Skip to main content

Dynamic Grouped Mixture Models for Intermittent Multivariate Sensor Data

  • Conference paper
  • First Online:
  • 2982 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9652))

Abstract

For secure and efficient operation of engineering systems, it is of great importance to watch daily logs generated by them, which mainly consist of multivariate time-series obtained with many sensors. This work focuses on challenges in practical analyses of those sensor data: temporal unevenness and sparseness. To handle the unevenly and sparsely spaced multivariate time-series, this work presents a novel method, which roughly models temporal information that still remains in the data. The proposed model is a mixture model with dynamic hierarchical structure that considers dependency between temporally close batches of observations, instead of every single observation. We conducted experiments with synthetic and real dataset, and confirmed validity of the proposed model quantitatively and qualitatively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Detailed description on interpolation can be found in surveys such as [1, 17].

  2. 2.

    From the document-modeling point of view, it is also interesting to compare the MFA with the mixtures of unigrams [16].

References

  1. Adorf, H.M.: Interpolation of irregularly sampled data series - a survey. In: Astronomical Data Analysis Software and Systems IV (1995)

    Google Scholar 

  2. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 113–120 (2006)

    Google Scholar 

  3. Brockwell, P.J.: Lévy-driven continuous-time ARMA processes. In: Mikosch, T., Kreiß, J.-P., Davis, R.A., Andersen, T.G. (eds.) Handbook of Financial Time Series, pp. 457–480. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Dunia, R., Qin, S.J., Edgar, T.F., McAvoy, T.J.: Identification of faulty sensors using principal component analysis. AIChE J. 42(10), 2797–2812 (1996)

    Article  Google Scholar 

  5. Erdogan, E.: Statistical models for unequally spaced time series. In: Proceedings of the 5th SIAM International Conference on Data Mining, pp. 626–630 (2005)

    Google Scholar 

  6. Foster, G.: Wavelets for period analysis of unevenly sampled time series. Astron. J. 112, 1709–1729 (1996)

    Article  Google Scholar 

  7. Geweke, J.: The dynamic factor analysis of economic time-series models. In: Aigner, D.J., Goldberger, A.S. (eds.) Latent Variables in Socio-Economic Models. North-Holland, New York (1977)

    Google Scholar 

  8. Ghahramani, Z., Hinton, G.E.: The EM algorithm for mixtures of factor analyzers. Technical report, University of Toronto (1996)

    Google Scholar 

  9. Ghahramani, Z., Jordan, M.I.: Factorial hidden markov models. Mach. Learn. 29(2–3), 245–273 (1997)

    Article  MATH  Google Scholar 

  10. Gupta, M.D., Huang, T.S.: Regularized maximum likelihood for intrinsic dimension estimation. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (2010)

    Google Scholar 

  11. Hayashi, T., Yoshida, N.: On covariance estimation of non-synchronously observed diffusion processes. Bernoulli 11, 359–379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jones, R.: Time series analysis with unequally spaced data. In: Hannan, E.J., Krishnaiah, P.R., Rao, M.M. (eds.) Handbook of Statistics, vol. 5. Elsevier Science, Amsterdam (1985)

    Google Scholar 

  13. Kermit, M., Tomic, O.: Independent component analysis applied on gas sensor array measurement data. IEEE Sens. J. 3(2), 218–228 (2003)

    Article  Google Scholar 

  14. Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Nakamura, Y., Nishijo, K., Murakami, N., Kawashima, K., Horikawa, Y., Yamamoto, K., Ohtani, T., Takhashi, Y., Inoue, K.: Small demonstration satellite-4 (SDS-4): development, flight results, and lessons learned in JAXAs microsatellite project. In: Proceedings of the 27th Annual AIAA/USU Conference on Small Satellites (2013)

    Google Scholar 

  16. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39(2/3), 103–134 (2000)

    Article  MATH  Google Scholar 

  17. Rehfeld, K., Marwan, N., Heitzig, J., Kurths, J.: Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Proc. Geophys. 18, 389–404 (2011)

    Article  Google Scholar 

  18. Rosti, A.V.I., Gales, M.J.F.: Factor analysed hidden Markov models for speech recognition. Comput. Speech Lang. 18(2), 181–200 (2004)

    Article  Google Scholar 

  19. Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 18, 401–409 (1969)

    Article  Google Scholar 

  20. Scargle, J.: Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 343, 874–887 (1982)

    Article  Google Scholar 

  21. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  22. Tipping, M., Bishop, C.: Mixtures of probabilistic principal component analysers. Neural Comput. 11(2), 443–482 (1999)

    Article  Google Scholar 

  23. Watson, M.W., Engle, R.F.: Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models. J. Econometrics 23, 385–400 (1983)

    Article  MATH  Google Scholar 

  24. Zumbach, G., Müller, U.: Operators on inhomogeneous time series. Int. J. Theor. Appl. Fin. 4, 147–177 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Takeishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Takeishi, N., Yairi, T., Nishimura, N., Nakajima, Y., Takata, N. (2016). Dynamic Grouped Mixture Models for Intermittent Multivariate Sensor Data. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J., Wang, R. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9652. Springer, Cham. https://doi.org/10.1007/978-3-319-31750-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31750-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31749-6

  • Online ISBN: 978-3-319-31750-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics