
 

 

 

Preprint 

 
Accepted paper at MMB&DFT 2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at link.springer.com 

 

Lautenschlaeger, W., The Weak Convergence of TCP Bandwidth Sharing, in  Remke, 

Anne, Haverkort, Boudewijn R. (Eds.), Measurement, Modelling and Evaluation of 

Dependable Computer and Communication Systems, Proc. 18th International GI/ITG 

Conference, MMB & DFT 2016, Münster, Germany, April 4-6, 2016, Springer, ISBN 

978-3-319-31559-1 



2 

 

The Weak Convergence of TCP Bandwidth Sharing 

Wolfram Lautenschlaeger 

Nokia Bell Labs 

Stuttgart, Germany 

 

Abstract. TCP is the dominating transmission protocol in the Internet since 

decades. It proved its flexibility to adapt to unknown and changing network 

conditions. A distinguished TCP feature is the comparably fair resource 

sharing. Unfortunately, this abstract fairness is frequently misinterpreted as 

convergence towards equal sharing rates. In this paper we show in theory as 

well as in experiment that TCP rate convergence does not exist. Instead, the 

individual TCP flow rate is persistently fluctuating over a range close to one 

order of magnitude. The fluctuations are not short term but correlated over long 

intervals, so that the carried data volume converges rather slowly. The weak 

convergence does not negate fairness in general. Nevertheless, a particular 

transmission operation could deviate considerably. 

Keywords: TCP  congestion  resource sharing  fairness  convergence 

1 Introduction 

The Transmission Control Protocol (TCP) is used for reliable data transmission over 

packet switched networks. The TCP transmitter splits the data into segments, 

encapsulates them into IP packets, and sends them to the receiver. The receiver 

reassembles the data from the incoming segments. Lost packets are detected by means 

of sequence numbers. The receiver signals back to the transmitter the successful 

reception of data by acknowledgement packets (ACK). Duplicate and selective 

acknowledgements (SACK) are used to signal packet loss. The transmitter in turn 

retransmits the previously lost packets. Packet transmission and the acknowledgement 

back take some time, in particular for forwarding, propagation, queuing, and 

processing in both directions, which is altogether called the Round Trip Time (RTT). 

TCP restricts its own transmission rate for congestion control. This is done by a 

congestion window (cwnd) that at any time limits the amount of data that has been sent 

out, but that has not been acknowledged yet (the so called data in flight). This way the 

transmission rate is limited to cwnd divided by RTT (i.e. packets/s). Since the 

transmitter typically does not know the available transmission capacity along the path, 

it continuously probes for more bandwidth by gradually increasing the cwnd. In 

contrast, as soon as packet loss is signaling congestion, the cwnd is shrunk, typically by 

half. The succession of slow increases and abrupt decreases (sawtooth oscillation) 



eventually stabilizes the transmission rate at the limit of the available transmission 

capacity [1]. 

If several TCP flows share the same limited transmission resource, then each of them 

tries to get more of the shared resource at the cost of the others. Under the assumption 

of similar conditions, it is natural to expect convergence of flow rates, eventually 

leading to equal sharing. A first proof of rate convergence was given in [2]. The 

convergence speed was analyzed in [3], yielding a 98% convergence towards fair 

sharing rate within seven sawtooth cycles. The convergence time into an -

environment of the fair sharing rate was frequently used for characterization of 

different TCP flavors [4], [11].  

Unfortunately, and in opposite to what the mentioned papers suggest, something like a 

monotonic TCP rate convergence towards the fair sharing rate does not exist. In this 

paper we show that the rate of a TCP flow walks randomly around its fair sharing rate. 

It deviates down to 1/3 and up to the 3 fold of that rate, altogether within a 1:10 span of 

possible flow rates. The rate variations are not short term, so that no significant 

averaging can be observed up to the minutes range, and it takes hours to get stable 

average values. Why the theories on TCP rate convergence missed that effect? The 

problem is typically linked to a premature average assumption in the course of 

modelling the bandwidth sharing process, which finally proves only convergence of an 

expectation value of the flow rate. However, the expectation value tells little about the 

actual rate, its distribution, and its realization over time. What remains undisputed with 

this paper is the equal cumulative rate sharing over infinite time, in contrast to other 

potential assumptions like e.g. “winner takes all”. 

The paper is structured as follows: After the introduction we elaborate in section 2 the 

theoretical TCP flow rate distribution at random packet loss. In section 3 we reproduce 

the distribution in an experiment with real network equipment. Then we show that 

bandwidth sharing creates quite similar distributions like at purely random loss. 

Furthermore we investigate the temporal aspects and show that rate deviations are not 

short term, but much larger than the round trip time. In section 4 we illustrate the 

consequences of the weak convergence for streaming applications and for the flow 

completion times of typical short lived flows. We further discuss the implications for 

Active Queue Management (AQM) and the related experimental work. Section 5 

summarizes the findings. 

2 TCP Bandwidth Theory 

2.1 Basic TCP equations 

TCP operation in congestion avoidance mode as explained in the introduction follows 

a number of well-known formulas that we recall here for reference: 

With the maximum segment size MSS (roughly the packet size) in bits and the round 

trip time RTT, the bit rate b of a congestion window cwnd limited TCP flow is 



4 

 

 
RTT

cwndMSS
b


  (1) 

For TCP Reno [18] the gradual additive increase of cwnd during congestion avoidance 

per RTT is 

 1cwndcwnd  (2) 

In reality it is cwnd  cwnd + 1/cwnd per received acknowledgement. Since cwnd 

segments are in flight, cwnd acknowledgements return during one RTT, which yields 

Eq. 2. We will see later that the real increase is slower due to the delayed 

acknowledgments. Other TCP flavors like Cubic have variable and partially larger 

growth rates. 

The abrupt multiplicative cwnd reduction due to loss detected follows 

 
2

cwnd
cwnd   (3) 

Here also variations are possible, e.g. Cubic does a smaller reduction according to 

cwnd  0.7cwnd. 

The steady state performance of a TCP flow at certain packet loss probability Ploss has 

been multiply derived [5], [6], [7]. Taking into account the delayed acknowledgment 

ratio a = 2 we get for the expected cwnd: 

  
lossPa

cwnd
1

2

3
E   (4) 

Together with Eq. 1 the expected flow bit rate b is 

  
RTTP

MSS

a
b

loss
2

3
E   (5) 

Equation 5 can be reverted: Bandwidth sharing with certain flow bit rate b must result 

in a corresponding packet loss ratio Ploss. 

The behavior of TCP Cubic is slightly different. We recall here the formula from the 

original Cubic paper [11]: 

  
4

3

17.1E 









loss

cubic
P

RTT
cwnd  (6) 

where RTT is given in seconds. 



2.2 Origin of Packet Loss 

Packets are almost exclusively lost due to buffer overflow in intermediate nodes. Other 

sources of packet loss like bit errors or link degradation are out of scope of TCP for 

different reasons: Wireline links operate at bit error rates below 10-12, thus causing 

CRC errors on packet level by orders of magnitude below typical TCP loss rates. 

Wireless links use link layer handshake protocols for packet delivery to hide the drastic 

loss rates from higher layers. TCP sees only throughput and delay degradations that in 

turn might induce buffer overflow and retransmission time outs, but no packet drops. 

Buffer overflow occurs due to deterministic queue filling by TCP sources, due to 

stochastic reasons (typically modelled by M/D/1 queues or some kind of burstiness), 

or, in practice, due to a combination of both. In the simplest case, one TCP flow 

crossing one bottleneck link, the process is fully deterministic: If the link is already 

loaded at 100%, any further cwnd increase grows the queue before the link until it 

overflows the available buffer space. Finally, at overflow, one packet is dropped, TCP 

reduces its cwnd by half, and the queue size goes down, accordingly. It looks like the 

cwnd is oscillating between a maximum and half that value. Simple TCP theories are 

built on that assumption. Nevertheless, it is not the cwnd maximum, but the queue size 

that triggers the loss. It is just that both go synchronized in the single flow case. 

If two (or more) TCP flows cross the same bottleneck, the initial picture looks similar: 

The cumulative increase of cwnd in both sources grows the queue. But then, at 

overflow, one or two packets are dropped. It is not assured that both flows catch a loss. 

First of all it could be only one drop. Second, if two packets are dropped, they could 

belong to one and the same flow, leaving the other one untouched. For the queue it 

does not matter. It is sufficient that one source reduces its cwnd to get away from the 

buffer limit. In either way, it is not the rule that both flows reduce their cwnd at the 

same time. The two flows, even if started synchronous, move apart from each other. 

One continues to grow its cwnd, while the other one resumes its cwnd growth at only 

half that level. That inequality is going to be resolved at next drop cycle, right? 

Unfortunately not. The cwnd size does not matter for the drop; only the queue matters, 

which is identical for both flows. Admittedly, the flow with the larger cwnd sends 

more packets than the other flow. This increases its probability to catch a drop, if one 

occurs. In the long run this results in the weak convergence. But at the moment it is not 

unlikely that the flow with the smaller cwnd catches once more the drop, and shrinks 

its cwnd further, while the larger flow continues to grow. 

A detailed mathematical analysis of the bandwidth sharing process can be found in [7]. 

As one of the results, with a tail drop queue, approximately half of the competing flows 

are affected by a single buffer overflow event. For this paper it does not really matter 

how many packets are dropped at once and why. The only required plausible insight is 

that, once drops occur, not all but only a random subset of flows is affected. This is the 

main difference to the misleading convergence analysis of [2] and [3]. 

2.3 Flow Rate at Random Packet Loss 

In this section we investigate the probability distribution of TCP flow rates at random 

drop, irrespective of a particular bandwidth sharing assumption. We presume that 



6 

 

every packet of a TCP flow is dropped at probability Ploss with no regard of preceding 

losses, which results in a Poisson loss process. In context of bandwidth sharing the 

assumption of a Poisson loss process per flow is not arbitrary. A proof in [14] (section 

7.7.1) indicates that for increasing flow numbers the loss process per flow converges 

towards independence of losses, no matter what loss distribution holds for the whole 

aggregate.  

We analyze TCP Reno with Delayed Acknowledgements [15] but without Appropriate 

Byte Counting (ABC) [16]. Delayed ACK means the receiver sends less than one ACK 

per received segment for efficiency reasons, typically one ACK per two segments. 

ABC was intended to compensate the delayed ACK effect on the cwnd handling. 

However, in the Linux kernel the ABC feature was switched off by default since years 

and recently it has been removed completely [17]. We account for the uncompensated 

effect of delayed ACK by the acknowledgement ratio a = 2 (segments per ACK). 

The expected flow bit rate is given by Eq. 5. The probability distribution of the flow bit 

rate can be obtained by investigating the evolution of the congestion window cwnd as a 

continuous Markov chain. (We stick here to a method from [8].)  Figure 1 shows a 

fragment of the Markov chain, where the state nodes correspond to the actual cwnd 

size, and transition arcs correspond to conditional transition rates between the states. 

An arrow from node i to node j, labeled by rate rij, indicates that, if cwnd is in state i, 

this state is left towards state j at rate rij. The absolute transition rate depends on the 

probability pi to find cwnd in state i. Thus, the absolute rate from i to j is pirij. If we 

assume for a moment that in a given state the sum of arriving rates is larger than the 

sum of departing rates, obviously its probability would go up. Since probabilities are 

static by definition, we need to find the equilibrium, where for all nodes the sum of 

arriving rates equals the sum of departing rates. The equilibrium can be calculated as 

follows: 

RTT

cwnd
Ploss

RTT

cwnd
Ploss

2

RTT

cwnd
Ploss

12 

RTTa 

1

RTTa 

1

1cwnd
1cwnd

cwnd

2

cwnd
cwnd2 12 cwnd

 

Figure 1 . Fragment of the congestion window state diagram 

For the upper part of Figure 1 holds: The cwnd is incremented by an amount of 1/cwnd 

for every arriving ACK. Since cwnd packets are in flight, after one RTT the total cwnd 

increment should be one per RTT.  Due to the uncompensated delayed ACKs, however, 

only 1/a (i.e. half) of the 1/cwnd increments are executed. Hence, the rate of cwnd 

increments is 1/a per one RTT; the transition rate from cwnd to cwnd+1 is: 

 
RTTa

r cwndcwnd




1
1

 (7) 



For the lower part of Figure 1 holds: The actual packet rate is rpack=cwnd / RTT. 

