
Discovering the Network Backbone from Traffic Activity
Data

Sanjay Chawla
University of Sydney

Sydney, Australia
sanjay.chawla@sydney.edu.au

Venkata Rama Kiran Garimella
Aalto University
Helsinki, Finland

kiran.garimella@aalto.fi

Aristides Gionis
Aalto University and HIIT

Helsinki, Finland
aristides.gionis@aalto.fi

Dominic Tsang
University of Sydney

Sydney, Australia
dwktsang@yahoo.com

ABSTRACT
We introduce a new computational problem, the Backbone-
Discovery problem, which encapsulates both functional and
structural aspects of network analysis. While the topology
of a typical road network has been available for a long time
(e.g., through maps), it is only recently that fine-granularity
functional (activity and usage) information about the net-
work (like source-destination traffic information) is being
collected and is readily available. The combination of func-
tional and structural information provides an efficient way
to explore and understand usage patterns of networks and
aid in design and decision making. We propose efficient al-
gorithms for the BackboneDiscovery problem including a
novel use of edge centrality. We observe that for many real
world networks, our algorithm produces a backbone with a
small subset of the edges that support a large percentage of
the network activity.

1. INTRODUCTION
In this paper we study a novel problem, which combines

structural and functional (activity) network data. In recent
years there has been a large body of research related to ex-
ploiting structural information of networks. However, with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

the increasing availability of fine-grained functional informa-
tion, it is now possible to obtain a detailed understanding
of activities on a network. Such activities include source-
destination traffic information in road and communication
networks.

More specifically we study the problem of discovering the
backbone of traffic networks. In our setting, we consider the
topology of a network G = (V,E) and a traffic log L =
{(si, ti, wi)}, recording the amount of traffic wi that incurs
between source si and destination ti. We are also given a
budget B that accounts for a total edge cost. The goal is
to discover a sparse subnetwork R of G, of cost at most B,
which summarizes as well as possible the recorded traffic L.

The problem we study has applications for both exploratory
data analysis and network design. An example application
of our algorithm is shown in Figure 1. Here, we consider a
traffic log (Figure 1, left), which consists of the most popular
routes used on the London tube. The backbone produced by
our algorithm takes into account this demand (based on the
traffic log) and tries to summarize the underlying network,
thus presenting us with insights about usage pattern of the
London tube (Figure 1, right). This representation of the
‘backbone’ of the network could be very useful to identify
the important edges to upgrade or to keep better maintained
in order to minimize the total traffic disruptions.

We only consider source-destination pairs in the traffic log,
and not full trajectories, as source-destination information
captures true mobility demand in a network. For example,
data about the daily commute from home (source) to office
(destination) is more resilient than trajectory information,
which is often determined by local and transient constraints,
like traffic conditions on the road, time of day, etc. Fur-
thermore, in communication networks, only the source-ip

ar
X

iv
:1

40
2.

61
38

v3
 [

cs
.S

I]
 1

7
A

ug
 2

01
5

Figure 1: London tube network, with nodes representing the stations. The figure on the left shows a subset of the trips made,
and the figure on the right shows the corresponding backbone, as discovered by our algorithm. The input data contains only
source–destination (indicating start and end points of a trip) pairs and for visualization purposes, a B-spline was interpolated
along the shortest path between each such pair. The backbone presented on the right covers only 24% of the edges in the
original network and has a stretch factor of 1.58. This means that even with pruning 76% of the edges in the network, we are
able to maintain shortest paths which are at most 1.58 times the shortest path length original graph.

and destination-ip information is encoded in TCP-IP pack-
ets. Similarly, in a city metro, check-in and check-out infor-
mation is captured while the intervening movement is not
logged.

The BackboneDiscovery problem is an amalgam of the
k-spanner problem [15] and the Steiner-forest problem [23].
However, our problem formulation will have elements which
are substantially distinct from both of these problems.

In the k-spanner problem the goal is to find a minimum-
cost subnetwork R of G, such that for each pair of nodes u
and v, the shortest path between u and v on R is at most k
times longer than the shortest path between u and v onG. In
our problem, we are not necessarily interested in preserving
the k-factor distance between all nodes but for only a subset
of them.

In the Steiner-forest problem we are given a set of pairs of
terminals {(si, ti)} and the goal is to find a minimum-cost
forest on which each source si is connected to the corre-
sponding destination ti. Our problem is different from the
Steiner-forest problem because we do not need all {(si, ti)}
to be connected, and try to optimize a stretch factor so that
the structural aspect of the network are also taken into ac-
count.

A novel aspect of our work is the use of edge-betweenness
to guide the selection of the backbone [17]. The intuition is
as follows. An algorithm to solve the Steiner-forest problem
will try and minimize the sum of cost of edges selected as
long as as the set of terminal pairs {(si, ti)} are connected
and is agnostic to minimizing stretch factor. However, if
the edge costs are inversely weighted with edge-betweenness,
then edges that can contribute to reducing the stretch factor
can be potentially included into the backbone.

To understand the differences of the proposed Backbone-
Discovery problem with both the k-spanner and Steiner-
forest formulations, consider the example shown in Figure 2.
In this example, there are four groups of nodes:

1. group A consists of n nodes, a1, . . . , an,

2. group B consists of n nodes, b1, . . . , bn,

3. group C consists of 2 nodes, c1 and c2, and

4. group D consists of m nodes, d1, . . . , dm.

Assume that m is smaller then n, and thus much smaller
than n2. All edges shown in the figure have cost 1, except the
edges between c1 and c2, which has cost 2. Further assume
that there is one unit of traffic between each ai and each bj ,
for i, j = 1, . . . , n, resulting in n2 source-destination pairs
(the majority of the traffic), and one unit of traffic between
di and di+1, for i = 1, . . . ,m− 1, resulting in m− 1 source-
destination pairs (some additional marginal traffic). The
example abstracts a common layout found in many cities:
a few busy centers (commercial, residential, entertainment,
etc.) with some heavily-used links connecting them (group
C), and some peripheral ways around, that serve additional
traffic (group D).

Careful inspection of the above example highlights advan-
tages of the backbone discovery problem:

• As opposed to the k-spanner problem, we do not need
to guarantee short paths for all pairs of nodes, but only
for those in our traffic log which makes our approach
more general. In particular, based on the budget re-
quirements a backbone could be designed for the most
voluminous paths.

• Due to the budget constraint, it may not be possible to
guarantee connectivity for all pairs in the traffic log.
We thus need a way to decide which pairs to leave
disconnected. Neither the k-spanner nor the Steiner-
forest problems provision for disconnected pairs. In
fact, it is possible that the optimal backbone may
even contain cycles while leaving pairs disconnected.
Again, allowing for a disconnected backbone, general-
izes the Steiner-forest problem and may help provision
for a tighter budget. In order to allow for a discon-
nected backbone, we employ the use of stretch factor,

... ...

...
A B

C

D

... ...

...

... ...

...

(a)

... ...

...
A B

C

D

... ...

...

... ...

...

(b)

... ...

...
A B

C

D

... ...

...

... ...

...

(c)

Figure 2: The BackboneDiscovery problem solution results in a better network than the one obtained from the Steiner
forest solution. (a) A traffic network. We consider a unit of traffic from each node in A to each node in B, and from each
node in D to its right neighbor. (b) Shown with thick edges is an optimal Steiner forest for certain cost C. (c) Shown with
thick edges is a backbone of cost at most C that captures the traffic in the network better than the optimal Steiner forest.

defined as a weighted harmonic mean over the source-
destination pairs of the traffic log, which provides a
principled objective to optimize connectivity while al-
lowing to leave disconnected pairs, when there is in-
sufficient budget.

• Certain high cost edges may be an essential part of the
backbone that other problem formulations may leave
out. For example, while the edge that connects the
nodes in C is a very important edge for the overall
traffic (as it provides a short route between A and B),
the optimal Steiner-forest solution, shown in Figure 2b,
prefers the long path along the nodes in D. Our algo-
rithm includes the component C (as seen in Figure 2c)
because it is an edge that has a high edge-betweenness.

The rest of the paper is organized as follows. In Sec-
tion 2, we rigorously define the BackboneDiscovery prob-
lem. Section 3 introduces our algorithm based on the greedy
approach, Section 4 details our experimental evaluation, re-
sults and discussion. In Section 5 we survey related work
and distinguish our problem formulation with other relevant
approaches. We conclude in Section 6 with a summary and
potential directions for future work.

2. PROBLEM DEFINITION
Let G = (V,E) be a network, with |V | = n and |E| = m.

For each edge e ∈ E there is a cost c(e). Additionally, we
consider a traffic log L, specified as a set of triples (si, ti, wi),
with si, ti ∈ V , and with i = 1, . . . , k. A triple (si, ti, wi)
indicates the fact that wi units of traffic have been recorded
between nodes si and ti.

We aim at discovering the backbone of traffic networks. A
backbone R is a subset of the edges of the network G, that
is, R ⊆ E that provides a good summarization for the whole
traffic in L. In particular, we require that if the available
traffic had used only edges in the backbone R, it should have
been almost as efficient as using all the edges in the network.
We formalize this intuition below.

Given two nodes s, t ∈ V and a subset of edges A ⊆ E, we
consider the shortest path dA(s, t) from s to t that uses only
edges in the set A. In this shortest-path definition, edges
are counted according to their cost c. If there is no path
from s to t using only edges in A, we define dA(s, t) = ∞.
Consequently, dE(s, t) is the shortest path from s to t using
all the edges in the network, and dR(s, t) is the shortest path
from s to t using only edges in the backbone R.

To measure the quality of a backbone R, with respect
to some traffic log L = {(si, ti, wi)} we use the concept
of stretch factor. Intuitively, we want to consider shortest
paths from si to ti, and evaluate how much longer are those
paths on the backbone R, than on the original network.
The idea of using stretch factor for evaluating the quality
of a subgraph has been used extensively in the past in the
context of spanner graphs [15].

In order to aggregate shortest-path information for all
source–destination pairs in our log in a meaningful way, we
need to address two issues. The first issue is that not all
source–destination pairs have the same volume in the traffic
log. This can be easily addressed by weighting the contri-
bution of each pair (si, ti) by its corresponding volume wi.

The second issue is that since we aim at discovering very
sparse backbones, many source–destination pairs in the log
could be disconnected in the backbone. To address this
problem we aggregate shortest-path distances using the har-
monic mean. This idea, which has been proposed by Mar-
chiori and Latora [12] and has also been used by Boldi and
Vigna [1] in measuring centrality in networks, provides a
very clean way to deal with infinite distances: if a source–
destination pair is not connected, their distance is infinity,
so the harmonic mean accounts for this by just adding a
zero term in the summation. Using the arithmetic mean is
problematic, as we would need to add an infinite term with
other finite numbers.

Overall, given a set of edges A ⊆ E, we measure the con-
nectivity of the traffic log L = {(si, ti, wi)}, |L| = k by

HL(A) =

(
k∑

i=1

wi

)(
k∑

i=1

wi

dA(si, ti)

)−1

.

The stretch factor of a backbone R is then defined as

λL(R) =
HL(R)

HL(E)
.

The stretch factor is always greater or equal than 1. The
closer it is to 1, the better the connectivity that it offers to
the traffic log L.

We are now ready to formally define the problem of back-
bone discovery.

Problem 1 (BackboneDiscovery). Consider a net-
work G = (V,E) and a traffic log L = {(si, ti, wi)}. Con-
sider also a cost budget B. The goal is to find a backbone
network R ⊆ E of total cost B that minimizes the stretch
factor λL(R) or report that no such solution exists.

As one may suspect, BackboneDiscovery is an NP-
hard problem.

Lemma 1. The BackboneDiscovery problem, defined
in Problem 1, is NP-hard.

Proof Sketch. We obtain a reduction from the Set-
Cover problem: given a ground set U = {u1, . . . , un}, a
collection S = {S1, . . . , Sm} of subsets of U , and an inte-
ger k, determine whether there are k sets in S that cover all
the elements of U .

Given an instance of the SetCover problem we form an
instance of the BackboneDiscovery problem as follows
(See Figure 3 for illustration). We create one node ui for
each ui ∈ U and one node vj for each Sj ∈ S. We also
create a special node z. We create an edge (ui, vj) if and
only if ui ∈ Sj and we assign to this edge cost 0. We also
create an edge (vj , z) for all Sj ∈ S and we assign to this
edge cost 1. As far as the traffic log is concerned, we set
L = {(ui, z, 1) | ui ∈ U}, that is, we pair each ui ∈ U
with the special node z with volume 1. Finally we set the
budget B = k. It is not difficult to see that the instance of
the BackboneDiscovery problem constructed in this way
has a solution with stretch factor 1 if and only if the given
instance of the SetCover problem has a feasible solution.

u1#

u2#

u3#

un#

S1#

S2#

Sm#

z#

1#
1#

1#

1#

0#

0#

0#

0#

Figure 3: Reduction from Set Cover to Backbone-
Discovery for the log L = {(ui, z, 1)|ui ∈ U}

3. ALGORITHM
The algorithm we propose for the BackboneDiscovery

problem is a greedy heuristic that connects one-by-one the
source–destination pairs of the traffic log L. A distinguishing
feature of our algorithm is that it utilizes a notion of edge
benefit. In particular, we assume that for each edge e ∈ E
we have available a benefit measure b(e). The higher is the
measure b(e) the more beneficial it is to include the edge
e in the final solution. The benefit measure is computed
using the traffic log L and it takes into account the global
structure of the network G.

The more central an edge is with respect to a traffic log,
the more beneficial it is to include it in the solution, as
it can be used to serve many source–destination pairs. In
this paper we use edge-betweenness as a centrality measure,

adapted to take into account the traffic log. We also experi-
mented with commute-time centrality, but edge-betweenness
was found to be more effective.

Our algorithm relies on the notion of effective distancề(e), defined as ̂̀(e) = c(e)/b(e), where c(e) is the cost of
an edge e ∈ E, and b(e) is the edge-betweenness of e. The
intuition is that by dividing the cost of each edge by its
benefit, we are biasing the algorithm towards selecting edges
with high benefit.

We now present our algorithm in more detail.

3.1 The greedy algorithm.
As discussed above, our algorithm operates with effective

distances ̂̀(e) = c(e)/b(e), where b(e) is a benefit score for
each edge e. The objective is to obtain a cost/benefit trade-
off: edges with small cost and large benefit are favored to be
included in the backbone. In the description of the greedy
algorithm that follows, we assume that the effective distancề(e) of each edge is given as input.

The algorithm works in an iterative fashion, maintaining
and growing the backbone, starting from the empty set. In
the i-th iteration the algorithm picks a source–destination
pair (si, ti) from the traffic log L, and “serves” it. Serving
a pair (si, ti) means computing a shortest path pi from si
to ti, and adding its edges in the current R, if they are
not already there. For the shortest-path computation the

algorithm uses the effective distances ̂̀(e). When an edge
is newly added to the backbone its cost is subtracted from
the available budget. Here, the actual cost of the edge c(e)

(instead of the ̂̀(e)) is used. Also its effective distance is
reset to zero, since it can be used for free in subsequent
iterations of the algorithm. The source–destination pair that
is chosen to be served in each iteration is the one that reduces
the stretch factor the most at that iteration; and hence the
greedy nature of the algorithm.

The algorithm proceeds until it exhausts all its budget or
until the stretch factor becomes equal to 1 (which means
that all pairs in the log are served via a shortest path).
The pseudo-code for the greedy algorithm is shown as Algo-
rithm 1.

We are experimenting with two variants of this greedy
scheme, depending on the benefit score we use. These are
the following:

Greedy: We use uniform benefit scores (b(e) = 1).

GreedyEB: The benefit score of an edge is set equal to its
edge-betweenness centrality.

3.2 Speeding up the greedy algorithm.
As we show in the experimental section the greedy algo-

rithm provides solutions of good quality, in particularly the
variant with the edge-betweenness weighting scheme. How-
ever, the algorithm is computationally expensive, and thus
in this section we discuss a number of optimizations. We
start by analyzing the running time of the algorithm.

Running time. Assume that the benefit scores b(e) are
given for all edges e ∈ E, and that the algorithm performs I
iterations until it exhausts its budget. In each iteration we
need to perform O(k2) shortest-path computations, where k
is the size of the traffic log L. A shortest path computation
is O(m + n logn), and thus the overall complexity of the
algorithm is O(Ik2(m+ n logn)). The number of iterations

Algorithm 1 The greedy algorithm

Input: Network G = (V,E), edge costs c(e), benefit costs
b(e), cost budget B, traffic log L = {(si, ti, wi)}

Output: A subset of edges R ⊆ E of total cost c(R) ≤ B
and small stretch factor λ(R)

1: for all e ∈ E do
2: ̂̀(e)← c(e)/b(e)
3: R← ∅
4: λ←∞
5: while (B > 0) and (λ > 1) do
6: for each (si, ti, wi) ∈ L do

7: pi ←ShortestPath(si, ti, G, ̂̀)
8: λi ←StretchFactor(R ∪ pi, G,L)
9: p∗ ← mini{λi} // the path with min. stretch factor

in the above iteration
10: R′ ← p∗ \R // edges to be newly added
11: if c(R′) > B then
12: Return R // budget exhausted
13: R← R ∪R′ // add new edges in the backbone

14: ̂̀(R′)← 0 // reset cost of newly added edges
15: B ← B − c(R′) // decrease budget
16: λ←StretchFactor(R,G,L) // update λ
17: Return R

I depends on the available budget and in the worst case it
can be as large as k. However, since we aim at finding sparse
backbones, the number of iterations is typically smaller.

Optimizations with no approximation. We first show
how to speed up the algorithm, while guaranteeing the same
solution with the näıve implementation of the greedy. Since
the most expensive component is the computation of short-
est paths on the newly-formed network, we make sure that
we compute the shortest path only when needed. Our opti-
mizations consist of two parts.

First, during the execution of the algorithm we maintain
the connected components that the backbone creates in the
network. Then, we do not need to compute shortest paths
for all (si, ti) pairs, for which si and ti belong to different
connected components; we know that their distance is ∞.
This optimization is effective at the early stages of the algo-
rithm, when many terminals belong to different connected
components.

Second, when computing the decrease in the stretch factor
due to a candidate shortest path to be added in the back-
bone, for pairs for which we have to recompute a shortest-
path distance, we first compute an optimistic lower bound,
based on the shortest path on the whole network (which we
compute once in a preprocessing step). If this optimistic
lower bound is not better than the current best stretch fac-
tor then we can skip the computation of the shortest path
on the backbone.

As shown in the empirical evaluation of our algorithms,
depending on the dataset, these optimization heuristics lead
to 20–35% improvement in performance.

Optimization based on landmarks. To further improve
the running-time of the algorithm we compute shortest-path
distances using landmarks [6, 18], an effective technique
to approximate distances on graphs. Here we use the ap-
proach of Potamias et al. [18]: A set of ` landmarks L =
{z1, . . . , z`} is selected and for each vertex v ∈ V the dis-
tances d(v, zi) to all landmarks are computed and stored

as an `-dimensional vector representing vertex v. The dis-
tance between two vertices v1, v2 is then approximated as
mini{d(v1, zi) + d(v2, zi)}, i.e., the tightest of the upper
bounds induced by the set of landmarks L.

To select landmarks we use high-degree non-adjacent ver-
tices in the graph, which is reported as one of the best per-
forming methods by Potamias et al. [18]. Note that the
distances are now approximations to the true distances, and
the method trades accuracy by efficiency via the number
of landmarks selected. In practice a few hundreds of land-
marks are sufficient to provide high-quality approximations
even for graphs with millions of vertices [18].

For the running-time analysis, note that in each itera-
tion we need to compute the distance between all graph
vertices and all landmarks. This can be done with ` single-
source shortest-path computations and the running time
is O(`(m + n logn)). The landmarks can then be used
to approximate shortest-path distances between all source-
destination pairs in the traffic log L, with running time
O(k`). Thus, the overall complexity isO(I`(k+m+n logn)).
Since ` is expected to be much smaller than k, the method
provides a significant improvement over the näıve implemen-
tation of the greedy. As shown in the experimental evalua-
tion, using landmarks provides an improvement of up to 4
times in terms of runtime in practice.

3.3 Edge-betweenness centrality.
As we already discussed in the previous sections, our greedy

algorithm uses edge centrality measures for benefit scores
b(e). In this section we discuss edge betweenness, and in
particular show how we adapt the measure to take into ac-
count the traffic log L.

We first recall the standard definition of edge-betweennes.
Given a network G = (V,E), we define V2 =

(
V
2

)
to be the

set of all pairs of nodes of G. Given a pair of nodes (s, t) ∈ V2

and an edge e ∈ E, we define by σs,t the total number of
shortest paths from s to t, and by σs,t(e) the total number
of shortest paths from s to t that pass though edge e.

The standard definition of edge-betweenness centrality EB(e)
of edge e is the following:

EB(e) =
∑

(s,t)∈V2

σs,t(e)

σs,t
.

In our problem setting we take into account the traffic log
L = {(si, ti, wi)}, and we define the edge-betweenness EBL(e)
of an edge e with respect to log L, as follows.

EBL(e) =
∑

(s,t,w)∈L

w
σs,t(e)

σs,t
.

In this modified definition only the source–destination pairs
of the log L contribute to the centrality of the edge e, and the
amount of contribution is proportional to the corresponding
traffic. The adapted edge-betweenness can still be computed
in O(nm) time [3].

4. EXPERIMENTAL EVALUATION
The aim of the experimental section is to evaluate the per-

formance of the proposed algorithm, the optimizations, and
the edge-betweenness measure. We also compare our algo-
rithm with other state-of-the-art methods which attempt to
solve a similar problem.

Dataset Type # Nodes # Edges
Real Real

network traffic
LondonTube transportation 316 724 X X
USFlights transportation 1 268 51 098 X X
UKRoad transportation 8 341 13 926 X -
NYCTaxi transportation 50 736 158 898 X X
Wikispeedia web 4 604 213 294 X X
Abeline internet 12 15 X X

Table 1: Dataset statistics.

Datasets. We experiment with six real-world datasets, four
transportation networks, one web network and one internet-
traffic network. For five of the datasets we also obtain real-
world traffic, while for one we use synthetically-generated
traffic. The characteristics of our datasets are provided in
Table 1, and a brief description follows.

LondonTube. The London Subway network consists of sub-
way stops and links between them.1 We use the geographic
distance between stations as a proxy for edge costs. We
also obtain a traffic log L extracted from the Oyster card
system.2 The log consists of aggregate trips made by pas-
sengers between pairs of stations during a one-month period
(Nov-Dec 2009). We filter out source-destination pairs with
traffic less than 100 and remove bi-directional pairs by se-
lecting one of them at random and summing up their traffic.

USFlights. We obtain a large network of US airports, and
the list of all flights within the US during 2009–2013, from
the Bureau of Transportation Statistics.3 Flying distances
between airports, obtained using Travelmath.com, are used
as edge costs. The traffic volume is the number of flights
between airports.

NYCTaxi. We obtain the complete road network of NYC
using OpenStreetMap data.4 In this network each node cor-
responds to a road intersection and each link corresponds
to a road segment. Edge costs are computed as the geo-
graphic distances between the junctions. Data on the pickup
and drop-off locations of NYC taxis for 2013 was used to
construct the traffic log.5 The 2 000 most frequently used
source-destination pairs was used to create the traffic log.

Wikispeedia. Wikispeedia6 [22] is an online crowd sourc-
ing game designed to measure semantic distances between 2
wikipedia pages using the paths taken by humans to reach
from one page to the other. This dataset contains a base net-
work of hyperlinks between Wikipedia pages and the paths
taken by users between two pages. We construct the traffic
log using the unique (start, end) pages from this data.

UKRoad. Next we consider the UK road network.7 The
network construction is similar to what was done with the
NYCTaxi data. For simplicity we use only the largest con-
nected component. Since we were not able to obtain real-
world traffic data for this network, we generate synthetic
traffic logs L simulating different scenarios. In particular
we generate traffic logs according to four different distribu-
tions: (i) power-law traffic volume, power-law s-t pairs; (ii)

1
http://bit.ly/1C9PbLT

2
http://bit.ly/1qM2BYi

3
http://1.usa.gov/1ypXYvL

4
http://metro.teczno.com/#new-york

5
http://chriswhong.com/open-data/foil_nyc_taxi/

6
http://snap.stanford.edu/data/wikispeedia.html

7
http://www.dft.gov.uk/traffic-counts/download.php

power-law traffic volume, uniformly random s-t pairs; (iii)
uniformly random traffic volume, power-law s-t pairs; and
(iv) uniformly random traffic volume, uniformly random s-t
pairs. These different distributions capture different traf-
fic volume possibility and hence help in understanding the
behavior of our algorithm with respect to the traffic log L.

Abeline. For a qualitative analysis we also consider the well
known Abeline dataset consisting of a sample of the network
traffic extracted from the Internet2 backbone8 and that car-
ries the network traffic between major universities in the
continental US. The network consists of twelve nodes and
15 high-capacity links. Associated with each physical link,
we also have capacity of the link which serves as a proxy
for the cost of the link. We obtain traffic logs from 2003
between all pairs of nodes.

Baseline. To obtain better intuition for the performance of
our methods we define a simple baseline, where a backbone is
created by adding edges in increasing order of their effective

distances ̂̀(e) = c(e)/b(e), where b(e) is edge-betweenness;
this was the best-performing baseline among other baselines
we tried, such as adding source–destination pairs one by one
(i) randomly, (ii) in decreasing order of volume (wi), (iii) in
increasing order of effective distance defined using closeness
centrality, etc.

4.1 Quantitative results.
We focus our evaluation on three main criteria: (i) Com-

parison of the performance with and without the edge-betweenness
measure; (ii) effect of the optimizations, in terms of quality
and speedup; and (iii) effect of allocating more budget on
the stretch factor.

Effect of edge-betweenness. We study the effect of using
edge-betweenness in the Greedy algorithm. The results are
presented in Figure 4.

Effect of landmarks. Landmarks provide faster compu-
tation with a trade off for quality. Figure 5 shows the
speedup achieved when using landmarks. In the figures,
BasicGreedyEB indicates the greedy algorithm that doesn’t
use any optimizations. GreedyEBCC makes use of the opti-
mizations proposed in Section 3.2 which do not use approxi-
mation. GreedyEBLandmarks* makes use of the landmarks
optimatization and the * indicates the number of landmarks
we tried. Figure 6 shows the performance of GreedyEB algo-
rithm with and without using landmarks.

