Skip to main content

The Case for Docker in Multicloud Enabled Bioinformatics Applications

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9656))

Included in the following conference series:

Abstract

The introduction of next generation sequencing technologies did not bring only huge amounts of biological data but also highly sophisticated and versatile analysis workflows and systems. These new challenges require reliable and fast deployment methods over high performance servers in the local infrastructure or in the cloud. The use of virtualization technology has provided an efficient solution to overcome the complexity of deployment procedures and to provide a safe personalized execution box. However, the performance of applications running in virtual machines is worse than that of those running on the native infrastructure. Docker is a light weight alternative to the usual virtualization technology achieving notable better performance. In this paper, we explore the use case scenarios for using Docker to deploy and execute sophisticated bioinformatics tools and workflows, with a focus on the sequence analysis domain. We also introduce an efficient implementation of the package elasticHPC-Docker to enable creation of a docker-based computer cluster in the private cloud and in commercial clouds like Amazon and Google. We demonstrate by experiments that the use of elasticHPC-Docker is efficient and reliable in both private and commercial clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gonzalez-Garay, M.: The road from next-generation sequencing to personalized medicine. Pers. Med. 11(5), 523–544 (2014)

    Article  Google Scholar 

  2. DePristo, M., Banks, E., et al.: A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genet. 43(5), 491–498 (2011)

    Article  Google Scholar 

  3. FASTX-Toolkit. http://hannonlab.cshl.edu/fastx_toolkit

  4. FASTQC. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  5. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows and wheeler transform. Bioinformatics 25(14), 1754–1760 (2009)

    Article  Google Scholar 

  6. Raczy, C., Petrovski, R., Saunders, C.T., et al.: Isaac: ultra-fast whole-genome secondary analysis on Illumina sequencing platforms. Bioinformatics 29(16), 2041–2043 (2013). (Oxford, England)

    Article  Google Scholar 

  7. Wang, K., Li, M., Hakonarson, H.: Annovar: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38(16), e164 (2010)

    Article  Google Scholar 

  8. Langmead, B., Schatz, M., Lin, J., Pop, M., Salzberg, S.: Searching for SNPs with cloud computing. Genome Biol. 10, R134 (2009)

    Article  Google Scholar 

  9. Wall, D., Kudtarkar, P., Fusaro, V., Pivovarov, R., Patil, P., Tonellato, P.: Cloud computing for comparative genomics. BMC Bioinformatics 11, 259 (2010)

    Article  Google Scholar 

  10. Angiuoli, S., Matalka, M., Gussman, A., et al.: CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing. BMC Bioinformatics 12(1), 356+ (2011)

    Article  Google Scholar 

  11. Gregory, J., Kuczynski, J., Stombaugh, J., et al.: QIIME allows analysis of high-throughput community sequencing data. Nat. Meth. 7(5), 335–336 (2010)

    Article  Google Scholar 

  12. Guerrero, G., Wallace, R., Vázquez-Poletti, J., et al.: A performance/cost model for a cuda drug discovery application on physical and public cloud infrastructures. Concurrency Comput.: Pract. Experience 26(10), 1787–1798 (2014)

    Article  Google Scholar 

  13. Mrozek, D., Malysiak-Mrozek, B., Klapcinski, A.: Cloud4Psi: cloud computing for 3D protein structure similarity searching. Bioinformatics 30(19), 2822–2825 (2014)

    Article  Google Scholar 

  14. Mrozek, D., Gosk, P., Malysiak-Mrozek, B.: Scaling ab initio predictions of 3D protein structures in Microsoft Azure cloud. J. Grid Comp. 13(4), 561–585 (2015)

    Article  Google Scholar 

  15. Hung, C.-L., Hua, G.-J.: Cloud computing for protein-ligand binding site comparison. Biomed. Res. Int. 2013, Article ID 170356, 1–7 (2013)

    Google Scholar 

  16. Oracle VirtualBox. http://www.virtualbox.org/

  17. Kernel Virtual Machine. http://www.linux-kvm.org

  18. Xen Project. http://www.xenproject.org/

  19. VMware. http://www.vmware.com/

  20. Docker. http://docker.com/

  21. Folarin, A., Dobson, R., Newhouse, S.: NGSeasy: a next generation sequencing pipeline in Docker containers. F1000Research 4, 997 (2015)

    Google Scholar 

  22. Ali, A.A., El-Kalioby, M., Abouelhoda, M.: Supporting bioinformatics applications with hybrid multi-cloud services. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015, Part I. LNCS, vol. 9043, pp. 415–425. Springer, Heidelberg (2015)

    Google Scholar 

  23. Pods. http://cloud.google.com/container-engine/docs/pods

  24. Docker Compose. https://www.docker.com/docker-compose

  25. Garzon, J., Lopéz-Blanco, J., Pons, C., et al.: Frodock: a new approach for fast rotational protein-protein docking. Bioinformatics 25(19), 2544–2551 (2009)

    Article  Google Scholar 

  26. Abouelhoda, M., Issa, S., Ghanem, M.: Tavaxy: integrating Taverna and Galaxy workflows with cloud computing support. BMC Bioinformatics 13(1), 77 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abouelhoda .

Editor information

Editors and Affiliations

A Appendix

A Appendix

The following Dockerfile is used to build Docker image for Variant Calling detection:

figure a

Build Docker Image: To build a docker image you have to install Docker engine on your local host; as explained in http://docs.docker.com/engine/installation/. Once installed, write the code as shown above in a file called Dockerfile on the same directory where you will build your image. Finally run the following command line to build variant calling detection Docker image.

figure b

Start Docker Container: To start container using Docker engine, run the following command line:

figure c

Now user is ready to call any program for the variant detection workflow.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ali, A.A., El-Kalioby, M., Abouelhoda, M. (2016). The Case for Docker in Multicloud Enabled Bioinformatics Applications. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2016. Lecture Notes in Computer Science(), vol 9656. Springer, Cham. https://doi.org/10.1007/978-3-319-31744-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31744-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31743-4

  • Online ISBN: 978-3-319-31744-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics