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Abstract. The efficiency of Public Transportation (PT) Networks is a 
major goal of any urban area authority. Advances on both location and 
communication devices drastically increased the availability of the data 
generated by their operations. Adequate Machine Learning methods can 
thus be applied to identify patterns useful to improve the Schedule Plan. 
In this paper, the authors propose a fully automated learning frame-
work to determine the best Schedule Coverage to be assigned to a given 
PT network based on Automatic Vehicle location (AVL) and Automatic 
Passenger Counting (APC) data. We formulate this problem as a cluster-

ing one, where the best number of clusters is selected through an ad-hoc 
metric. This metric takes into account multiple domain constraints, com-
puted using Sequence Mining and Probabilistic Reasoning. A case study 
from a large operator in Sweden was selected to validate our method-
ology. Experimental results suggest necessary changes on the Schedule 
coverage. Moreover, an impact study was conducted through a large-scale 
simulation over the affected time period. Its results uncovered potential 
improvements of the schedule reliability on a large scale.

Keywords: Unsupervised learning · Public transportation · Big data · 
Schedule plan · Schedule coverage · Sequence mining · Probabilistic 
reasoning

1 Introduction

Public Transport (PT) reliability is a major issue in modern cities. A good oper-
ational planning is necessary to deliver such service quality requirements while 
maintaining a balanced relationship between resource usage and obtained rev-
enues. Nowadays, major PT operators have their fleets equipped with Global 
Positioning System (GPS) antennas, communicational devices (e.g. 3G) and 
Radio-frequency Identification readers able communicate the vehicle’s position-
ing (i.e., Automatic Vehicle Location (AVL)) and its ridership (i.e., Automatic 
Passenger Counting (APC)) to a central server [1].

To mine this novel source of data is a massive challenge. It contains infor-
mation about the patterns of human behavior while traveling (as drivers or pas-
sengers) on an urban environment. Such patterns can provide useful insights to
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improve the operational planning of mass transit agencies - namely, its Sched-
ule Plan (SP). Such improvement may bring multiple benefits by providing
ways of reducing costs (e.g. fleet (re)sizing or fuel saving due to a decrease of
the necessary number of trips) and/or improving the passenger experience.

A Schedule Planning (SP) process for a given route relies on two main steps
[2]: (1) the first step is to define the number k of schedules and their individual
coverage, Si. Consequently, this first step defines different schedules for days
that are characterized by different traffic and demand patterns due to seasonal
variations, for instance. Secondly, (2) the timetables are assigned for each route
schedule containing the time the buses pass at each schedule time point (per
trip). This process is done for all routes. While the timetables are defined route-
wise (e.g. high/low frequency routes), the number of schedules (i.e. k) and their
coverage (Si,∀i ∈ {1, .., k}) must be defined networkwise. Such definition is key
to ease PT operations (e.g. maintenance tasks) and, most of all, to facilitate the
SP memorization by the passengers.

Automated data driven frameworks that aim to improve the SP are com-
monly focused on timetabling tasks, thus skipping the coverage definition. Some
of the most well-known approaches include finding the optimal slack time and
round-trip time to put into the schedule using Genetic/Ant Colony Algorithms
[3,4], mining distribution rules able to discover feature subspaces (i.e. scenarios)
for an increased travel time uncertainty [5], or clustering trips based on APC
data regarding their frequency setting, i.e. high/low [6]. However, the coverage
definition can easily constrain the timetable construction (e.g. two days with dis-
tinct demand peak periods should have different timetables). At the best of our
knowledge, only Mendes-Moreira et al. [2] covers the improvement of Schedule
Coverage: a Consensual Clustering framework groups days with similar behavior
(using AVL data standalone) given a predefined number of schedules k.

This paper is a comprehensive extension of the work in [2]. It aims to gener-
alize this framework’s usage for every scenario that fully exploits the information
available on the data repository while still minimizing the required human input
to reach a decision. The contributions are threefold:

1. a novel ad-hoc domain-oriented metric to select the most adequate number of
schedules to put in place based on Sequential Itemset Mining [7] and Prob-
abilistic Reasoning. It settles on a trade-off between the entropy within the
clusters and the operational adequacy of the resulting coverage.

2. a hybrid computation of the daily profiles using APC/AVL data simultane-
ously by decomposing the round trip times into a sum of link travel times
(the run times between two consecutive stops) and dwell times1. Their com-
putation may highlight demand peaks which would be smoothed otherwise.

3. the application of a Gaussian Mixture Model (GMM) [8] to perform the nec-
essary clustering for the individual routes, thus replacing the originally pro-
posed k-Means (see Sect. 5 in [2]). By doing so, we obtain a soft assignment
of the samples, reducing the overfitting chances.

1 Reports stoppage time at stops. Includes a fixed delay due to door opening and
closing time, and a variable delay caused by passengers boarding/alighting activities.



The proposed framework was evaluated using data acquired from a large bus
operator in Sweden throughout a period of six months. Numerical experi-
ments suggested a change to the agency’s original coverage. The impact of such
change was measured by assigning a theoretical timetable to the affected period.
A before-and-after schedule reliability study was conducted. The results are
promising.

The remainder of the paper is structured as follows: methodology is described
in Sect. 2, by doing an analysis of the previous work and a formal explanation
of our contributions. The case study is presented in Sect. 3, along with some
summary statistics of the used datasets. The results are presented in the Sect. 4,
followed by a brief discussion. Finally, conclusions are drawn.

2 Methodology

A stepwise methodology is hereby proposed to automatically set both the number
of schedules and their daily coverage. This description follows closely the one
proposed in Sect. 4 of [2]. It elaborates on the principle that days where the route
trips have a similar behavior (e.g. round-trip times) throughout the day should
be assigned to the same schedule. Let L = {r1, ..., rn} denote a set of routes of
interest. Firstly, for each r ∈ L, the running times and the boardings/alightings
at each stop (if existing) are extracted from its original AVL/APC dataset.
Secondly, the daily profiles are generated. If there is no APC data available for
a specific route, the procedure originally suggested in [9] is used. Otherwise, a
biased dwell time model is generated based on APC data to account demand
peaks/valleys. Its output is added to the link travel times computed through the
AVL data - as described in Sect. 2.1.

The next two steps generate a distance matrix between the days (using their
daily profiles) and cluster them. The first task is conducted using a Euclidean-
flavoured Dynamic Time Warping, while the latter is addressed using a GMM.
Conversely to previous works, the clustering is made for a user-defined set of
admissible number of schedules K ⊂ N, i.e. ∀k ∈ K instead of a single predefined
k value. The above mentioned steps are repeated for all routes.

Step 5 selects the best possible k ∈ K to define the best number of schedules
to put in place. This is made using a two-stage process, where an ad-hoc metric is
devised to evaluate the clustering result for each pair (r, k),∀r ∈ L, k ∈ K. Then,
a consensual k, i.e. K is found through a domain-oriented weighted mean of the
previously computed metrics - as described in Sect. 2.3. Finally, a Consensual
Clustering procedure is devised using the clustering pieces obtained for k = K
to compute the suggested Schedule Coverage, following the original procedure
proposed in [2]. An illustration of our methodology is presented in Fig. 1. The
remainder of this Section describes our contributions.

2.1 Modeling the Daily Profiles

Let L = {L1, L2, ..., Ln} be a set of the available AVL datasets for n consid-
ered routes, and C = {C1, C2, .., Cn} a set of the corresponding APC datasets.
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Fig. 1. A generic representation of the proposed methodology. The contributions of
this paper are highlighted by the dashed blue rectangles.

If Ci �= ∅, the round-trip time for every trip is obtained by adding the dwell
times at stops and the link travel times as they are described in the AVL data.

By using trip-level APC data, we expect to express the demand peaks/valleys
as slight increases/decreases of the computed round-trip time. Let r be a route
of interest with the associated datasets (Li, Ci) where t is the number of trips
and s is its number of stops. This procedure starts by modeling the dwell time at
stop through a decomposition in multiple factors. It can be computed as follows:

δo,j = max(α × ao,j , β × bo,j) + doc (1)

where α and β are constants that denote the alighting and boarding time per
passenger, respectively, and doc denotes the time allocated for operations that
take place on every stop, e.g. the opening and closing of doors. On the other
hand, ao,j and bo,j are the number of passengers that alight/board on a stop j
during a trip o, respectively, where o ∈ {1, 2, ..., t} and j ∈ {1, 2, ..., s}.

Using the available values for dwell times (AVL) δo,j and the values of ao,j

and bo,j (APC), we perform a linear regression procedure to estimate the val-
ues of α, β and doc. It consists of three steps: firstly, we isolate the samples
(i.e. boardings/alightings and dwell times for every pair of [trips/stops] avail-
able) where ao,j = 0 and bo,j = 0 into two different partitions. This allows
to transform Eq. 1 into a linear one. Secondly, we estimate values for α, β and
two possible values for doc, i.e. doca, docb. Finally, the doc value is computed as
doc = doca+docb

2 . Then, we use the resulting constants to compose a novel func-
tion for the dwell time (i.e. δ̂o,j). This function is used with the original APC
data to compute novel dwell time estimations, which are summed up to the link
travel times observed in the original AVL data.

The induction model used to do the abovementioned linear regression proce-
dure is a modified version of the well-known least squares, where we replace its



typical loss-function (a sum of the squared residuals) for the mean absolute devi-
ation (MAD) (i.e. which results in a simple sum of the residuals). This change
increases the framework’s tolerance to large errors (i.e. demand peak/valleys),
which will result in an under/overestimation of the dwell times under such con-
ditions. This effect aims to model the demand peaks/valleys inside the daily
profiles of round trip times typically used by [2]. By producing a daily profile
based on heterogeneous sources of data, we aim to adequately express the dif-
ferences between the route behavior - both in terms of cruising time and in its
demand - on the schedule coverage definition.

2.2 Expectation-Maximization (EM) for Clustering Analysis

[2] proposed k-Means algorithm to perform the routewise clustering in the con-
text of this application. This approach assumes a deterministic clustering step
where the model is only given by the Euclidean Distance to the incrementally
computed centroids (i.e. spherical clusters, parametric). Such characteristics may
easily lead to an undesired overfitting, where the samples are erroneously ini-
tially assigned to a non-homogeneous cluster, potentially increasing the variance
within. To overcome this limitation, we propose a GMM (a general version of
k-Means), which (briefly) operates as follows: firstly, it (a) softly assigns a sam-
ple to a cluster, i.e., computing the probability of any point belonging to every
centroid; then, it (b) estimates the parameters of the probability distribution,
taking the sample-based covariances into account.

2.3 Automated Selection of Number of Schedules

The selection of the best number of clusters is a complex problem in data analy-
sis. One of the most well-known metrics to do it so is the Bayesian Information
Criterion (BIC) [10], which computes an entropy-based probabilistic score that,
when maximized over a set of values, i.e. K, aims to return the optimal k by
minimizing the entropy between samples of the same cluster and maximizing
the one between samples of different ones. However, such optimization problem
may not lead to a good solution for a real-world context, given the constraints
that each application domain encloses. Consequently, ad-hoc metrics are often
devised to address such issues (e.g. market segmentation in [11]).

In this context, we depart from BIC to set up an ad-hoc metric, i.e. m for
this problem as a linear combination of multiple factors. These factors were con-
sidered in light of two main constraints: (1) the cost of increasing the number
of defined schedules (which reduces the schedule’s interpretability as well as its
easy memorization, the operators’ ability to easily put it in place, and conse-
quently, the route’s riderships) must be necessarily balanced by a gain on the
punctuality of the offered service, by reducing significantly the entropy on the
produced clusters; (2) the cluster’s output must model a frequent pattern (e.g.
the Saturdays should be grouped with the Sundays throughout five months of
an year). Such factors can be expressed as follows:

m(k, r) =
(
nbic(k, r) − f(k, r)2

)
+

(
q(k, r) − σ̂(k, r)

)
, k ∈ K, r ∈ L (2)



where nbic(k, r) is the normalized2 value of BIC. (1) The first term of Eq. 2
addresses the number of clusters. High values of nbic will bring a gain on the
punctuality of a suitable timetable defined for such partitioning. On the other
hand, the increase of the number of schedules to maximize such punctuality
must be done if and only if such gain is significant. Consequently, we need
to model a trade-off between an eventual gain given by increasing the number
of schedules and the associated cost of decreasing its interpretability. We do it
so by introducing a penalty term f(k, r)2 that favors lower values of k, where
f(k, r) = k/max(K),∀r ∈ L.

The second term of Eq. 2 addresses the cohesion and consistency of the par-
titioning for a number of schedules k. Empirically, we know that a SP in PT
should cover a static set of daytypes (e.g. Mondays) throughout a relatively long
set of weeks. Consequently, a suitable cluster would be one that provides such
frequent pattern. The suitability of each cluster is given by an ad-hoc quality
metric, i.e. q(k, r). It is computed in two stages: (2a) frequent itemset mining
and (2b) compatible pattern merging. This procedure is detailed as follows.

Cluster Quality Computation. A frequent pattern in this problem can be
modeled through a sequence mining problem to find frequent itemsets of daytypes
among the weeks (i.e. transactions) covered by the input data (e.g. Mondays to
Fridays). Let γ, φ ∈ [0, 1] denote two user-defined parameters for the minimum
support to consider a given itemset as frequent (i.e. the minimum amount of
weeks to define a schedule) and for the minimum cluster’s mass ratio to be
covered by it, respectively. The PrefixSpan algorithm [7] is hereby adopted to
find such frequent itemsets, i.e. FIi among the daytype’s transactions obtained
from each partition Si. Let N denote the number of weeks in the input data.
The frequent pattern of each cluster, i.e. FP is then selected as follows:

FPi = arg max
FIi⊆Si

(
Γ (FIi) · |FIi|

N

)
subject to: Γ (FIi) ≥ γ, FPi ≥ φ (3)

where Γ (FIi) is the support of the frequent itemset FIi on the partition Si.
After such procedure, each cluster possesses a FPi (which may be ∅). The

quality of each cluster is then computed as q(k, r) =
∑k

i=1
Γ (FPi)

k . However, in
this domain, it is very common to find complementary schedules (e.g. work-
days for all year and workdays during summer vacations, with a support of 0.9
and 0.1, respectively). Together, these complementary clusters would present a
very meaningful frequent pattern which is penalized by the q(k, r) computation
formula introduced above. Consequently, we introduced a merging step which
aims to find such clusters and to merge them in order to obtain the overall qual-
ity of the coverage proposed by a given value of k. This merging step aims to find
clusters which have frequent itemsets complementary to a given FPi by relaxing,
at most, one of the two constraints imposed in Eq. 3. The algorithm to do it so
is introduced by Fig. 2. Note that two clusters are considered as complementary
if they overlap, at most, 10% of the weeks of the input data.
2 All the normalizations done throughout this section used the Euclidean distance.



Fig. 2. Merging Procedure for Complementary Clusters/Coverages.

Given the resulting clusters after the merging procedure (with a number of
k′ clusters), we can compute the final cluster’s quality as

q(k, r) =

⎧
⎪⎨

⎪⎩

∑k′

i=1
Γ (FPi)

k′ if k′ = k
(

∑k′

i=1
Γ (FPi)

k′

)
(
1− χ

2

)

, χ = max(FPMi) otherwise.
(4)

where FPMi denotes the support of the frequent itemset of a merged clus-
ter. Obviously, the resulting clusters may also contain other samples regarding
daytypes not included in the frequent itemset (e.g. a cluster modeling the week-
ends which have two Mondays within). These samples are referred to as noise in
this context. Such noise naturally decreases the adequacy of the frequent pattern
modeled by each cluster. This effect is introduced by term σ̂(k, r) in Eq. 2. σ̂(k, r)
is calculated based on the standard deviation between the relative frequencies
of every day within a particular cluster. It can be computed as:

σ̂(k, r) =
1
2

×
√

∑k

i=1

σ(frk,Si,r)
k

(5)

where frk,Si,r is the vector of relative frequencies of the days within the cluster
i, where a relative frequency of a daytype d within a cluster Si is given by the
number of days of daytype d divided by the cluster’s mass.