Budget vs. stretch factor. We examine the trade-off be-
tween budget and stretch factor for our algorithm and its
variants. A lower stretch factor for the same budget indi-
cates that the algorithm is able to pick better edges for the
backbone. Figure 4 shows the trade-off between budget and
stretch factor for all our datasets. In all figures the budget
used by the algorithms, shown in the x-axis, is expressed as
a percentage of the total cost of all the edges in the network.

Key findings. From all the above results, we would like to
highlight the following points.

1. The greedy algorithm and its variants performs much
better than the baseline (See Figure 4). Note that baseline
is not included in Figure 4(g,h) because the edges in the
baseline are added one-by-one and for a large interval of the
cost, the stretch factor was very large or even infinity. This
shows that the backbone produced by our greedy approach

8
http://www.internet2.edu

http://bit.ly/1C9PbLT
http://bit.ly/1qM2BYi
http://1.usa.gov/1ypXYvL
http://metro.teczno.com/#new-york
http://chriswhong.com/open-data/foil_nyc_taxi/
http://snap.stanford.edu/data/wikispeedia.html
http://www.dft.gov.uk/traffic-counts/download.php
http://www.internet2.edu

% Edge cost covered
3 4 5 6

S
tr

e
tc

h
 F

a
c
to

r

1

2

3

4

5

6
London tube

Baseline
Greedy
GreedyEB

(a)

% Edge cost covered
2 4 6 8

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20

25
US Flights

Baseline
Greedy
GreedyEB

(b)

% Edge cost covered
2 4 6 8

S
tr

e
tc

h
 F

a
c
to

r

0

10

20

30
NYC Taxi

Baseline
Greedy
GreedyEB

(c)

% Edge cost covered
2 4 6 8

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20
Wikispeedia

Baseline
Greedy
GreedyEB

(d)

% Edge cost covered
0 2 4 6

S
tr

e
tc

h
 F

a
c
to

r

0

2

4

6

8
Powerlaw (w) - Powerlaw (l)

Baseline
Greedy
GreedyEB

(e)

% Edge cost covered
1 2 3 4 5

S
tr

e
tc

h
 F

a
c
to

r

0

5

10
Random (w) - Powerlaw (l)

Baseline
Greedy
GreedyEB

(f)

% Edge cost covered
0 5 10

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20
Powerlaw (w), Random (l)

Greedy
GreedyEB

(g)

% Edge cost covered
0 5 10

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20
Random (w) - Random (l)

Greedy
GreedyEB

(h)

Figure 4: Effect of edge-betweenness on the performance of the Greedy algorithm, for various datasets (a) LondonTube, (b)
USFlights, (c) NYCTaxi, (d) Wikispeedia, (e–h) UKRoad. Baseline is missing in figures (g) and (h) because the stretch factor
was very large or infinity. We see a consistent trend that using edge-betweenness improves the performance. In Figures (e–h),
(w) indicates traffic volume, and (l) indicates the log.

not only consists of edges with low benefit, but also tries to
re-use a lot of edges, hence obtaining a lower stretch factor.

2. The backbones discovered by our algorithms are sparse
and summarize well the given traffic (Figures 4, 6). In all
cases, with about 15% of the edge cost in the network it is
possible to summarize the traffic with stretch factor close
to 1. In some cases, even smaller budget (than 15%) is
sufficient to reach a lower stretch-factor value.

3. Incorporating edge-betweenness as an edge-weighting
scheme in the algorithm improves the performance, in cer-
tain cases there is an improvement of at least 50% (See Fig-
ure 4; in most cases, even though there is a significant im-
provement, the plot is overshadowed by a worse performing
baseline). This is because, using edges of high centrality
will make sure that these edges are included in many short-
est paths, leading to re-using many edges.

4. The optimizations we propose in Section 3.2 help in re-
ducing the running time of our algorithm (See Figure 5).
For the optimizations not using landmarks, we see around
30% improvement in running time. Using landmarks sub-
stantially decreases the time taken by the algorithms (3–4
times). While there is a compromise in the quality of the so-
lution, we can observe from Figures 6 that the performance
drop is small in most cases and can be controlled by the
choosing the number of landmarks accordingly. Our algo-
rithms, using the various optimizations we propose, are able
to scale for large, real-world networks with tens of thousands
of nodes which is the typical size of a road/traffic network.

4.2 Comparison to existing approaches
In this section, we compare the performance of Back-

boneDiscovery with other related work in literature. The
comparison is done based on two factors (i) Stretch factor,
(ii) Percentage of edges covered by the solution. Intuitively,
a good backbone should try to minimize both, i.e. produce
a sparse backbone, which also preserves the shortest paths
between vertices as well as possible.

Comparison with Prize Collecting Steiner-forest (PCSF)
- Prize Collecting Steiner-forest [10] is a variant of the clas-
sic Steiner Forest problem, which allows for disconnected
source–destination pairs, by paying a penalty. The goal is
to minimize the total cost of the solution by ‘buying’ a set
of edges (to connect the s–t pairs) and paying the penalty
for those pairs which are not connected. We compare the
performance of our algorithm with PCSF, based on two fac-
tors (i) Stretch factor (Figure 7a), (ii) Percentage of edges
covered by the solution (Figure 7b). We use the same (s,t)
pairs that we use in our algorithm and set the traffic volume
wi as the penalty score in PCSF. We first run PCSF on our
datasets and compute the budget of the solution produced.
Using the budget as input to our algorithm (GreedyEB), we
compute our backbone.

We can see from Figure 7a that our algorithm produces a
backbone with a much better stretch factor than PCSF. In
most datasets, our algorithm produces a backbone which is
at least 2 times better in terms of stretch factor.

Figure 7b compares the fraction of edges covered by our
algorithm and PCSF. We observe that the fraction of edges

% Edge cost covered
2 4 6

T
im

e
 t
a
k
e
n
 (

s
e
c
)

0

200

400

600
London Tube

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks75
GreedyEBLandmarks50
GreedyEBLandmarks25

(a)

% Edge cost covered
2 4 6

T
im

e
 t
a
k
e
n
 (

s
e
c
)

0

500

1000

1500

2000
US Flights

BasicGreedyEB

GreedyEBCC

GreedyEBLandmarks75

GreedyEBLandmarks50

GreedyEBLandmarks25

(b)

% Edge cost covered
2 4 6 8

T
im

e
 t
a
k
e
n
 (

s
e
c
)

×10
4

0

1

2

3

4
NYC Taxi

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks75
GreedyEBLandmarks50
GreedyEBLandmarks25

(c)

% Edge cost covered
2 4 6 8

T
im

e
 t
a
k
e
n
 (

s
e
c
)