Packets are lost at probability Ploss. Correspondingly the packet loss rate (lost packets 

per second) is rloss=Plossrpack. Thus the cwnd halving rate (transition rate from state 

cwnd to state cwnd/2) is:  

 
RTT

cwnd
Pr losscwnd

cwnd



2

 (8) 

In fact, this reflects that, even though the drop probability Ploss is equal for all flows, 

the hit rate of a particular flow depends on the amount of packets sent, so that larger 

flows are more likely affected than smaller ones. 

The equilibrium equation of state i, where incoming and outgoing rates are equal, is 

 
ilossilossilossi paiPpPipiPpa )1()12(2)1( 1221  
 (9) 

The state probabilities pi of cwnd to be in state  max,1 cwndi  form a set of linear 

equations. In matrix notation the corresponding state probability vector 

 Tcwndcwnd pppP
max

,,, 21   fulfills following equilibrium equation: 

 
cwndcwnd PAP   (10) 

The extreme cases need special care: TCP limits cwnd to at least 2 since otherwise the 

loss detection by duplicate ACKs would not work anymore. As consequence state 2 

can be left only by increment, but not by rate halving. Furthermore state 2 can 

additionally be reached from state 3 by halving. At the other end, the maximum cwnd 

can be left only by halving, but not by increment. 

With the shortcut P=a·Ploss the transition matrix A (with e.g. cwndmax=9) looks as 

follows: 

 































































0
9

1
0000000

00
81

1
000000

000
71

1
00000

0000
61

1
0000

00000
51

1
000

41

9

41

8
0000

41

1
00

00
31

7

31

6
000

31

1
0

0000
1

5

1

4

1

3
01

000000000

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

PPP

A

 (11) 

Since Eq. 10 is a homogeneous system, we replace for a numeric solution one of the 

component equations by the normalizing condition Σ pi =1. Then, the bit rate 



8 

 

distribution is the cwnd state probability vector, scaled according to the TCP 

throughput Equation 1. 

In Figure 2, the graph labeled “theory” shows the numerically evaluated bit rate 

probability density of a TCP flow. A similar result has been published already in [9].  

 

Figure 2 Bit rate distribution of a TCP flow at random packet loss 

 

Figure 3 . Numerically calculated CDF of the congestion window cwnd; dashed lines are the 

log normal CDF of Eq. 12; markers show the cwnd expectation value of Eq. 4 

The flow bit rate distribution has a substantial spreading. The 95% interval is ranging 

roughly from less than 40% up to more than double the expected rate. Since we are 

calculating equilibrium probabilities, this distribution holds over an infinite span of 

time. There is no room for further convergence towards the expected rate. The 

expected 
bit rate 

95% 
interval 

Ploss=10
-1

      10
-2

        10
-3

       10
-4

       10
-5

 



spreading statement is quite strong. It holds for a wide range of loss probabilities. 

Figure 3 shows numerically calculated cumulative distribution functions (CDF) of the 

congestion window. The relative spreading is fairly constant over 5 decades of Ploss. 

For better understanding we complement the graphs with plots of the log normal 

distribution 

  






















cwnd

cwnd

cwnd
E

ln

)F( , (12) 

where Φ is the cumulative standard normal distribution function, E[cwnd] – the 

expectation value of cwnd according to Eq. 4, and σ = 0.41 – the constant logarithmic 

standard deviation. 

Obviously the cwnd and derived thereof the TCP flow bit rate have a stable spread 

around the expectation value. The relative spread is nearly invariant of the packet drop 

probability; it reaches an order of magnitude; and it does not vanish over time. 

3 Experimental Evaluation 

In this section we verify, if the theoretically calculated bit rate distribution can be 

observed in practice. We present an experiment with just one TCP flow in an 

uncongested network, but with artificial random packet drop, thus reproducing the 

scenario of the theoretical analysis. Then we compare the results with bandwidth 

sharing experiments with 2, 3, and 10 concurrent flows, but without artificial packet 

drop. Here we show that the bit rate spreading is comparable with the random drop 

case. Finally we investigate how long flow rate deviations persist and how fast 

deviating flow rates return towards their fair sharing value. 

