversary has statistically no way to
distinguish the real-world and ideal-world executions.

Now consider the output of the recipient. As described above, the simulator
simply runs the protocol, and checks if the adversary supplies a correct proof
to decide if the trusted party should provide the computation result to the
ideal-world recipient. However, the trusted party passes on these results to the
ideal-world recipient only after verifying that φ holds, so if φ does not hold
but the proof nonetheless verifies, then this gives a difference between the real-
world and ideal-world outputs. However, in this case, the adversary has managed
to produce at least one non-interactive zero-knowledge proof of an incorrect
statement. The chance of the adversary succeeding in doing this is only negligible,
so with overwhelming probability, φ does hold and the ideal-world and real-world
outputs of the recipient are in fact the same. This concludes the proof.