0

2000

4000

6000

8000
Wikispeedia

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks75
GreedyEBLandmarks50
GreedyEBLandmarks25

(d)

% Edge cost covered
0 2 4 6

T
im

e
 t
a
k
e
n
 (

s
e
c
)

0

1000

2000

3000

4000
Powerlaw (w), Powerlaw (l)

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks100

(e)

% Edge cost covered
0 2 4 6

T
im

e
 t
a
k
e
n
 (

s
e
c
)

0

1000

2000

3000

4000

5000
Random (w), Powerlaw (l)

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks100

(f)

% Edge cost covered
0 2 4 6

T
im

e
 t
a
k
e
n
 (

s
e
c
)

0

2000

4000

6000
Powerlaw (w), Random (l)

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks100

(g)

% Edge cost covered
0 2 4 6

T
im

e
 t
a
k
e
n
 (

s
e
c
)

0

2000

4000

6000
Random (w), Random (l)

BasicGreedyEB
GreedyEBCC
GreedyEBLandmarks100

(h)

Figure 5: Comparison of the time taken by the algorithm using different optimizations mentioned in Section 3.2, for (a)
LondonTube, (b) USFlights, (c) NYCTaxi, (d) Wikispeedia, (e–h) UKRoad. BasicGreedyEB doesnt use any optimizations,
GreedyEBCC is the version using connected components, GreedyEBLandmarks* uses * landmarks. We can clearly see a
great improvement (up to 4x) in speed by using landmarks. As we increase the number of landmarks, we trade-off speed with
accuracy. In Figures (e–h), (w) indicates traffic volume, and (l) indicates the log.

Dataset

U
S
Fl
ig
ht
s

N
Y
C
Ta

xi

W
ik
is
pe

ed
ia

U
K
R
oa

d r p

U
K
R
oa

d pp

U
K
R
oa

d r r

U
K
R
oa

d pr

Lo
nd

on
Tu

be

S
tr

e
tc

h
 F

a
c
to

r

2

4

6

8

10

12

14

16

18

PCSF

GreedyEB

(a)

USFlig
hts

NYCTaxi

W
iki

sp
eedia

UKRoad rp

UKRoad pp

UKRoad r r

UKRoad pr

LondonTube

%
 E

d
g

e
s
 c

o
v
e

re
d

2

3

4

5

6

7

8

37

38

39

40

41

42

PCSF

GreedyEB

40

(b)

Figure 7: Comparison of our algorithm GreedyEB with
PCSF, in terms of (a) stretch factor (b) Percentage of edges
covered. The 4 variants of UKRoad for the different traffic
log are indicated by UKRoadab where a indicates traffic vol-
ume, b indicates (s,t) pairs (r - random, p - powerlaw). (In
(b) LondonTube is plotted on a secondary y-axis because of
mismatch in scale).

covered by our algorithm is lower than that of PCSF. This
could be because our algorithm re-uses edges belonging to
multiple paths. Figures 7(a,b) show that even though our
solution is much better in terms of stretch factor, we pro-
duce sparse backbones (in terms of the percentage of edges
covered).

Comparison with k-spanner - As described in Section 5,
our problem is similar to k-spanner [15] in the sense that
we try to minimize the stretch factor. A k-spanner of a
graph is a subgraph in which any two vertices are at most
k times far apart than on the original graph. One of the
main advantages of our algorithm compared to spanners is
that spanners can not handle disconnected vertices. We also
propose and optimize a modified version of stretch factor in
order to handle disconnected vertices. Similar to PCSF, we
first compute a 2-spanner using a 2 approximation greedy
algorithm and compute the budget used. We then run our
algorithm for the same budget. Figures 8(a,b) show the
performance of our algorithm in terms of stretch factor and
percentage of edges covered. Our objective here is to com-
pare the cost our algorithm pays in terms of stretch factor
for allowing disconnected vertices. We can clearly observe
that even though we allow for disconnected pairs, our algo-
rithm performs slightly better in terms of stretch factor and
also produces a significantly sparser backbone.

Comparison with Toivonen et al. [20] - Next, we com-
pare our algorithm with Toivonen, et al [20]. Toivonen et al.
propose a framework for path-oriented graph simplification,

% Edge cost covered
2 4 6

S
tr

e
tc

h
 F

a
c
to

r

0

5

10
London Tube

GreedyEBLandmarks25
GreedyEBLandmarks50
GreedyEBLandmarks75
GreedyEB

(a)

% Edge cost covered
2 4 6

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20
US Flights

GreedyEBLandmarks25
GreedyEBLandmarks50
GreedyEBLandmarks75
GreedyEB

(b)

% Edge cost covered
2 4 6 8

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20
NYC Taxi

GreedyEBLandmarks25
GreedyEBLandmarks50
GreedyEBLandmarks75
GreedyEB

(c)

% Edge cost covered
2 4 6 8

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15
Wikispeedia

GreedyEBLandmarks25
GreedyEBLandmarks50
GreedyEBLandmarks75
GreedyEB

(d)

% Edge cost covered
0 2 4 6

S
tr

e
tc

h
 F

a
c
to

r

1

2

3

4

5
Powerlaw (w), Powerlaw (l)

GreedyEBLandmarks100
GreedyEB

(e)

% Edge cost covered
0 2 4 6

S
tr

e
tc

h
 F

a
c
to

r

1

1.5

2

2.5

3

3.5
Random (w), Powerlaw (l)

GreedyEBLandmarks100
GreedyEB

(f)

% Edge cost covered
0 5 10

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20
Powerlaw (w), Random (l)

GreedyEBLandmarks100

GreedyEB

(g)

% Edge cost covered
0 5 10

S
tr

e
tc

h
 F

a
c
to

r

0

5

10

15

20
Random (w), Random (l)

GreedyEBLandmarks100
GreedyEB

(h)

Figure 6: Performance in terms of stretch factor of our greedy algorithm with and with out using landmarks, for (a) London-
Tube, (b) USFlights, (c) NYCTaxi and (d) Wikispeedia (e–h) UKRoad. For all the datasets, as expected, we see a slight decrease
in performance using landmarks. In Figures (e–h), (w) indicates traffic volume, and (l) indicates the log.