The experiments have been executed on a networking testbed of Linux servers and 

Ethernet switches. All connections are 10G Ethernet with all TCP offloading features 

disabled. TCP parameters, if not specially mentioned, are the defaults of Linux kernel 

3.16. The conditions are chosen such that each flow has a bit rate expectation value of 

E[b]=10Mbit/s. This way we exclude bit rate dependent transmitter or receiver specific 

variations from our experiments. Round trip time, if not stated otherwise, was RTT = 

100ms. Duration of each run was 12 hours. The total throughput of all bandwidth 

sharing experiments was above 99%. 

3.1 Random packet loss 

In this experiment we use a single TCP flow. The transmitted packets are randomly 

dropped by a specially adapted iptables rule. The rule draws for every arriving 

packet a uniformly distributed random number between 0 and 1. The packet is dropped 

if the random number is smaller than the requested drop probability. The 10G Ethernet 

network is loaded in average at 10Mbit/s so that no queuing or congestion impact is to 



10 

 

be expected. We performed the experiments with TCP Reno (the reference) and TCP 

Cubic as the current Linux default. To reach the 10Mbit/s target we used a drop 

probability according to Eq. 5 for TCP Reno, and for TCP Cubic according to Eq. 6 

(i.e. Preno=1.1∙10-4, Pcubic=3.4∙10-4).The flow rate distribution is captured by counting 

the carried bytes in one second intervals. The count values are than accumulated in the 

bins of a histogram. More than 43,000 count values per experiment (12 hours) have 

been obtained to get a stable estimation of the distribution function. 

Figure 2 of section 2.3 shows besides the theoretical distribution a comparison with the 

experimental results. Obviously the TCP Reno experiment reproduces exactly the 

theoretically calculated flow rate distribution. Remaining deviations are so small that 

they easily can be attributed to the finite duration of the experiment. The experiment 

with TCP Cubic shows a small deviation. Nevertheless, the spreading of the 

distribution is similar to TCP Reno. 

3.2 Bandwidth sharing 

In this experiment we used 2, 3, or 10 identical TCP flows that share a common 

bottleneck of 20, 30, or 100 Mbit/s, respectively, which results always in the same 

target rate of 10Mbit/s per flow. The bottleneck and the corresponding queue are 

created by the traffic control subsystem of an intermediate Linux server (the tc 

qdisc command). The buffer size for the bottleneck queue was chosen according to 

the bandwidth delay product rule (BDP). Figure 4 shows the flow rate distribution of 

the bandwidth sharing experiments, again in comparison to the theoretical distribution 

at random drop. The bit rate distribution has been measured for one arbitrarily picked 

flow out of the 2, 3, or 10 flows by the same histogram method as in section 3.1.  

 

Figure 4  Experimental distribution of bandwidth sharing TCP flow rates 

The shape and spread of the curves is similar to the theoretical distribution.  TCP 

Cubic shows a slightly more concentrated distribution around the expected bit rate of 

10Mbit/s. Nevertheless, in all cases the spread of flow rates is so large that deviations 

below half of the expectation value and above double that value are possible. Even 

after 12 hours of continuous bandwidth sharing there is no sign of rate convergence. 

TCP Reno TCP Cubic 



Table 1 summarizes the experimental flow rate distributions by their mean and the 5%, 

50%, and 95% quantiles. 

Table 1. Flow rate statistics 

 
quantiles, Mbit/s 

mean, Mbit/s 
5% 50% 95% 

Reno 

random drop (numeric) 4.7 10.0 19.0 10.7 

random drop (experiment) 4.9 10.0 18.7 10.7 

1 of 2 flows 5.0 10.0 15.0 10.0 

1 of 3 flows 4.7 9.6 16.0 9.9 

1 of 10 flows 4.5 8.9 16.6 9.5 

Cubic 

random drop (experiment) 5.0 9.4 20.0 10.6 

1 of 2 flows 6.5 10.0 13.6 10.0 

1 of 3 flows 6.3 9.8 14.6 10.0 

1 of 10 flows 6.1 9.8 16.0 10.3 

3.3 Duration of rate variations 

A frequently raised argument for a technical convergence is that the TCP flow rate 

might be highly unsteady or even bursty at time scales of one RTT or below, but that 

these variations quickly vanish if looking at the duration of typical TCP flows of few 

RTTs. The argument silently assumes that there is no correlation over a distance of 

more than a few RTTs. In this section we investigate how fast the average rate over 

certain interval duration converges towards the expectation rate.  