Given such metric computation for all pairs (r, k), we can now compute a
consensual number of clusters K. Let η(r) denote the normalized (see Footnote
2) number of trips for the route r. The consensual number of clusters K is defined
by a weighted average of k ∈ K. We can express K ∈ N as follows:

⌈
∑

r∈L

∑

k∈K

m(k, r)2 × k × η(r)
Ψ

/ ∑

r∈L

η(r), Ψ =
∑

k∈K

m(k, r)2
⌉

(6)



3 Case Study

Our case study was a large urban bus operator in Sweden. We used data from
four high-frequency (maximum planned headway of 10 min between 7:00–19:00)
routes A1/A2/B1/B2, i.e. two bus lines A/B. Line A links residential areas to
a PT hub as well as major shopping areas. B connects the southern parts of
the city to the city center, traversing by a PT hub, major hospitals as well as a
logistic center. This study covers six months between August 2011 and January
2012. The coverages in place are relative to two time periods: Summer, from 19
June till 14 December and Winter: from 15 December till 18 June. Two schedules
are defined for each period: workdays and weekends/holidays.

As preprocessing, a trip pruning was performed by removing trips with more
than 80 % of missing link travel times. Reversely, we performed data imputation
on the remaining samples by following the interpolation procedure suggested in
[2]. The dwell times were also pruned by using the 99 % percentile to remove
erroneous measurements. APC data was used as is.

Table 1 presents an overview of the resulting dataset, detailed per route. It
contains the (i) total number of trips (NT), (ii) its number of stops, (iii) the
Daily Trips (DT), (iv) the Round Trip Times (RTT) and (v) the loads (i.e. total
number of boarding passengers). Both have a similar NT, while line A has a
larger RTT than B.

4 Experiments

The experiments were conducted using the R language [12]. The model-based
clustering was performed using the GMM implementation of mclust package
[13]. To compute the frequent itemsets used in the cluster’s quality computation,
a C++ implementation of PrefixSpan [14] was employed. This framework has
three parameters: K, γ and φ. Their values were set to 2 ≤ k ≤ 7,∀k ∈ K,
0.25 and 0.4, respectively. The first used the range suggested by the original
experimental setup in [2]. The value of γ was empirically set such that a schedule
can only be set for a period of, at least, four weeks; on the other hand, φ was
selected out of three possible values 0.4, 0.5, 0.6 through an iterative parameter
tuning setting conducted on a small subset of the training data.

The application of the proposed methodology to the available dataset sug-
gested a novel SP - as detailed further in this Section. Its impact on the agency’s
operations in terms of schedule reliability was assessed through a simulation
procedure, described in the next section.

4.1 Impact Evaluation Through a Data-Driven Simulation

Any change of the schedule coverage will result in one of two scenarios: (i) a
group of days B changes from one coverage to another among the ones that were
already in place or (ii) it will take a completely novel timetable. The procedure
that we describe hereby is focused on the type-i Scenarios. Let A and Z be two



Table 1. Statistics per Route. The values are as mean ± s.d.. Times in seconds.

Nr. Trips Stops DT RTT Loads

A1 17953 33 134 ± 27 3017 ± 425 101 ± 50

A2 16353 33 133 ± 30 2755 ± 480 98 ± 51

B1 16280 25 127 ± 23 2607 ± 465 70 ± 37

B2 16353 25 124 ± 22 2746 ± 448 60 ± 29

groups of days with different coverages and, consequently, distinct timetables
assigned where B ⊆ A. Our goal is to test whether the time period B would
benefit from having the same timetable of Z instead of its original one (i.e. from
B). This procedure is done in three steps: firstly, we need to assign a timetable
to B - which will change from the one in place in A to the one used in Z3. Then,
we need to simulate which would be the (a) link travel times and (b) the dwell
times generated by such timetable given the available AVL/APC data.

The (a) link travel times are generated through a k-Nearest Neighbors regres-
sion [16] (k = 1), where the departure time of each stop is used as an independent
variable. The demand on each stop is generated by using the headways computed
through (a). These headways correspond to the idle time on a given bus stop bsi,
τi. The passenger arrivals at stops are modeled by iteratively sampling passenger
arrival times pavi from an exponential distribution, i.e. pavi ∼ Exp(λi). Then,
the number of boardings on each stop is computed as follows:

boi = arg max
x

∑x

j=1
pavi

j , subject to:
∑x

j=1
pavi

j ≤ τi∧pavi
j ∼ Exp (λi) (7)

where λi is computed as time-dependent Poisson process for every specific pair
(r, bs) by considering averages of boardings on one hour periods of the days with
similar daytypes (e.g. the number of passengers boarded on a given route between
8am and 9am of every Monday) - which are linearly normalized according to the
amount of idle time available to compute each boi � x. The alightings are then
computed based on an assumption that the passengers traverse up to 25 % of the
route. The resulting dwell times are computed using the Eq. 1 and the constant
values obtained through the procedure described in Sect. 2.1.

The impact evaluation study is conducted on a before-and-after fashion,
where schedule reliability metrics are firstly computed for the current case
study (using the original AVL/APC data, as well as the SP in place). Then,
the same metrics are also computed for the simulated data obtained through
the abovementioned procedure. Four schedule reliability metrics were employed:
On-Time Performance, Run-Time Variation, Headway Variation and Excess
Waiting Time. Details about these metrics can be found in Sect. 4 of the Survey
in [1].
3 Note that this naive timetabling procedure is done only for this specific purpose.

Once the coverage is changed, the entire timetable of the affected periods need to be
recomputed. The reader can consult the work in [15] to know more about this topic.



4.2 Results

This framework typically runs in linear time, where a single-core CPU processed
the 16 k trips of our case study in ∼ 600 s. Figure 3 illustrates the computed val-
ues for the ad-hoc metric hereby devised to assess the quality of the partitioning
provided by each value of k. These values resulted in a consensual K = 3. Figure 4
shows an example of the clustering results obtained for a particular route using
its best value of k, i.e. k = 5. The consensual clustering results are exhibited in
Fig. 5. Finally, Fig. 6 presents the schedule reliability evaluation metrics of the
before-and-after study performed through the simulation described in the above
Section.

4.3 Discussion

Figure 3 clearly exhibits the penalty effects of the term f(k, r)2 as there is a clear
trend of reducing the computed score with the increase of k. Yet, the weighted
voting schema proposed in Eq. 6 ends up by finding a consensus around K = 3 -
and not 2 as the charts may empirically suggest. As it is detailed by Fig. 4,
this happens mainly due to a particular merge between the S2 and S4. Figure 5
illustrates the obtained coverage. It differs largely from the one in place by sug-
gesting that the winter schedule should be in place four weeks earlier than it
is (i.e. a change from mid-December to mid-November). The affected period
was used as case study to conduct the simulation-based impact study described
along Sect. 4.1. The obtained results (exhibited by Fig. 6) clearly outline high
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potential gains of performing such change. However, such gains are mainly theo-
retical boundaries. They may be biased by the multiple constraints of daily PT
operations, as well as by the oversimplification of the dwell time’s computation
(i.e. used the constants computed as described in Sect. 2.1). Consequently, an
on-field deployment of this new coverage would be necessary to determine the
exact impact of the suggested changes.

5 Final Remarks

This paper introduces a novel procedure to improve schedule coverage on PT
networks. It is based solely on AVL/APC data. The final goal is to improve
PT reliability and, consequently, their ridership and cost efficiency. Our main
contribution is an ad-hoc metric to select the best number of schedules to put
in place giving four decision factors - punctuality, adequacy, interpretability and
reliability - modeled throughout sequence mining and probabilistic reasoning. To
the best of our knowledge, this is first data driven framework to automatically
select the number of schedules to be put in place using real-world data from
a PT operator. Experimental results uncovered the potential gains introduced
by this framework. As future work, the authors intend to evaluate it on a real-
world testbed. Moreover, we also expect to create adequate exceptions on the



concept of frequent itemset to relevant outliers on this domain (e.g. a schedule
for the Christmas week) and identify when changes in round-trip times require
introducing a novel schedule. This is still an open research question.