Dataset

U
S
Fl
ig
ht
s

N
Y
C
Ta

xi

W
ik
is
pe

ed
ia

U
K
R
oa

d r p

U
K
R
oa

d pp

U
K
R
oa

d r r

U
K
R
oa

d pr

Lo
nd

on
Tu

be

S
tr

e
tc

h
 F

a
c
to

r

1

1.1

1.2

1.3

1.4

1.5

2-Spanner

GreedyEB

(a)

Dataset

U
S
Fl
ig
ht
s

N
Y
C
Ta

xi

W
ik
is
pe

ed
ia

U
K
R
oa

d r p

U
K
R
oa

d pp

U
K
R
oa

d r r

U
K
R
oa

d pr

Lo
nd

on
Tu

be

%
 E

d
g

e
s
 c

o
v
e

re
d

0

10

20

30

40

50

60

70

80

90

100

2-Spanner

GreedyEB

(b)

Figure 8: Comparison of our algorithm GreedyEB with 2-
spanner in terms of (a) stretch factor (b) Percentage of edges
covered.

in which edges are pruned while keeping the original quality
of the paths between all pairs of nodes. The objective here
is to check how well we perform in terms of graph sparsi-
fication. Figures 9(a,b) shows the comparison in terms of
stretch factor and percentage of edges covered. Similar to
the above approaches, we use the same budget as that used
by Toivonen’s algorithm. We observe that for most of the
datasets, their algorithm works poorly in terms of sparsifi-
cation, pruing less than 20% of the edges (Figure 9(b)). Our
algorithm performs better both in terms of the stretch of the
final solution as well as sparseness of the backbone.

The above results, comparing our work with the existing
approaches showcase the power of our algoritm in finding a

Dataset

U
S
Fl
ig
ht
s

N
Y
C
Ta

xi

W
ik
is
pe

ed
ia

U
K
R
oa

d r p

U
K
R
oa

d pp

U
K
R
oa

d r r

U
K
R
oa

d pr

Lo
nd

on
Tu

be

S
tr

e
tc

h
 F

a
c
to

r

1

1.05

1.1

1.15

1.2

1.25

1.3

Toivonen

GreedyEB

(a)

Dataset

U
S
F
lig

ht
s

N
Y
C
T
ax

i

W
ik
is
pe

ed
ia

U
K
R
oa

d r p

U
K
R
oa

d pp

U
K
R
oa

d r r

U
K
R
oa

d pr

Lo
nd

on
T
ub

e

%
 E

d
g
e
s
 c

o
v
e
re

d

40

50

60

70

80

90

100

Toivonen

GreedyEB

(b)

Figure 9: Comparison of our algorithm GreedyEB with
Toivonen et al, in terms of (a) stretch factor (b) Percent-
age of edges covered.

concise representation of the graph, at the same time main-
taining a low stretch factor. In all the three cases, our algo-
rithm performs considerably better than the related work.

Fairness - Though we claim that our approach performs
better, we need to keep in mind that there might be differ-
ences between these algorithms. PCSF does not optimize
for stretch factor. Spanners and Toivonen et al. do not have
a traffic log ((s,t) pairs). They also do not try to optimize
stretch factor. For this section, we were just interested in
contrasting the performance of our approach with existing
state of the art methods and show how our approach is dif-
ferent and better at what we do.

4.3 Case study #1: NYCTaxi.
The backbone of the NYC taxi traffic, as discovered by

our algorithms Greedy and GreedyEB, is shown in Figure 10.
We see that both backbones consist of many street stretches
in the mid-town (around Times Square) while serving lower-
town (Greenwich village and Soho) and up-town (Morning-
side heights). We also note that there are stretches to the
major transportation centers, such as the LaGuardia air-
port, the World Financial Center Ferry Terminal, and the
Grand Central Terminal, as well as to the Metropolitan mu-
seum. Comparing the Greedy and GreedyEB backbones, we
see that GreedyEB emphasizes more on the traffic to lower-
town, and ignores the northern stretch via Robert Kennedy
bridge, as it is less likely to be included in many shortest
paths. The case study reiterates the advantages of using
edge-betweenness to guide the selection of the backbone to
include edges which are likely to be used more and is consis-
tent with the well established notion of Wardrop Equilibrium
in Transportation Science that users (in a non-cooperative
manner) seek to minimize their cost of transportation [21].

4.4 Case study #2: Abeline.
We carry out a qualitative analysis on the Abilene dataset.

The results of applying the Greedy algorithm are shown in
Figure 11.9 The results provide preliminary evidence that
the backbone produced by our problem can be tightly in-
tegrated with software defined networks (SDN), an increas-
ingly important area in communication networks [11]. The
objective of SDN is to allow a software layer to control the
routers and switches in the physical layers based on the pro-
file and shape of the traffic. This is precisely what our so-
lution is accomplishing in Figure 11. The design of data-
driven logical networks will be an important operation im-
plemented through an SDN and will help network designers
manage traffic in real time.

5. RELATED WORK
As already noted, BackboneDiscovery is related to the

k-spanner and the Steiner-forest problem and the decision
versions of both are known to be NP-complete [15, 23]. The
k-spanner problem is designed to bound the stretch factor
for all pairs of nodes and not just those from a specific set
of (s, t) pairs. The Steiner-forest problem on the other hand
is designed to keep the (s, t) pairs connected with a minimal
number of edges and is agnostic about the stretch factor.
Both these problems only consider structural information
and completely ignore functional (activity) data that maybe
available about the usage of the network. They also have
strict limitations that all nodes need to be covered, which
makes them restrictive.

The Prize collecting Steiner-forest problem (PCSF) [10] is
a version of the Steiner-forest problem that allows for discon-
nected source–destination pairs, by imposing a penalty for
disconnected pairs. Even in this variant, there is no budget
or stretch requirement and hence the optimization problem
that PCSF solves is completely different from what we solve.
We show how our algorithm fares in comparison to PCSF in
Section 4.2.

Another enhancement in our work is to normalize edge
costs with measures related to the structure of the network

9The two nodes in Atlanta have been merged.

(like edge betweenness [3, 9, 16]) As we show in our experi-
ments, this leads to finding solutions of better quality.

Our work is different from trajectory mining [8, 24], which
consider complete trajectories between source–destination
pairs. We do not make use of the trajectories and are only
interested in the amount of traffic flowing between a source
and destination. Also, the type of questions we try to an-
swer in this paper are different from that of trajectory min-
ing. While trajectory mining tries to answer questions like
“Which are the most used routes between A and B?”, our
paper tries to use information about traffic from A to B in
order to facilitate a sparse backbone of the underlying net-
work which allows traffic to flow from A to B, also keeping
global network characteristics in mind.