We repeated all experiments of the previous sections but with different interval 

settings, i.e. we counted the carried bytes not only in intervals of 1 second but 

additionally in intervals of 4, 16, 30, 60, 120, 300, and 600 seconds over a total time of 

12 hours. From the series of count values we calculated the standard deviation of the 

flow rate at the particular interval settings. Figure 5 shows the results. It reproduces the 

impression of the previous sections that the flow rate variations slightly grow with the 

number of flows, but still stay below the value at purely random loss, and that they are 

larger in general for TCP Reno than for TCP Cubic. As expected, the standard 

deviation shrinks with increasing interval duration. However, the decline is very slow. 

It remains negligible up to 20 – 30 second intervals, and even for 10 minute intervals 

the standard deviation stays in the range of 10% of the mean (10Mbit/s). 

The graphs also justify our experimental approach for verification of the theory. In 

fact, the theory of section 2 is correct in a strong sense for intervals of one round trip, 

including the queuing delay, i.e. variable 100 – 200ms, depending on the actual queue 

size. In contrast, the experimental data have been obtained as data volume carried over 

constant intervals of one second. In our case the graphs are comparably flat in the 

neighborhood of one second, so that the interval mismatch with the theory can be 

accepted. 



12 

 

 

Figure 5  Standard deviation of short term average rates at different interval durations; 

bandwidth sharing and random drop experiments 

In a further experiment we investigated the impact of the round trip time. Instead of 

RTT = 100ms (the default RTT in this study), we used an RTT of only 10ms and a 

corresponding bandwidth delay product (BDP) sized buffer. The results are shown in 

Figure 6. 

 

Figure 6 Impact of the RTT on the convergence 

As expected, the convergence slope shifts left, towards smaller intervals. The shift is 

much more pronounced for TCP Reno than for Cubic, so that the mutual order reverts. 

The shift for Reno is by a factor of 60, which can be weakly associated with the 

theoretical sawtooth interval that scales quadratic with the RTT, i.e. a shift of 100 could 

be expected. The shift for Cubic is much smaller, by a factor of 15, which is in line 

with Cubic’s original intention to make TCP less RTT sensitive. Nevertheless, the 

RTT=10ms 

RTT=100ms 



reduction is even larger than what Cubic’s performance Equation 6 might suggest. We 

verified that by measuring the actual packet loss rates and comparing them with the 

theory. The values fit well for all experiments, except the 10ms Cubic case. Here Cubic 

drops 5 times more packets than required according to Eq. 6. The reason for this 

mismatch is a fallback heuristic in the Cubic algorithm (a bit misleadingly named 

tcp_friendliness): According to the original Cubic paper [11] it approximates, 

in addition to its own cwnd, the corresponding TCP Reno window and takes the larger 

of the two windows. 

Table 2. RTT dependence of convergence 

 RTT 
Ploss sawtooth 

interval 

50% 

convergence 

interval 
ratio 

theory experiment 

reno 
10ms 3.8e-3 3.3e-3 0.37s 4s 11 

100ms 3.8e-5 4.0e-5 29.5s 220s 7.5 

cubic 
10ms 6.2e-4 2.8e-3 0.42s 9.5s 22 

100ms 2.9e-4 2.5e-4 4.7s 130s 27 

 

The experimental results are summarized in Tab. 2. The sawtooth interval is calculated 

from the experimental loss ratio. The 50% convergence interval is the duration where 

the carried data volume fluctuates just half as much as at the smallest intervals. The last 

column is the ratio between convergence interval and sawtooth interval. 

4 Consequences 

The bit rate of a bandwidth sharing TCP flow does not converge at all. Instead it walks 

randomly around its fair sharing expectation value. Deviations are not small; they go 

down to less than half of the fair sharing rate, and up to more than double that value. 

Deviations are not short term; they last thousands of round trip times; in our 

experiments many minutes. And the deviations do not attenuate over time; their spread 

stays the same after many hours of continuous bandwidth sharing. Figure 7 illustrates 

these facts for the last 10 minutes of a 12 hours bandwidth sharing experiment with just 

two flows. (The link was loaded all the time at constant 20Mbit/s; the two flows 

complemented each other at any time.) 

The effect is relevant for streaming applications, like video streaming. These 

applications rely on a continuous arrival of new content. They need sufficient margins 

to cope with the rate variations or flatten the arrival by a playout buffer. Figure 5 gives 

an impression of how long a playout buffer needs to store to get a reasonable flattening 

effect.  

The effect is also relevant for the flow completion time of finite TCP flows. In general 

it is assumed that a new flow entering a congested link with N-1 pre-established flows 

grabs a 1/N fraction of the link bandwidth and completes accordingly. However, the 

actual flow rate variates according to Figure 4. If the variations persist longer than the 

flow duration, the actual flow completion time gets a similar spread, i.e. ranging from 

half the expected duration up to more than double that time.  



14 

 

 

Figure 7 Random walk: Last minutes after 12 hours of continuous bandwidth sharing; one of 

two TCP Cubic flows at RTT=100ms in 20Mbit/s link bandwidth  

In the experiment of Figure 8 we run 9 long lived TCP flows over a link of 100Mbit/s. 

Then we launched repeatedly a 10th short lived flow with a data volume of 12Mbyte. 

The expected rate is 10Mbit/s, the expected duration 10 seconds. The displayed four 

shots carry all the same data volume, but it takes between 7 and up to 17 seconds till 

completion. In a more exhaustive experiment with 2500 repetitions, 5% of the flows 

take less than 8 seconds, whereas another 5% take more than 22 seconds till 

completion. 

 

Figure 8 Transmission of 12 Mbyte at expected fair sharing rate of 10Mbit/s;                                  

4 independent shots in an otherwise identical set-up 

The weak convergence bears more implications on TCP rate control. It seems to be 

impossible to directly control a TCP flow rate by applying random packet drop 



according to the well-known TCP bandwidth formula Eq. 5. The reaction is too fuzzy, 

and if relying on a cumulative effect, the response is much too slow. Existing Active 

Queue Management (AQM) solutions like Random Early Detection (RED) [12] 

always incorporate a queue. That queue is not acting just as an averaging device. 

Instead, in the first instance it establishes equilibrium between the congestion windows 

of all involved transmitters and the queueing delay, this way stabilizing the total rate. 

Only secondarily RED confines the equilibrium queue to the available buffer space by 

random dropping. Since the queue is unique for all flows, this approach stabilizes only 

the total rate of all flows. The particular flow continues to spread out as of Figure 4. 

Since the weak convergence is rooted in the arbitrary assignment of packet drops to the 

affected flows, it is unlikely to find AQM mitigation without some kind of flow notion. 

In normal packet nodes this is not the case, impractical, or at least undesirable due to 

the noticeable additional effort. For further reading we refer to the well-known 

queueing disciplines WRR or SFQ [13] and recent derivates by Linux kernel modules 

sch_fq, sch_fq_codel. 

Special care is required in measurement experiments for characterization of novel TCP 

and queuing approaches. Metrics like the ε-convergence time of [4] are inherently 

undefined, since a flow that reached the ε environment of the expected rate is not 

guaranteed, not even likely, to stay in that ε environment. Experiments that claim such 

convergence anyway likely stopped prematurely at the first visit. In general, the 

experimental acquisition of per flow metrics requires extremely long observation times 

of hours or days, rather than seconds or minutes. Nonetheless, this must not be 

confused with global metrics, characterizing the combined effect of all involved flows 

like total rate, queue size, or drop ratio. These metrics usually converge much faster. 

5 Summary 

TCP is able to fill a network bottleneck at 100% of its transmission capacity. If 

multiple flows share the same bottleneck, then the available bandwidth is distributed 

between the flows in a comparably fair way: (1) None of the flows is able to 

monopolize the available bandwidth. (2) None of the flows starves. Under uniform 

conditions (same RTT, same TCP flavor) the rate expectation and the long term 

average are equal for all sharing flows. The carried data volume of the flows converges 

to equal values at infinity. 