Acknowledgements. This work was also supported by the European Commission
under TEAM, a large scale integrated project part of the Seventh Framework Pro-
gramme for research, technological development and demonstration [Grant Agreement
No. 318621]. The authors would like to thank all partners within TEAM for their
cooperation and valuable contribution.

References

1. Moreira-Matias, L., Mendes-Moreira, J., Freire de Sousa, J., Gama, J.: Improving
mass transit operations by using avl-based systems: a survey. IEEE Trans. Intell.
Transp. Syst. 16(4), 1636–1653 (2015)

2. Mendes-Moreira, J., Moreira-Matias, L., Gama, J., Freire de Sousa, J.: Validating
the coverage of bus schedules: a machine learning approach. Inf. Sci. 293, 299–313
(2015)

3. Mazloumi, E., Mesbah, M., Ceder, A., Moridpour, S., Currie, G.: Efficient transit
schedule design of timing points: A comparison of ant colony and genetic algo-
rithms. Transp. Res. Part B: Methodol. 46(1), 217–234 (2012)

4. Cats, O., Mach Rufi, F., Koutsopoulos, H.: Optimizing the number and location
of time point stops. Public Transp. 6(3), 215–235 (2014)

5. Jorge, A.M., Mendes-Moreira, J., de Sousa, J.F., Soares, C., Azevedo, P.J.: Finding
interesting contexts for explaining deviations in bus trip duration using distribution
rules. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619,
pp. 139–149. Springer, Heidelberg (2012)

6. Patnaik, J., Chien, S., Bladikas, A.: Using data mining techniques on apc data to
develop effective bus scheduling. J. Syst. Cybern. Inf. 4(1), 86–90 (2006)

7. Pei, J., Han, J., Mortazavi-Asl, N., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Pre-
fixspan: mining sequential patterns efficiently by prefix-projected pattern growth.
In: ICCCN, p. 0215. IEEE (2001)

8. Fraley, C., Raftery, A.: Model-based clustering, discriminant analysis, and density
estimation. J. Am. Stat. Assoc. 97(458), 611–631 (2002)

9. Matias, L., Gama, J., Mendes-Moreira, J., Freire de Sousa, J.: Validation of both
number and coverage of bus schedules using avl data. In: 13th IEEE Conference
on Intelligent Transportation Systems (ITSC), pp. 131–136 (2010)

10. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464
(1978)

11. Wagner, R., Scholz, S., Decker, R.: The number of clusters in market segmentation.
In: Baier, D., Decker, R., Schmidt-Thieme, L. (eds.) Data Analysis and Decision
Support. Studies in Classification, Data Analysis, and Knowledge Organization,
pp. 157–176. Springer, Heidelberg (2005)

12. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2012). ISBN 3-900051-07-0

13. Fraley, C., Raftery, A., Scrucca, L.: Normal mixture modeling for model-based clus-
tering, classification, and density estimation. Department of Statistics, University
of Washington 23, 2012 (2012)



14. Tabei, Y.: An imprementation of prefixspan (prefix-projected sequential pat-
tern mining), August 2015. https://code.google.com/p/prefixspan/people/list. last
access at August 2015

15. Ceder, A.: Urban transit scheduling: framework, review and examples. J. Urban
Plann. Dev. 128(4), 225–244 (2002)

16. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf.
Theory 13(1), 21–27 (1967)

https://code.google.com/p/prefixspan/people/list

	Automated Setting of Bus Schedule Coverage Using Unsupervised Machine Learning
	1 Introduction
	2 Methodology
	2.1 Modeling the Daily Profiles
	2.2 Expectation-Maximization (EM) for Clustering Analysis
	2.3 Automated Selection of Number of Schedules

	3 Case Study
	4 Experiments
	4.1 Impact Evaluation Through a Data-Driven Simulation
	4.2 Results
	4.3 Discussion

	5 Final Remarks
	References