The BackboneDiscovery problem is also related to find-
ing graph sparsifiers and simplifying graphs. For example,
Toivonen et al. [20] as well as Zhou et al [25], propose an
approach based on pruning edges while keeping the qual-
ity of best paths between all pairs of nodes, where quality
is defined on concepts such as shortest path or maximum
flow. Misiolek and Chen [14] propose an algorithm which
prune edges while maintaining the source-to-sink flow for
each pair of nodes. Mathioudakis et al. [13] and Bonchi et
al. [2] study the problem of discovering the backbone of a
social network in the context of information propagation,
which is a different type of activity than source–destination
pairs, as considered here. In the work of Butenko et al. a
heuristic algorithm for the minimum connected dominating
subset of wireless networks was proposed [4]. There has been
some work in social network research to extract a subgraph
from larger subgraphs subject to constraints [7, 19]. Other
forms of network backbone-discovery have been explored in
domains including biology, communication networks and the
social sciences. The main focus of most of these approaches
is on the trade-off between the level of network reduction and
the amount of relevant information to be preserved either for
visualization or community detection. While in this paper
we try to also sparsify a graph, our objective and approach
is completely different from the above because we cast the
problem in a well-defined optimization framework where the
structural aspects of the network are captured in the require-
ment to maintain a low stretch while the functional require-
ments are captured in maintaining connectedness between
traffic terminals, which has not been done before.

In the computer network research community, the notion
of software defined networks (SDN), which in principle de-
couples the network control layer from the physical routers
and switches, has attracted a lot of attention [5, 11]. SDN
(for example through OpenFlow) will essentially allow net-
work administrators to remotely control routing tables. The
BackboneDiscovery problem can essentially be consid-
ered as an abstraction of the SDN problem, and as we show
in Section 4.4, our approach can make use of traffic logs to
help SDN’s make decisions on routing and switching in the
physical layer.

6. CONCLUSIONS
We introduced a new problem, BackboneDiscovery, to

address a modern phenomenon: these days not only is the
structural information of a network available but increas-
ingly, highly granular functional (activity) information re-
lated to network usage is accessible. For example, the ag-
gregate traffic usage of the London Subway between all sta-

(a) (b)

Figure 10: NYC backbone using (a) Greedy(b) GreedyEB.

tions is available from a public website. The Backbone-
Discovery problem allowed us to efficiently combine struc-
tural and functional information to obtain a highly sophis-
ticated understanding of how the Tube is used (See Fig-
ure 1). From a computational perspective, the Backbone-
Discovery problem has elements of both the k-spanner and
the Steiner-forest problem and thus requires new algorithms
to maintain low stretch and connectedness between impor-
tant nodes subject to a budget constraint. We compare our
algorithm with other similar algorithms and show how our
algorithm is different and performs better for our setting.
Our case studies show the application of the proposed meth-
ods for a wide range of applications, including network and
traffic planning.

Though our algorithm makes use of shortest paths, in
practice, any other types of paths could be incorporated
into our algorithm. We leave this generalization for future
analysis. The use of harmonic mean not only allows us to
handle disconnected (s,t)-pairs, but also makes our stretch
factor measure more sensitive to outliers. For future work,
we would also incorporate a deeper theoretical analysis of
the algorithm and the stretch factor measure.

7. REFERENCES
[1] P. Boldi and S. Vigna. Axioms for centrality. CoRR,

abs/1308.2140, 2013.

[2] F. Bonchi, G. De Francisci Morales, A. Gionis, and
A. Ukkonen. Activity preserving graph simplification.
DMKD, 27(3), 2013.

[3] U. Brandes and C. Pich. Centrality estimation in large
networks. IJBC, 17(7), 2007.

[4] S. Butenko, X. Cheng, C. A. Oliveira, and P. M.
Pardalos. A new heuristic for the minimum connected
dominating set problem on ad hoc wireless networks.

Cooperative Systems, 3, 2004.

[5] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. Gude, N. McKeown, and S. Shenker. Rethinking
enterprise network control. IEEE/ACM Trans. Netw.,
17(4):1270–1283, 2009.

[6] A. Das Sarma, S. Gollapudi, M. Najork, and
R. Panigrahy. A sketch-based distance oracle for
web-scale graphs. In WSDM, 2010.

[7] N. Du, B. Wu, and B. Wang. Backbone discovery in
social networks. Web Intelligence, 2007.

[8] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi.
Trajectory pattern mining. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 330–339. ACM,
2007.

[9] M. Girvan and M. Newman. Community structure in
social and biological network. PNAS, 2002.

[10] M. Hajiaghayi, R. Khandekar, G. Kortsarz, and
Z. Nutov. Prize-collecting steiner network problems.
In Integer Programming and Combinatorial
Optimization, pages 71–84. Springer, 2010.

[11] H. Kim and N. Feamster. Improving network
management with software defined networking. IEEE
Communications Magazine, 51(2):114–119, 2013.

[12] M. Marchiori and V. Latora. Harmony in the small
world. Physica A, 285, 2000.

[13] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis,
and A. Ukkonen. Sparsification of influence networks.
In KDD, 2011.

[14] E. Misiolek and D. Z. Chen. Two flow network
simplification algorithms. IPL, 97, 2006.

[15] G. Narasimhan and M. Smid. Geometric Spanner
Networks. Cambridge University Press, 2007.

Traffic in Abeline network

(a)

Backbone discovered by GreedyEB

(b)

Figure 11: Qualitative analysis of the real Internet network. The figure on the left shows network traffic in the Abeline
dataset, and the one on the right shows the backbone discovered by the GreedyEB algorithm. As in Figure 1, the traffic shown
is an interpolation along the shortest path between the source–destination pairs.

[16] M. Newman. A measure of betweenness centrality
based on random walks. Social Networks, 27, 2005.

[17] M. Newman and M. Girvan. Finding and evaluating
community structure in networks. Phys. Rev., 69,
2004.

[18] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis.
Fast shortest path distance estimation in large
networks. In CIKM, 2009.

[19] N. Ruan, R. Jin, G. Wang, and K. Huang. Network
backbone discovery using edge clustering.
arXiv:1202.1842, 2012.

[20] H. Toivonen, S. Mahler, and F. Zhou. A framework for
path-oriented network simplification. In IDA, 2010.

[21] J. Wardrop and J. Whitehead. Correspondence. some
theoretical aspects of road traffic research. In
ICE:Engineering Divisions, page 767, 1952.

[22] R. West, J. Pineau, and D. Precup. Wikispeedia: An
online game for inferring semantic distances between
concepts. In IJCAI, pages 1598–1603, 2009.

[23] D. Williamson and D. Shmoys. The Design of
Approximation Algorithms. CUP, 2011.

[24] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining
interesting locations and travel sequences from gps
trajectories. In Proceedings of the 18th international
conference on World wide web, pages 791–800. ACM,
2009.

[25] F. Zhou, S. Mahler, and H. Toivonen. Network
simplification with minimal loss of connectivity. In
IDA, 2010.

	1 Introduction
	2 Problem definition
	3 Algorithm
	3.1 The greedy algorithm.
	3.2 Speeding up the greedy algorithm.
	3.3 Edge-betweenness centrality.

	4 Experimental evaluation
	4.1 Quantitative results.
	4.2 Comparison to existing approaches
	4.3 Case study #1: NYCTaxi.
	4.4 Case study #2: Abeline.

	5 Related work
	6 Conclusions
	7 References