In this paper we investigate to which extent this “equal sharing” proposition can be 

applied to technically relevant conditions. We show that the actual rate of a particular 

flow does not converge at all. It deviates randomly down to one third and up to three 

fold of its expected rate. The random deviations do not attenuate over time, neither in 

theory nor in experiment. In our experiments they appear even after many hours of 

continuous bandwidth sharing. And the deviations are long lasting. Their correlation 

span is many times larger than the Round Trip Time or the TCP sawtooth interval. 

Accordingly, the carried data volume converges only slowly after thousands of RTT. 

The findings have been theoretically derived and subsequently verified by 

comprehensive series of bandwidth sharing experiments in a test bed of Ethernet 

servers and switches. 



16 

 

Acknowledgement 

This work has been funded in part by the German Bundesministerium für Bildung und 

Forschung (Federal Ministry of Education and Research) in scope of project SASER 

under grant No. 16BP12200. 

References 

[1] Van Jacobson, Congestion avoidance and control, Proc. SIGCOMM ´88, 1988 

[2] Dah-Ming Chiu, Raj Jain, Analysis of the increase and decrease algorithms for congestion 

avoidance in computer networks, J. Computer Networks and ISDN Systems, 17.1, 1989 

[3] M. Podlesny, S. Gorinsky, "Multimodal Congestion Control for Low Stable-State Ie-State 

Queuing", Tech. Rep. WUCSE-2006–41, www.arl.wustl.edu/lgorinsky/pdf/WUCSE-

edu/~gorinsky/pdf/WUCSE-TR-2006, August, 2006 

[4] Yee-Ting Li, D. Leith, R.N. Shorten, Experimental Evaluation of TCP Protocols for High-

Speed Networks, IEEE/ACM tr. Networking, 15.5, 2007 

[5] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, The Macroscopic Behavior of the TCP Con-
gestion Avoidance Algorithm, Comput. Commun. Rev., 27.3, 1997, pp. 67–82. 

[6] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: A simple 

model and its empirical validation,” in Proc. ACM SIGCOMM, 1998, pp. 303–314. 

[7] W. Lautenschlaeger, “A Deterministic TCP Bandwidth Sharing Model,” arXiv:1404.4173, 

April 2014. Online http://arxiv.org/abs/1404.4173 

[8] Handbook Teletraffic Engineering, ITU-D Study Group 2 Question 16/2, 2008. 

[9] Bogoiavlenskaia, O., Markovian Model of Internetworking Flow Control, Kalashnikov 

Memorial Seminar, Petrozavodsk, Информационные процессы, 2.2, 2002  

[10] N. Parvez, A. Mahanti, and C. Williamson, An Analytic Throughput Model for TCP 

NewReno, IEEE/ACM Trans. Networking, 18.2, 2010  

[11] Sangtae Ha, Injong Rhee, and Lisong Xu, CUBIC: A new TCP-friendly high-speed TCP 

variant, ACM SIGOPS Operating Systems Review, 42.5, 2008, pp. 64-74 

[12] S. Floyd, Van Jacobsen, Random Early Detection Gateways for Congestion Avoidance, 

IEEE/ACM Trans. Networking, 1.4, 1993 

[13] P.E. McKenney, Stochastic Fairness Queueing, Proc. INFOCOM ’90, 1990 

[14] R. Briscoe, Re-feedback: Freedom with Accountability for Causing Congestion in a 

Connectionless Internetwork, Diss. UC London, 2009, online: 

http://www.bobbriscoe.net/pubs.html#refb-dis 

[15] Braden, R., Ed., "Requirements for Internet Hosts - Communication Layers", IETF, RFC 

1122 

[16] M. Allman, “TCP Congestion Control with Appropriate Byte Counting (ABC),” IETF, 

RFC 3465 

[17] S. Hemminger, “tcp: remove Appropriate Byte Count support,” online: 

https://github.com/torvalds/linux/commit/ca2eb5679f8ddffff60156af42595df44a315ef0 

[18] Allman, M., Paxson, V., Blanton, E., TCP Congestion Control, IETF, RFC 5681 


